Displaying publications 1 - 20 of 180 in total

Abstract:
Sort:
  1. Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Morton DW
    J Pharm Biomed Anal, 2024 Feb 15;239:115912.
    PMID: 38128161 DOI: 10.1016/j.jpba.2023.115912
    Olive trees are one of the most widely cultivated fruit trees in the world. The chemical compositions and biological activities of olive tree fruit and leaves have been extensively researched for their nutritional and health-promoting properties. In contrast, limited data have been reported on olive flowers. The present study aimed to analyse bioactive compounds in olive flower extracts and the effect of fermentation-assisted extraction on phenolic content and antioxidant activity. High-performance thin-layer chromatography (HPTLC) hyphenated with the bioassay-guided detection and spectroscopic identification of bioactive compounds was used for the analysis. Enzymatic and bacterial in situ bioassays were used to detect COX-1 enzyme inhibition and antibacterial activity. Multiple zones of antibacterial activity and one zone of COX-1 inhibition were detected in both, non-fermented and fermented, extracts. A newly developed HPTLC-based experimental protocol was used to measure the high-maximal inhibitory concentrations (IC50) for the assessment of the relative potency of the extracts in inhibiting COX-1 enzyme and antibacterial activity. Strong antibacterial activities detected in zones 4 and 7 were significantly higher in comparison to ampicillin, as confirmed by low IC50 values (IC50 = 57-58 µg in zone 4 and IC50 = 157-167 µg in zone 7) compared to the ampicillin IC50 value (IC50 = 495 µg). The COX-1 inhibition by the extract (IC50 = 76-98 µg) was also strong compared to that of salicylic acid (IC50 = 557 µg). By comparing the locations of the bands to coeluted standards, compounds from detected bioactive bands were tentatively identified. The eluates from bioactive HPTLC zones were further analysed by FTIR NMR, and LC-MS spectroscopy. Multiple zones of antibacterial activity were associated with the presence of triterpenoid acids, while COX-1 inhibition was related to the presence of long-chain fatty acids.
    Matched MeSH terms: Flowers/chemistry
  2. Chua LS, Abdullah FI, Lim TK, Lin Q
    Food Chem, 2024 Jan 30;432:137261.
    PMID: 37651783 DOI: 10.1016/j.foodchem.2023.137261
    This study was aimed to extract bioactive peptides from the white and purple flower varieties of Orthosiphon aristatus leaves. The herb is well known for its pharmacological importance, possibly attributed to its plant proteins. Phenol based extraction was used to extract plant proteins, and then hydrolysed by proteolytic enzymes such as trypsin (serine protease) and pepsin (aspartic protease). MS/MS analysis revealed that 145 and 125 proteins were detected from the white and purple flower varieties, respectively. Trypsin hydrolysates were showed to have a higher degree of hydrolysis (24-33%), resulting in higher antioxidant and antibacterial activities. The white flower of trypsin hydrolysates showed a higher radical scavenging activity which could be attributed to its higher content of stress proteins (19%). However, trypsin hydrolysates from the purple flower showed higher ferric reducing power and bacterial growth inhibition. The performance of hydrolysates was better than ampicillin in inhibiting Acinetobacter baumanni and Staphylococcus aureus.
    Matched MeSH terms: Flowers
  3. Chabattula SC, Gupta PK, Govarthanan K, Varadaraj S, Rayala SK, Chakraborty D, et al.
    Appl Biochem Biotechnol, 2024 Jan;196(1):382-399.
    PMID: 37133677 DOI: 10.1007/s12010-023-04555-1
    Inorganic nanoparticles (NPs) have played an important role as nano-drug delivery systems during cancer therapy in recent years. These NPs can carry cancer therapeutic agents. Due to this, they are considered a promising ancillary to traditional cancer therapies. Among inorganic NPs, Zinc Oxide (ZnO) NPs have been extensively utilized in cellular imaging, gene/drug delivery, anti-microbial, and anti-cancerous applications. In this study, a rapid and cost-effective method was used to synthesize Nat-ZnO NPs using the floral extract of the Nyctanthes arbor-tristis (Nat) plant. Nat-ZnO NPs were physicochemically characterized and tested further on in vitro cancer models. The average hydrodynamic diameter (Zaverage) and the net surface charge of Nat-ZnO NPs were 372.5 ± 70.38 d.nm and -7.03 ± 0.55 mV, respectively. Nat-ZnO NPs exhibited a crystalline nature. HR-TEM analysis showed the triangular shape of NPs. Furthermore, Nat-ZnO NPs were also found to be biocompatible and hemocompatible when tested on mouse fibroblast cells and RBCs. Later, the anti-cancer activity of Nat-ZnO NPs was tested on lung and cervical cancer cells. These NPs displayed potent anti-cancer activity and induced programmed cell death in cancer cells.
