Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Razak IA, Usman A, Fun HK, Yamin BM, Kasim NA
    Acta Crystallogr C, 2002 Apr;58(Pt 4):M225-7.
    PMID: 11932524
    In the title compound, [Fe(C(34)H(29)O(2)P(2))](2)[Sb(2)Cl(8)], the discrete centrosymmetric [Sb(2)Cl(8)]2- anions are formed from two edge-shared square pyramids of Cl atoms about each Sb atom. Within the cation, the two diphenylphosphinate groups share one H atom and the ferrocene cyclopentadienyl rings are in a staggered conformation, with the average value of the twist angle being 46 degrees. In the crystal, each [Sb(2)Cl(8)]2- anion is involved in eight C-H* * *Cl interactions with four surrounding cations and these interactions interconnect the ions to form molecular columns along the a direction.
    Matched MeSH terms: Ferrous Compounds
  2. Leong LH, Kandaiya S, Seng NB
    Australas Phys Eng Sci Med, 2007 Jun;30(2):135-40.
    PMID: 17682403
    The oxidation of ferrous to ferric ions due to ionizing radiation has been used for chemical dosimetry since 1927. The introduction of metal indicator dye xylenol orange (XO) sensitises the measurement of ferric ion yield. A ferrous sulphate- agarose- xylenol orange (FAX) gel was prepared and the gel then exposed to dose ranging from 0.2 to 10 Gy using various high energy photon and electron beams from a linear accelerator. Some general characteristics of FAX such as energy dependence, optical density (OD)-dose relationship, reproducibility and auto-oxidation of ferrous ions were analysed. The radiation yield G of the gel was calculated for gels prepared in oxygen and in air and the values were 46.3 +/- 2.1 and 40.9 +/- 1.4 Fe3+ per 100 eV for photons respectively. However for stock gel which was kept for 5 days pre-irradiation the G value decreased to 36.6 +/- 1.1. The gel shows linearity in OD-dose relationship, energy independence and reproducibility over the dose range investigated. Auto-oxidation of ferrous ions resulted in optical density changes of less than 1.5% per day.
    Matched MeSH terms: Ferrous Compounds/chemistry*
  3. Bean LS, Heng LY, Yamin BM, Ahmad M
    Bioelectrochemistry, 2005 Feb;65(2):157-62.
    PMID: 15713567
    A single-step fabrication of a glucose biosensor with simultaneous immobilization of both ferrocene mediator and glucose oxidase in a photocurable methacrylic film consisting of poly(methyl methacrylate-co-2-hydroxylethyl methacrylate) was reported. The entrapped ferrocene showed reversible redox behaviour in the photocured film and no significant leaching of both entrapped ferrocene and enzyme glucose oxidase was observed because of the low water absorption properties of the co-polymer films. From electrochemical studies, ferrocene entrapped in the co-polymer film demonstrated slow diffusion properties. A linear glucose response range of 2-11 mM was obtained at low applied potential of +0.25 V. The glucose biosensor fabricated by this photocuring method yielded sensor reproducibility and repeatability with relative standard deviation of <10% and long-term stability of up to 14 days. The main advantage of the use of photocurable procedure is that biosensor membrane fabrication can be performed in a single step without any lengthy chemical immobilization of enzyme.
    Matched MeSH terms: Ferrous Compounds/chemistry*
  4. Afreen S, Muthoosamy K, Manickam S, Hashim U
    Biosens Bioelectron, 2015 Jan 15;63:354-364.
