MATERIALS AND METHODS: Methanol was used as the extraction solvent, 2,2 - diphenyl-1-picrylhydrazil (DPPH) for free radical scavenging activity and ferric reducing antioxidant power (FRAP) assays. Phenolic compounds were measured using Total flavonoid, Phenolic acid and Polyphenols content assay to evaluate the quality of the antioxidant capacity of the rhizomes and vitamin C as positive control.
RESULTS: The results obtained revealed that Curcuma longa and Zingiber officinale had the highest free radical scavenging capacity of 270.07mg/TE/g DW and 266.95mg/TE/g DW and FRAP assay, Curcuma longa and Zingiber officinale also gave the highest ferric reducing power of 231.73mg/TE/g DW and 176.26mg/TE/g DW respectively. For Phenolic compounds, Curcuma longa and Curcuma xanthorrhiza gave the highest values of flavonoid (741.36mg/NGN/g DW and 220.53mg/NGN/g DW), phenolic acid (42.71mg/GAE/g DW and 22.03mg/GAE/g DW) and polyphenols (39.38mg/GAE/g DW and 38.01mg/GAE/g DW) respectively. Significant and positive linear correlations were found between Total antioxidant capacity and Phenolic compounds (R = 0.65 - 0.96).
CONCLUSION: This study provides evidence that extracts of Zingiberaceae (Ginger) rhizomes are a potential source of natural antioxidants and could serve as basis for future drugs and food supplements.
METHODS: The dry powder leaves of Tetrastigma were extracted with different organic solvent such as hexane, ethyl acetate, chloroform, butanol and aqueous methanol. The total phenolic and total flavonoids contents of the essential oil and various organic extracts such as hexane, ethyl acetate, chloroform, butanol and aqueous ethanol were determined by Folin - Ciocalteu method and the assayed antioxidant activity was determined in vitro models such as antioxidant capacity by radical scavenging activity using α, α-diphenyl- β-picrylhydrazyl (DPPH) method.
RESULTS: The total phenolic contents of the essential oil and different extracts as gallic acid equivalents were found to be highest in methanol extract (386.22 mg/g) followed by ethyl acetate (190.89 mg/g), chloroform (175.89 mg/g), hexane (173.44 mg/g), and butanol extract (131.72 mg/g) and the phenolic contents not detected in essential oil. The antioxidant capacity of the essential oil and different extracts as ascorbic acid standard was in the order of methanol extract > ethyl acetate extract >chloroform> butanol > hexane extract also the antioxidant activity was not detected in essential oil.
CONCLUSIONS: The findings show that the extent of antioxidant activity of the essential oil and all extracts are in accordance with the amount of phenolics present in that extract. Leaves of Tetrastigma being rich in phenolics may provide a good source of antioxidant.
RESULTS: Comparison of the PLS and RF showed that RF exhibited poorer generalization and hence poorer predictive performance. Both the regression coefficient of PLS and the variable importance of RF revealed that quercetin and kaempferol derivatives, caffeic acid and vitexin-2-O-rhamnoside were significant towards the tested bioactivities. Furthermore, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) results showed that sonication and absolute ethanol are the preferable extraction method and ethanol ratio, respectively, to produce N. oleracea extracts with high phenolic levels and therefore high DPPH scavenging and α-glucosidase inhibitory activities.
CONCLUSION: Both PLS and RF are useful regression models in metabolomics studies. This work provides insight into the performance of different multivariate data analysis tools and the effects of different extraction conditions on the extraction of desired phenolics from plants. © 2017 Society of Chemical Industry.
METHODS: Samples of leaves, stems, flowers and roots from E. hirta were tested for total phenolic content, and flavonoids content and in vitro antioxidant activity by diphenyl-1-picrylhydrazyl (DPPH) assay and reducing power was measured using cyanoferrate method.
RESULTS: The leaves extract exhibited a maximum DPPH scavenging activity of (72.96±0.78)% followed by the flowers, roots and stems whose scavenging activities were (52.45±0.66)%, (48.59±0.97)%, and (44.42±0.94)%, respectively. The standard butylated hydroxytoluene (BHT) was (75.13±0.75)%. The IC(50) for leaves, flowers, roots, stems and BHT were 0.803, 0.972, 0.989, 1.358 and 0.794 mg/mL, respectively. The reducing power of the leaves extract was comparable with that of ascorbic acid and found to be dose dependent. Leaves extract had the highest total phenolic content [(206.17±1.95) mg GAE/g], followed by flowers, roots and stems extracts which were (117.08±3.10) mg GAE/g, (83.15±1.19) mg GAE/g, and (65.70±1.72) mg GAE/g, respectively. On the other hand, total flavonoids content also from leave had the highest value [(37.970±0.003) mg CEQ/g], followed by flowers, roots and stems extracts which were (35.200±0.002) mg CEQ/g, (24.350±0.006) mg CEQ/g, and (24.120±0.004) mg CEQ/g, respectively. HPTLC bioautography analysis of phenolic and antioxidant substance revealed phenolic compounds. Phytochemical screening of E. hirta leaf extract revealed the presence of reducing sugars, terpenoids, alkaloids, steroids, tannins, flavanoids and phenolic compounds.
CONCLUSIONS: These results suggeste that E. hirta have strong antioxidant potential. Further study is necessary for isolation and characterization of the active antioxidant agents, which can be used to treat various oxidative stress-related diseases.