    Matched MeSH terms: Flowers
  4. Hao Dong T, Yau Wen Ning A, Yin Quan T
    J Biomol Struct Dyn, 2024;42(4):1778-1794.
    PMID: 37060321 DOI: 10.1080/07391102.2023.2202273
    Caesalpinia pulcherrima, or peacock flower, has been a subject of cancer therapeutics research, showing promising anti-cancer and anti-metastatic properties. The present research aims to investigate the anti-metastatic potential of the flower, through bioinformatics approaches. Metastasis targets numbering 471 were identified through overlap analysis following NCBI gene, Gene Card and OMIM query. Phytocompounds of the flower were retrieved from PubChem and their protein interactions predicted using Super-PRED and TargetNet. The 28 targets that overlapped with the predicted proteins were used to generate STRING >0.7. Enrichment analysis revealed that C. pulcherrima may inhibit metastasis through angiogenesis-related and leukocyte migration-related pathways. HSP90AA1, ESR1, PIK3CA, ERBB2, KDR and MMP9 were identified as potential core targets while and 6 compounds (3-[(4-Hydroxyphenyl)methylidene]-7,8-dimethoxychromen-4-one (163076213), clotrimazole (2812), Isovouacapenol A (636673), [(4aR,5R,6aS,7R,11aS,11bR)-4a-hydroxy-4,4,7,11b-tetramethyl-9-oxo-1,2,3,5,6,6a,7,11a-octahydronaphtho[2,1-f][1]benzofuran-5-yl] benzoate (163104827), Stigmast-5-en-3beta-ol (86821) and 4,2'-dihydroxy-4'-methoxychalcone (592216)) were identified as potential core compounds. Molecular docking analysis and molecular dynamics simulations investigations revealed that ERBB2, HSP90AA1 and KDR, along with the newly discovered 163076213 compound to be the most significant metastasis targets and bioactive compound, respectively. These three core targets demonstrated interactions consistent with angiogenesis and leukocyte migration pathways. Furthermore, potentially novel interactions, such as KDR-MMP9, KDR-PIK3CA, ERBB2-HSP90AA1, ERBB2-ESR1, ERBB2-PIK3CA and ERBB2-MMP9 interactions were identified and may play a role in crosslinking the aforementioned metastatic pathways. Therefore, the present study revealed the main mechanisms behind the anti-metastatic effects of C. pulcherrima, paving the path for further research on these compounds and proteins to accelerate the research of cancer therapeutics and application of C. pulcherrima.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Flowers
  5. Rácz IA, Szanyi S, Nagy A
    Biol Futur, 2023 Dec;74(4):393-400.
    PMID: 38349457 DOI: 10.1007/s42977-024-00203-9
    The importance of pollination and pollinators is easy to underestimate and impossible to overstate, since its importance goes far beyond the crop production and even the maintenance of plant populations. Most terrestrial ecosystems ultimately depend on the plant-pollinator interactions formed by million years coevolution. This is essential for both the daily functioning of the ecosystems and the long-term development of biodiversity. At the same time, the loss of biodiversity caused by climate change and human activities will soon lead to an ecological crisis, a catastrophe, which could endanger our life: For example, through the decline and loss of various ecosystem services. Such may be the pollination crisis, resulted from a significant loss of pollinating insects' diversity and abundance. The discovery of a pollinator Orthoptera species has encouraged researchers in the densely populated region of Indo-Malaysia to explore the potential role of orthopterans as pollinators. Although the flower visitation of some species has been already known, the role of orthopterans in pollination is scarcely revealed. Here, we collected and reviewed the available data in order to point out some factors of their importance and set priorities that may serve as a basis for further investigations regarding ecological, evolutionary and practical points of view.