    PMID: 25125029 DOI: 10.1016/j.bios.2014.07.044
    Designing a biosensor for versatile biomedical applications is a sophisticated task and how dedicatedly functionalized fullerene (C60) can perform on this stage is a challenge for today and tomorrow's nanoscience and nanotechnology. Since the invention of biosensor, many ideas and methods have been invested to upgrade the functionality of biosensors. Due to special physicochemical characteristics, the novel carbon material "fullerene" adds a new dimension to the construction of highly sensitive biosensors. The prominent aspects of fullerene explain its outstanding performance in biosensing devices as a mediator, e.g. fullerene in organic solvents exhibits five stages of reversible oxidation/reduction, and hence fullerene can work either as an electrophile or nucleophile. Fullerene is stable and its spherical structure produces an angle strain which allows it to undergo characteristic reactions of addition to double bonds (hybridization which turns from sp(2) to sp(3)). Research activities are being conducted worldwide to invent a variety of methods of fullerene functionalization with a purpose of incorporating it effectively in biosensor devices. The different types of functionalization methods include modification of fullerene into water soluble derivatives and conjugation with enzymes and/or other biomolecules, e.g. urease, glucose oxidase, hemoglobin, myoglobin (Mb), conjugation with metals e.g. gold (Au), chitosan (CS), ferrocene (Fc), etc. to enhance the sensitivity of biosensors. The state-of-the-art research on fullerene functionalization and its application in sensor devices has proven that fullerene can be implemented successfully in preparing biosensors to detect glucose level in blood serum, urea level in urine solution, hemoglobin, immunoglobulin, glutathione in real sample for pathological purpose, to identify doping abuse, to analyze pharmaceutical preparation and even to detect cancer and tumor cells at an earlier stage. Employing fullerene-metal matrix for the detection of tumor and cancer cells is also possible by the inclusion of fullerene in single-walled carbon nanotubes (SWCNTs) known as peapods as well as in double-walled carbon nanotubes (DWCNTs), to augment the effectiveness of biosensors. This review discusses various approaches that have been reported for functionalizing fullerene (C60) derivatives and their application in different types of biosensor fabrication.
    Matched MeSH terms: Ferrous Compounds/chemistry
  5. Wani WA, Jameel E, Baig U, Mumtazuddin S, Hun LT
    Eur J Med Chem, 2015 Aug 28;101:534-51.
    PMID: 26188909 DOI: 10.1016/j.ejmech.2015.07.009
    Malaria has been teasing human populations from a long time. Presently, several classes of antimalarial drugs are available in market, but the issues of toxicity, lower efficacy and the resistance by malarial parasites have decreased their overall therapeutic indices. Thus, the search for new promising antimalarials continues, however, the battle against malaria is far from over. Ferroquine is a derivative of chloroquine with antimalarial properties. It is the most successful of the chloroquine derivatives. Not only ferroquine, but also its derivatives have shown promising potential as antimalarials of clinical interest. Presently, much research is dedicated to the development of ferroquine derivatives as safe alternatives to antimalarial chemotherapy. The present article describes the structural, chemical and biological features of ferroquine. Several classes of ferroquine derivatives including hydroxyferroquines, trioxaferroquines, chloroquine-bridged ferrocenophanes, thiosemicarbazone derivatives, ferrocene dual conjugates, 4-N-substituted derivatives, and others have been discussed. Besides, the mechanism of action of ferroquine has been discussed. A careful observation has been made into pharmacologically significant ferroquine derivatives with better or equal therapeutic effects to that of chloroquine and ferroquine. A brief discussion of the toxicities of ferroquine derivatives has been made. Finally, efforts have been made to discuss the current challenges and future perspectives of ferroquine-based antimalarial drug development.
    Matched MeSH terms: Ferrous Compounds/chemical synthesis; Ferrous Compounds/pharmacology*; Ferrous Compounds/chemistry
  6. Abu MA, Borhan AS, Abdul Karim AK, Ahmad MF, Mahdy ZA
    Horm Mol Biol Clin Investig, 2020 Dec 14;42(1):49-56.
    PMID: 33781008 DOI: 10.1515/hmbci-2020-0034
    OBJECTIVES: To compare the effect of Iberet Folic® and Zincofer® on haemoglobin (Hb) and serum ferritin level; and its adverse effect.