    Matched MeSH terms: Flowers
  6. Li X, Wang X, Ong P, Yi Z, Ding L, Han C
    Sensors (Basel), 2023 Oct 13;23(20).
    PMID: 37896537 DOI: 10.3390/s23208444
    Dragon fruit (Hylocereus undatus) is a tropical and subtropical fruit that undergoes multiple ripening cycles throughout the year. Accurate monitoring of the flower and fruit quantities at various stages is crucial for growers to estimate yields, plan orders, and implement effective management strategies. However, traditional manual counting methods are labor-intensive and inefficient. Deep learning techniques have proven effective for object recognition tasks but limited research has been conducted on dragon fruit due to its unique stem morphology and the coexistence of flowers and fruits. Additionally, the challenge lies in developing a lightweight recognition and tracking model that can be seamlessly integrated into mobile platforms, enabling on-site quantity counting. In this study, a video stream inspection method was proposed to classify and count dragon fruit flowers, immature fruits (green fruits), and mature fruits (red fruits) in a dragon fruit plantation. The approach involves three key steps: (1) utilizing the YOLOv5 network for the identification of different dragon fruit categories, (2) employing the improved ByteTrack object tracking algorithm to assign unique IDs to each target and track their movement, and (3) defining a region of interest area for precise classification and counting of dragon fruit across categories. Experimental results demonstrate recognition accuracies of 94.1%, 94.8%, and 96.1% for dragon fruit flowers, green fruits, and red fruits, respectively, with an overall average recognition accuracy of 95.0%. Furthermore, the counting accuracy for each category is measured at 97.68%, 93.97%, and 91.89%, respectively. The proposed method achieves a counting speed of 56 frames per second on a 1080ti GPU. The findings establish the efficacy and practicality of this method for accurate counting of dragon fruit or other fruit varieties.
    Matched MeSH terms: Flowers
  7. Suriyakala G, Sathiyaraj S, Balasundaram M, Murugan K, Babujanarthanam R, Gandhi AD
    Bioprocess Biosyst Eng, 2023 Oct;46(10):1483-1498.
    PMID: 37552312 DOI: 10.1007/s00449-023-02915-z
    In the current scenario, many synthetic chemicals have used long-term to control pests and mosquitoes, leading to the resistance of strains and toxicity effect on human beings. To overcome the adverse problem in recent advances, the scientific community is looking into nanofabricated pesticides and mosquitoes. This study aims to synthesize the recyclable chitosan-coated cadmium nanoparticles (Ch-CdNps) using Plumeria alba flower extract, which was further applied for insecticidal and mosquitocidal activities. The synthesized Ch-CdNps were confirmed by UV spectroscopy and FTIR analysis. The XRD, TEM, and DLS results confirmed the crystallinity with a spherical shape at 80-100 nm. The insecticidal activity proves that Ch-CdNps inhibited Helicoverpa armigera and Spodoptera litura at 100 ppm. In mosquitocidal, LC50 values of larvicidal of 1st instar were 4.116, 4.33, and 4.564 µg/mL, and the remaining three stages of instars, pupicidal, adulticidal, longevity, fecundity, and ovicidal assays inhibit the Anopheles stephensi followed by Aedes aegypti and Culex quinquefasciatus. Further, the first-order kinetics of photocatalytic degradation of methylene blue and methyl orange was confirmed. Based on the obtained results, Ch-CdNps can inhibit the pest, mosquitoes, and photocatalytic degradation.
    Matched MeSH terms: Flowers
  8. Patil RV, Hadawale KN, Ramli ANM, Wadkar SS, Bhuyar P
    Mol Biotechnol, 2023 Jun;65(6):833-848.
    PMID: 36544065 DOI: 10.1007/s12033-022-00633-7
    In plant development, flowering is the most widely studied process. Floral forms show large diversity in different species due to simple variations in basic architecture. To determine the floral gene expression during the past decade, MADS-box genes have identified as key regulators in both reproductive and vegetative plant development. Traditional genetics and functional genomics tools are now available to elucidate the expression and function of this complex gene family on a much larger scale. Moreover, comparative analysis of the MADS-box genes in diverse flowering and non-flowering plants, boosted by various molecular technologies such as ChIP and next-generation DNA sequencing, contributes to our understanding of how this important gene family has expanded during the evolution of land plants. Likewise, the big data analysis revealed combined activity of transcriptional regulators and floral organ identity factors regulate the flower developmental programs. Thus, with the help of cutting-edge technologies like RNA-Sequencing, sex determination is now better understood in few non-model plants Therefore, the recent advances in next-generation sequencing (NGS) should enable researchers to identify the full range of floral gene functions, which will significantly help to understand plant development and evolution. This review summarizes the floral homeotic genes in model and non-model species to understand the flower development genes and dioecy evolution.
    Matched MeSH terms: Flowers
  9. Delgado-Núñez EJ, López-Arellano ME, Olmedo-Juárez A, Díaz-Nájera JF, Ocampo-Gutiérrez AY, Mendoza-de Gives P
    Trop Biomed, 2023 Mar 01;40(1):108-114.
    PMID: 37356010 DOI: 10.47665/tb.40.1.017
    Haemonchus contortus (Hc) is a hematophagous parasite affecting the health and productivity of flocks. The administration of chemical anthelmintic drugs (AH) is the common method of deworming; however, generates resistance in the parasites to AH and it is a public health risk due to drug residues in milk, meat and sub-products. Natural compounds from plants are explored to diminish this parasitosis, improving their health and productivity, without the negative effects of AH. Ipomoea genus is a group of climbing plants belonging to the Convulvulaceae family possessing perennial leaves and tuberous roots. Medicinal properties has been attributed to this plant including nutritional agents, emetics, diuretics, diaphoretics, purgatives and pesticides. The objective of this study was assessing the in vitro nematocidal activity of a hydroalcoholic extract (HA-E) obtained from Ipomoea pauciflora (Cazahuate) flowers against Hc infective larvae (L3) and to identify its phytochemical profile (PhC-P). The assay was carried out using microtiter plates (MTP). Four HA-E concentrations were assessed and Ivermectin and distilled water were used as positive and negative control groups, respectively. Approximately 100 Hc L3 were deposited in each well (n=12) and incubated at 25-35°C for 7 days. Data were analyzed using ANOVA and a General Linear Model (GLM) followed by Tukey test (P<0.05). The treatments showing a concentration-dependent effect (CDE) were analyzed to identify their 50% and 90% lethal concentrations (CL50, 90) via a Probit Analysis. The highest mortality was observed at 50 mg/mL (82.64 ± 0.71%) and the lowest at 6.25 mg/mL (56.46 ± 2.49%), showing a CDE with increasing mortality from 6.25 to 50 mg/mL. The PhC-P revealed the presence of alkaloids, coumarins, flavonoids, tannins and triterpenes/ sterols. A HA-E from flowers of I. pauciflora will be considered to assess its potential use in the control of haemonchosis in small ruminants.
    Matched MeSH terms: Flowers
  10. Wahyuni DK, Yoku BF, Mukarromah SR, Purnama PR, Ilham M, Rakashiwi GA, et al.
    Braz J Biol, 2023;83:e274315.
    PMID: 38126630 DOI: 10.1590/1519-6984.274315
    Safety regarding herbal products is very necessary; therefore, routine identification of raw materials should be performed to ensure that the raw materials used in pharmaceutical products are suitable for their intended use. In order for the identification-related data obtained to be accurate, the identification of various kinds of markers is also very necessary. The purpose of this study was to describe the characteristics of Eclipta alba (L.) Hassk. based on qualitative morpho-anatomical markers and quantitative DNA coding. The morphology of this plant has herbaceous habit with a taproot and a stem with branches that appear from the middle. Leaves are single type imperfectly arranged oppositely, lanceolatus, finely serrated on the edges, tapered at the base, pointed at the end, and have a pinnate and hairy leaf surface. The flowers consist of ray flowers and tube flowers with a cup shape. Meanwhile, in terms of anatomy, E. alba has aerenchyma, which are scattered in the cortex of the root and stem. In addition, there are anisocytic stomata, glandular trichomes, and non-glandural trichomes with an elongated shape accompanied by ornamentation found on the leaf epidermis. The results of sequence alignment and phylogenetic tree reconstruction show that the sample plants are closely related to species in the genus Eclipta.