    METHODS: This randomised controlled trial conducted from January 2018 until December 2018. Pregnant women below 34 weeks of gestation, with Hb concentration less than 11 g/dL and serum ferritin level less than 12 ug/L were randomised to receive either one tablet Zincofer® or one tablet Iberet Folate® daily for four weeks. Both groups were compared in terms of effect on Hb level, serum ferritin level, and other haematological indices adverse effect related to treatment, and treatment cost.

    RESULTS: Hundred and thirty patients were recruited in this study with 68 patients in Iberet Folic group and 62 patients in Zincofer group. The change in the Hb and serum ferritin level from baseline to day 30 did not differ significantly between treatment groups. The mean (±SD) change from baseline to day 30 was 2.15 (±0.59) g/dL in the Iberet Folic group, and 1.98 (±0.49) in the Zincofer (p value = 0.08). Mean serum ferritin at day 30 was 17.2 (±3.68) ug/L and 16.7 (±4.28) ug/L with 8.44 (±3.41) and 8.55 (±3.50) difference, respectively (p = 0.86). Adverse events were comparable in between groups, with p value >0.05. GI intolerance and constipation were among the common side effects, occurred in 34.6 and 29.2% cases, respectively.

    CONCLUSIONS: Zincofer® offers equivalent efficacy and side effect profile in comparison with Iberet Folic® for the treatment of iron deficiency anaemia (IDA) during pregnancy, but with lower cost.

    Matched MeSH terms: Ferrous Compounds/administration & dosage; Ferrous Compounds/therapeutic use*; Ferrous Compounds/toxicity
  7. Mohammad Ilias MK, Hossain MS, Ngteni R, Al-Gheethi A, Ahmad H, Omar FM, et al.
    PMID: 34886153 DOI: 10.3390/ijerph182312427
    The present study was conducted to determine the potential of utilizing the FeSO4·7H2O waste from the titanium manufacturing industry as an effective coagulant for treating industrial effluent. In this study, the secondary rubber processing effluent (SRPE) was treated using ferrous sulfate (FeSO4·7H2O) waste from the titanium oxide manufacturing industry. The FeSO4·7H2O waste coagulation efficiency was evaluated on the elimination of ammoniacal nitrogen (NH3-N) and chemical oxygen demand (COD) from SRPE. The central composite design (CCD) of experiments was employed to design the coagulation experiments with varying coagulation time, coagulant doses, and temperature. The coagulation experiments were optimized on the optimal elimination of NH3-N and COD using response surface methodology (RSM). Results showed that coagulant doses and temperature significantly influenced NH3-N and COD elimination from SRPE. The highest NH3-N and COD removal obtained were 98.19% and 93.86%, respectively, at the optimized coagulation experimental conditions of coagulation time 70 min, coagulant doses 900 mg/L, and temperature 62 °C. The residual NH3-N and COD in treated SPRE were found below the specified industrial effluent discharge limits set by DoE, Malaysia. Additionally, the sludge generated after coagulation of SRPE contains essential plant nutrients. The present study's finding showed that FeSO4·7H2O waste generated as an industrial byproduct in a titanium oxide manufacturing industry could be utilized as an eco-friendly coagulant in treating industrial effluent.
    Matched MeSH terms: Ferrous Compounds
  8. Yew YP, Shameli K, Mohamad SEB, Nagao Y, Teow SY, Lee KX, et al.
    Int J Pharm, 2019 Dec 15;572:118743.