    Matched MeSH terms: Flowers
  11. Suhaimi AH, Kobayashi MJ, Satake A, Ng CC, Lee SL, Muhammad N, et al.
    PeerJ, 2023;11:e16368.
    PMID: 38047035 DOI: 10.7717/peerj.16368
    Climatic factors have commonly been attributed as the trigger of general flowering, a unique community-level mass flowering phenomenon involving most dipterocarp species that forms the foundation of Southeast Asian tropical rainforests. This intriguing flowering event is often succeeded by mast fruiting, which provides a temporary yet substantial burst of food resources for animals, particularly frugivores. However, the physiological mechanism that triggers general flowering, particularly in dipterocarp species, is not well understood largely due to its irregular and unpredictable occurrences in the tall and dense forests. To shed light on this mechanism, we employed ecological transcriptomic analyses on an RNA-seq dataset of a general flowering species, Shorea curtisii (Dipterocarpaceae), sequenced from leaves and buds collected at multiple vegetative and flowering phenological stages. We assembled 64,219 unigenes from the transcriptome of which 1,730 and 3,559 were differentially expressed in the leaf and the bud, respectively. Differentially expressed unigene clusters were found to be enriched with homologs of Arabidopsis thaliana genes associated with response to biotic and abiotic stresses, nutrient level, and hormonal treatments. When combined with rainfall data, our transcriptome data reveals that the trees were responding to a brief period of drought prior to the elevated expression of key floral promoters and followed by differential expression of unigenes that indicates physiological changes associated with the transition from vegetative to reproductive stages. Our study is timely for a representative general flowering dipterocarp species that occurs in forests that are under the constant threat of deforestation and climate change as it pinpoints important climate sensitive and flowering-related homologs and offers a glimpse into the cascade of gene expression before and after the onset of floral initiation.
    Matched MeSH terms: Flowers/genetics
  12. Khairul-Anuar MA, Mazumdar P, Othman RY, Harikrishna JA
    Ann Bot, 2022 Sep 26;130(4):579-594.
    PMID: 35980362 DOI: 10.1093/aob/mcac103
    BACKGROUND: Flower pigment and shape are determined by the coordinated expression of a set of structural genes during flower development. R2R3-MYB transcription factors are known regulators of structural gene expression. The current study focused on two members of this large family of transcription factors that were predicted to have roles in pigment biosynthesis and organ shape development in orchids.

    METHODS: Phylogenetic analysis was used to identify candidate Dendrobium catenatum R2R3-MYB (DcaMYB) sequences associated with pigment and cell shape development. Gene silencing of candidate DhMYBs in Dendrobium hybrid by direct application of dsRNA to developing flowers was followed by observation of gene expression level and flower phenotypes. Silencing of the structural gene chalcone synthase was used as a comparative control.

    KEY RESULTS: Ten candidate flower-associated DcaMYBs were identified. Flowers treated with dsRNA of DhMYB22 and DhMYB60 sequences were less pigmented and had relatively low expression of anthocyanin biosynthetic genes (F3'H and DFR), lower total anthocyanin concentration and markedly lower levels of cyanidin-3-glucoside and cyanidin-3-rutinoside. Petals of DhMYB22-treated flowers and sepals of DhMYB60-treated flowers showed the greatest colour difference relative to the same organs in untreated flowers. DhMYB22-treated flowers had relatively narrow and constricted lips, while DhMYB60-treated flowers had narrow and constricted sepals. No significant difference in shape was observed for DhCHS-treated or untreated flowers.

    CONCLUSIONS: Our results demonstrate that DhMYB22 and DhMYB60 regulate pigment intensity and floral organ shape in Dendrobium. This is a first report of MYB regulation of floral organ shape in orchids.

    Matched MeSH terms: Flowers/genetics; Flowers/metabolism
  13. Jeyaraj EJ, Lim YY, Choo WS
    Sci Rep, 2022 09 01;12(1):14890.