    PMID: 31705969 DOI: 10.1016/j.ijpharm.2019.118743
    Superparamagnetic magnetite nanocomposites (Fe3O4-NCs) were successfully synthesized, which comprised of montmorillonite (MMT) as matrix support, Kappaphycus alvarezii (SW) as bio-stabilizer and Fe3O4 as filler in the composites to form MMT/SW/Fe3O4-NCs. Nanocomposite with 0.5 g Fe3O4 (MMT/SW/0.5Fe3O4) was selected for anticancer activity study because it revealed high crystallinity, particle size of 7.2 ± 1.7 nm with majority of spherical shape, and Ms = 5.85 emu/g with negligible coercivity. Drug loading and release studies were carried out using protocatechuic acid (PCA) as the model for anticancer drug, which showed 19% and 87% of PCA release in pH 7.4 and 4.8, respectively. Monolayer anticancer assay showed that PCA-loaded MMT/SW/Fe3O4 (MMT/SW/Fe3O4-PCA) had selectivity towards HCT116 (colorectal cancer cell line). Although MMT/SW/Fe3O4-PCA (0.64 mg/mL) showed higher IC50 than PCA (0.148 mg/mL) and MMT/SW/Fe3O4 (0.306 mg/mL, MMT/SW/Fe3O4-PCA showed more effective killing towards tumour spheroid model generated from HCT116. The IC50 for MMT/SW/Fe3O4-PCA, MMT/SW/Fe3O4 and PCA were 0.132, 0.23 and 0.55 mg/mL, respectively. This suggests the improved penetration efficiency and drug release of MMT/SW/Fe3O4-PCA towards HCT116 spheroids. Moreover, concentration that lower than 2 mg/mL MMT/SW/Fe3O4-PCA did not result any hemolysis in human blood, which suggests them to be ideal for intravenous injection. This study highlights the potential of MMT/SW/Fe3O4-NCs as drug delivery agent.
    Matched MeSH terms: Ferrous Compounds/chemistry*
  9. Kho YS, Vikineswary S, Abdullah N, Kuppusamy UR, Oh HI
    J Med Food, 2009 Feb;12(1):167-74.
    PMID: 19298211 DOI: 10.1089/jmf.2007.0568
    Auricularia auricula-judae is currently grown in Malaysia. In the present study, the methanolic extracts from fruit bodies (fresh, oven-dried, and freeze-dried) and mycelium of A. auricula-judae were evaluated for their antioxidant capacities based on 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and ferric reducing antioxidant power (FRAP) assay. The total phenolic content in the extracts were also measured. The extract of freeze-dried fruit bodies of A. auricula-judae had potent DPPH free radical scavenging activity with a 50% effective concentration of 2.87 mg/mL, whereas the FRAP value of A. auricula-judae mycelium was 5.22 micromol of FeSO(4).7H(2)O equivalents/g of mycelium sample. Further, a positive correlation (R(2) = 0.7668) between FRAP level of A. auricula-judae extracts and the total phenolic contents was observed. Thus the method of processing of fresh fruit bodies had an effect on the antioxidant potential of A. auricula-judae.
    Matched MeSH terms: Ferrous Compounds
  10. Noor Farhana Nazri, Ruzita Abdul Talib
    MyJurnal
    Kajian berbentuk hirisan lintang ini dijalankan untuk mengkaji hubungan antara keterlibatan aktiviti di kolej kediaman dengan status pemakanan pelajar Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur dan menentukan tabiat makan pelajar serta kebolehdapatan makanan sihat di sekitar mereka. Seramai 106 pelajar tahun dua hingga empat UKM Kuala Lumpur terlibat dalam kajian ini (20.8% lelaki dan 79.2% perempuan). Data pengambilan makanan subjek direkod dengan menggunakan diari makanan tiga hari. Keterlibatan subjek dalam aktiviti kolej dan juga kebolehdapatan makanan sihat ditentukan dengan menggunakan borang soal selidik yang dibentuk khas untuk kajian ini. Berat badan, ketinggian, ukurlilit pinggang, peratus lemak tubuh dan Indeks Jisim Tubuh (IJT) juga diukur. Hasil kajian menunjukkan majoriti daripada subjek (62.3%) terlibat secara aktif dengan aktiviti yang diadakan di kolej kediaman. Daripada peratusan ini, 5.3% daripada subjek lelaki dan 31.9% perempuan adalah kurang berat badan. 68.4% subjek lelaki dan 55.3% perempuan mempunyai berat badan normal. 21% subjek lelaki dan 8.5% perempuan adalah pra obes. Tambahan pula, 5.3% (n = 1) subjek lelaki dan 4.3% (n = 2) daripada subjek perempuan tergolong dalam klasifi kasi IJT obes. Kajian ini mendapati majoriti subjek bersetuju bahawa mudah untuk memperolehi makanan sihat di kampus. Terdapat korelasi positif yang signifi kan di antara pengambilan tenaga (r = 0.352, p < 0.05) dan lemak (r = 0.391, p < 0.05) dengan Indeks Jisim Tubuh (IJT) bagi penglibatan terhadap aktiviti kolej yang kurang daripada tiga jam. Bagi penglibatan terhadap aktiviti kolej yang lebih daripada tiga jam pula, terdapat korelasi positif yang signifi kan di antara pengambilan tenaga (r = 0.678, p < 0.01), lemak (r = 0.550, p < 0.05), karbohidrat (r = 0.685, p < 0.01), protein (r = 0.465, p < 0.05), kalsium (r = 0.357, p < 0.05), ferum (r = 0.500, p < 0.05), vitamin A (r = 0.733, p < 0.01) dan vitamin E (r = 0.582, p < 0.05) dengan IJT. Pencapaian ‘Recommended Nutrient Intake’ (RNI) bagi pengambilan tenaga, kalsium, ribofl avin, vitamin C dan vitamin E adalah lebih tinggi bagi subjek yang terlibat dengan aktiviti kolej kurang daripada tiga jam berbanding dengan subjek yang terlibat dengan aktiviti kolej lebih daripada tiga jam. Kesimpulannya, walaupun ramai subjek yang aktif, masih terdapat dalam kalangan mereka yang mengalami masalah kurang berat badan, lebih berat badan dan obes. Oleh yang demikian, penglibatan dalam aktiviti di kolej kediaman memberi kesan kepada status pemakanan pelajar Universiti Kebangsaan Malaysia.
    Matched MeSH terms: Ferrous Compounds
  11. Lai, Jing-Wei, Ng, Chew-Hee, Lim, Yvonne Ai-Lian, Mohd Jamil Maah
    MyJurnal
    Introduction: The spread of multidrug-resistant malaria parasite – Plasmodium sp. to commercially available antimalarial drugs, i.e. artemisinin-based combination therapies (ACTs) and chloroquine (CQ), has become a global treat to eliminate malaria. To limit the impact of antimalarial drug resistance, a new potent and affordable alternative is urgently needed. A number of metal-based compounds (metallodrugs) have been found active against Plasmodium falciparum, the species that causes potentially fatal cerebral malaria, as they are ease in ligand grafting of multi-functional groups. Ferroquine (FQ) is one of the metalloantimalarial drugs that is currently undergoing clinical trials. Methods: In this study, a series of ternary copper(II) and zinc(II) complexes – Cu(phen)(edda) 1, Zn(phen)(edda) 2, [Cu(phen)(cdmg)] NO3 3 and [Zn(phen)(c-dmg)]NO3 4 were synthesized and characterized by the following tests: Fourier transformed infrared (FTIR), CHN elemental analysis, UV-Vis spectroscopy, molar conductivity and magnetic susceptibility measurements. Results: In vitro hemolytic and antimalarial assays using SYBR Green I dye were done to determine the biological properties of these complexes. Preliminary biological evaluation demonstrated that all the complexes 1, 2, 3 and 4 exhibit toxicity against the sensitive blood-stage Plasmodium falciparum 3D7 with IC50 in μM range. Conclusion: Thus, metal complex is a potentially viable candidate as antimalarial drug to overcome the emergence of drug resistance.
    Matched MeSH terms: Ferrous Compounds
  12. Nurainna Abd Majid, Zuriani Zainol, Nor Aripin Shamaan, Nazefah Abd Hamid, Nuruliza Roslan, Noor Fadzilah Zulkifli
    MyJurnal
    Introduction: Iron deficiency anaemia (IDA) is endemic especially in the under-developed and developing countries and is a major public health concern. Improving nutrition is one of the ways to alleviate this condition. Consumption of locally available and affordable food such as date palm and goat milk which are rich in iron is one of the ways to overcome IDA. This study is aimed at evaluating the effect of date palm and goat milk supplementation on hae- matological parameters and iron bioavailability in IDA rats. Methods: 24 male Wistar rats were randomly divided into normal control and IDA group. The normal control was fed with normal diet and water ad libitum while the IDA group were fed on iron-deficient diet for two weeks to induce iron deficiency. The IDA rats were further divided into subgroups; each being supplemented with date palm, goat milk, a combination of date palm and goat milk, and ferrous fumarate as positive control. Blood were collected after 28 days for haematological parameters and iron profile determination. Iron bioavailability was assessed using the haemoglobin regeneration efficiency (HRE) index. Data was analysed by Student T Test and ANOVA using SPSS 23.0 software with p value < 0.05 considered as sta- tistically significant. Results: Supplementation of date palm and goat milk for 28 days significantly improved Hb, RBC, PCV, MCV, MCH, serum iron and transferrin saturation (p
    Matched MeSH terms: Ferrous Compounds
  13. Yan G, Li Q, Hong X, Gopinath SCB, Anbu P, Li C, et al.
    Mikrochim Acta, 2021 05 11;188(6):185.
    PMID: 33977395 DOI: 10.1007/s00604-021-04836-8
    An abdominal aortic aneurysm (AAA) is abnormal swelling in the abdominal aorta and a prevalent life-threatening disease. This research introduces a new interdigitated microelectrode (IDME)-sensing surface modified by iron oxide nanoworms (IONWs) for detecting the AAA biomarker insulin-like growth factor-1 (IGF1). A sandwich pattern was formulated with the IGF1 aptamer and IGFBP1 (IGF binding protein-1) on the IONW-constructed IDME hybrid to identify IGF1. The surface morphology of the IONWs revealed a uniform distribution of worm-like structures (80-100 nm) as confirmed by FESEM and FETEM analyses. Further, the presence of the major elements, Fe and O, was confirmed by EDX and XPS studies. The crystal planes that appeared in the IONW reflect cubic magnetite. IONW-modified IDME attained a limit of detection for IGF1 of 1 fM (3σ) with an aptamer-IGF1-IGFBP1 sandwich. This sandwich with IGFBP1 enhanced the current level at all concentrations of IGF1 and displayed linearity in the range 1 fM to 100 pM with a determination coefficient of R2 = 0.9373 [y = 3.38221x - 4.79]. Control experiments with complementary aptamer sequences, IGF2 and IGFBP3 did not show notable signal changes, indicating the specific detection of IGF1. This IONW constructed electrode helps to achieve the detection of low amounts of IGF1 and diagnose AAA at the stage prior to rupture.
    Matched MeSH terms: Ferrous Compounds/chemistry
  14. Almessiere MA, Trukhanov AV, Slimani Y, You KY, Trukhanov SV, Trukhanova EL, et al.
    Nanomaterials (Basel), 2019 Feb 04;9(2).
    PMID: 30720737 DOI: 10.3390/nano9020202
    In this work, Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe₂O₄)x (x = 2, 3, 4, and 5) as strongly exchange-coupled nanosized ferrites were fabricated using a one-pot sol⁻gel combustion method (citrate sol-gel method). The X-ray diffraction (XRD) powder patterns of the products confirmed the occurrence of pure, exchange-coupled ferrites. Frequency dependencies of the microwave characteristics (MW) were investigated using a co-axial method. The non-linear behavior of the MW with the composition transformation may be due to different degrees of Fe ion oxidation on the spinel/hexaferrite grain boundaries and strong exchange coupling during the hard and soft phases.
    Matched MeSH terms: Ferrous Compounds
  15. Mohd Rosli RR, Norhayati MN, Ismail SB
    PeerJ, 2021;9:e10527.
    PMID: 33520436 DOI: 10.7717/peerj.10527
    Background: Iron deficiency anemia (IDA) is commonly treated with iron formulations. Despite the expanding acceptance of iron polymaltose complex (IPC) among clinicians, there is sparse and contradictory evidence regarding its efficacy in the management of IDA in children. This systematic review and meta-analysis aimed to assess the effectiveness of IPC in the treatment and prevention of IDA in children.

    Methods: We searched the Cochrane Central Register of Controlled Trials, MEDLINE and Epistemonikos for all randomized control trials (RCTs) comparing oral IPC with standard oral iron supplementation for the treatment or prevention of IDA in children. We independently screened the titles and abstracts of identified trials before the full text of relevant trials was evaluated for eligibility. We then independently extracted data on the methods, interventions, outcomes, and risk of bias from the included trials. A random-effects model was used to estimate the risk ratios and mean differences with 95% confidence intervals.

    Results: Eight trials comprising 493 randomized patients were included and analyzed using three comparison groups. The comparison group of which was used to evaluate IPC and ferrous sulphate (FS) for treatment of IDA showed that IPC is less effective in increasing Hb (MD -0.81, 95% CI -1.08 to -0.53; I2 = 48%, P 

    Matched MeSH terms: Ferrous Compounds
  16. Tisa F, Davoody M, Abdul Raman AA, Daud WM
    PLoS One, 2015;10(4):e0119933.
    PMID: 25849556 DOI: 10.1371/journal.pone.0119933
    The efficiency of phenol degradation via Fenton reaction using mixture of heterogeneous goethite catalyst with homogeneous ferrous ion was analyzed as a function of three independent variables, initial concentration of phenol (60 to 100 mg /L), weight ratio of initial concentration of phenol to that of H2O2 (1: 6 to 1: 14) and, weight ratio of initial concentration of goethite catalyst to that of H2O2 (1: 0.3 to 1: 0.7). More than 90 % of phenol removal and more than 40% of TOC removal were achieved within 60 minutes of reaction. Two separate models were developed using artificial neural networks to predict degradation percentage by a combination of Fe3+ and Fe2+ catalyst. Five operational parameters were employed as inputs while phenol degradation and TOC removal were considered as outputs of the developed models. Satisfactory agreement was observed between testing data and the predicted values (R2Phenol = 0.9214 and R2TOC= 0.9082).
    Matched MeSH terms: Ferrous Compounds/chemistry*
  17. Mohd Basri MS, Liew Min Ren B, A Talib R, Zakaria R, Kamarudin SH
    Polymers (Basel), 2021 May 14;13(10).
    PMID: 34069259 DOI: 10.3390/polym13101581
    Dry mangosteen leaves are one of the raw materials used to produce marker ink. However, research using this free and abundant resource is rather limited. The less efficient one-factor-at-a-time (OFAT) approach was mostly used in past studies on plant-based marker ink. The use of statistical analysis and the regression coefficient model (mathematical model) was considered essential in predicting the best combination of factors in formulating mangosteen leaf-based marker ink. Ideally, ink should have maximum color lightness, minimum viscosity, and fast-drying speed. The objective of this study to study the effect of glycerol and carboxymethyl cellulose (CMC) on the color lightness and viscosity of mangosteen-leaves-based marker ink. The viscosity, color lightness, and drying properties of the ink were tested, the significant effect of glycerol and CMC (responses) on ink properties was identified and the prediction model on the optimum value of the responses was developed by using response surface methodology (RSM). The microstructure of mangosteen leaves was analyzed to study the surface morphology and cell structure during dye extraction. A low amount of glycerol used was found to increase the value of color lightness. A decrease in CMC amounts resulted in low viscosity of marker ink. The optimum formulation for the ink can be achieved when the weight percents of glycerol, benzalkonium chloride, ferrous sulphate, and CMC are set at 5, 5, 1, and 3, respectively. SEM micrographs showed the greatest amount of cell wall structure collapse on samples boiled with the lowest amount of glycerol.
    Matched MeSH terms: Ferrous Compounds
  18. Wan Md Zin Wan Yunus, Md Jelas Haron
    Poly(hydroxamic acid) ion exchange resin was evaluated for speciation of iron(II) and iron(III) ions. Distribution coefficients indicate that the resin is more selective towards iron(III) ion. Column extractions show that iron(III) ion is quantatively extracted from sulfuric acid solutions at concentrations of between 0.01 to 0.00lM but only 2% or less of iron(II) ion is retained under these conditions. Further studies show that these two ions can be separated and their separations are not affected by the presence of nickel, zinc, copper, calcium, chloride, bromide, nitrate and sulphate.
    Resin penukar ion poli(asid hidroksamik) telah dikaji untuk penspesiesan ion-ionferum. Pekali taburan menunjukkan resin ini mempunyai kepilihan yang tinggi terhadap ion ferik berbanding dengan ionferus. Pengekstrakan dengan kaedah turus mendapati ion ferik dari larutan asid sulfurik 0.01 dan 0.00lM boleh diesktrak secara kuantitatif manakala pengekstrakan ion ferus hanya 2% atau lebih kecil. Kajian lanjut menunjukkan resin ini boleh memisahkan ion ferik dari ion ferus dan pemisahan ini tidak diganggu oleh kehadiran ion-ion nikel, zink, kuprum, kalsium, klorida, bromida, nitrat dan sulfat.
    Matched MeSH terms: Ferrous Compounds
  19. Fathul Karim Sahrani, Madzlan Abd. Aziz, Zaharah Ibrahim, Adibah Yahya
    The aim of this study was to determine the surface chemistry during biocorrosion process on growth and on the production of exopolymeric substances (EPS) in batch cultures of mix-strains of marine sulphate-reducing bacteria (SRB) isolated from Malaysian Shipyard and Engineering Harbours, Pasir Gudang. The EPS and precipitates were analyzed by x-ray photoelectron spectroscopy (XPS). The XPS results indicate that Fe(2p3/2) spectrum for iron sulphide can be fitted with Fe(II) and Fe(III) components, both corresponding to Fe-S bond types. The absence of oxide oxygen in the O(1s) spectrum and Fe(III)-O bond types in the Fe(2p3/2) spectrum supports the conclusion that iron sulphides are composed of both ferric and ferrous iron coordinated with monosulphide and disulphide.
    Matched MeSH terms: Ferrous Compounds
  20. Nurhidanatasha Abu Bakar, Zainal Abidin Abu Hasan, Nurul Izza Nordin, Bohari Mohamad Yamin
    Sains Malaysiana, 2007;36:39-44.
    Ferrocene plays an important role in chemistry and industry. The structure and bonding discovered in ferrocene has led to new developments in organometallic chemistry, and the discovery of entirely new organometallic compounds. The high stability of this compound is also related to its interesting electrochemical properties that makes it effective electrochemical, reduction and combustion catalysts. Nevertheless, ferrocenyl derivatives are also capable of enhancing the activity of certain biological compounds. Indeed, recently ferrocene and its derivatives have been incorporated into antimalarial agents. Therefore, the evaluation of the possible toxic effects of ferrocene derivative called ferrocenium tetrachloroantimonate (C10H10FeSbCl4 or FC) on acute and subchronic toxicity tests using different dose concentrations according to the body weight for different time interval was carried out in an in vivo model. Results showed that FC was acutely toxic with the LD50 value of 194.70 mg/kg body weight (BW) with signs of toxicity associated with respiratory depression. In the 28-day acute toxicity test, the dose of 100 mg/kg BW resulted in 60 % mortality with signs of gross toxicity, adverse pharmacological effects or abnormal behaviors during the 28 days observation. While in the 90-day subchronic toxicity test at the lower dose of 10 mg/kg BW, however, showed no significant differences (p>0.05) in the mortality rates, and showed no sign of toxicity. These results indicated that FC had different toxicity levels, and mice appeared to tolerate well at the lower dose of 10 mg/kg BW.
    Matched MeSH terms: Ferrous Compounds
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links