    PMID: 36050436 DOI: 10.1038/s41598-022-19146-z
    Clitoria ternatea flower is a traditional medicinal herb that has been used as a natural food colourant. As there are limited studies on investigating the bioactivities of the anthocyanin-rich fraction of Clitoria ternatea flower, this study aimed to determine an efficient column chromatography method to obtain the anthocyanin-rich fraction from this flower and characterise its composition, antioxidant, antibacterial, and cytotoxic activities. Amberlite XAD-16 column chromatography was more efficient in enriching the total anthocyanin content (TAC) of the fraction with the highest TAC to total phenolic content (TPC) ratio of 1:6 than that using C18-OPN. A total of 11 ternatin anthocyanins were characterised in the anthocyanin-rich fraction by LC-MS analysis. The antioxidant activity of the anthocyanin-rich fraction was more potent in the chemical-based assay with an IC50 value of 0.86 ± 0.07 mg/mL using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay than cellular antioxidant assay using RAW 264.7 macrophages. In vitro cytotoxicity assay using human embryonic kidney HEK-293 cell line showed the anthocyanin-rich fraction to be more toxic than the crude extracts. The anthocyanin-rich fraction had more potent antibacterial activity than the crude extracts against Bacillus cereus, Bacillus subtilis, and Escherichia coli. The anthocyanin-rich fraction of C. ternatea has the potential to be used and developed as a functional food ingredient or nutraceutical agent.
    Matched MeSH terms: Flowers/chemistry
  14. Sangkanu S, Mitsuwan W, Mahboob T, Mahabusarakam W, Chewchanwuttiwong S, Siphakdi P, et al.
    Acta Trop, 2022 Feb;226:106266.
    PMID: 34890540 DOI: 10.1016/j.actatropica.2021.106266
    Acanthamoeba keratitis infection extends due to the growing number of contact lens users. Indigenous plants including Garcinia mangostana play a vital role in human health and well being. Many species of this plant have been reported with myriads of potent medicinal properties. However, the aims of this study were, for the first time, to isolate compounds from the flower of G. mangostana and to test their anti-Acanthamoeba and anti-adhesion activity against Acanthamoeba triangularis. Powdered flowers of G. mangostana were extracted and chromatographed on a silica gel column. The structures of the compounds were established with the aid of 1H NMR. More so, the anti-Acanthamoeba and anti-adhesion properties were tested on a 96-well polystyrene microtiter plate and soft contact lenses. Scanning electron microscope (SEM) was used to determine the features of A. triangularis on contact lenses. Eight pure compounds were obtained, namely 9-hydroxycalabaxanthone, tovophillin A, garcinone E, garcinone B, α-mangostin, gartinin, 8-deoxygartinin and γ-mangostin. The extract and pure compounds exhibited anti-Acanthamoeba activity with MIC values in the range of 0.25-1 mg/mL. In addition, the extract and α-mangostin displayed significant activity against the adhesion of A. triangularis trophozoites both in polystyrene plate and in contact lenses at 0.5 × MIC (0.25 mg/mL). Furthermore, α-mangostin has the potential to remove A. triangularis adhesion in contact lenses similar to a commercial multipurpose solution (MPS). SEM study confirmed that crude extract and α-mangostin are effective as solutions for contact lenses, which removed A. triangularis trophozoites within 24 h. Alpha-mangostin was non-toxic to Vero cells at a concentration below 39 μM in 24 h. Crude extract of G. mangostana flower and its α-mangostin serve as candidate compounds in the treatment of Acanthamoeba infection or as lens care solution, since they can be used as a source of natural products against Acanthamoeba and virulence factor associated with the adhesion of A. triangularis.
    Matched MeSH terms: Flowers
  15. Rengasamy N, Othman RY, Che HS, Harikrishna JA
    J Sci Food Agric, 2022 Jan 15;102(1):299-311.
    PMID: 34091912 DOI: 10.1002/jsfa.11359
    BACKGROUND: Stevia rebaudiana is a high value crop due to the strong commercial demand for its metabolites (steviol glycosides) but has limited geographical cultivation range. In non-native environments with different daylength and light quality, Stevia has low germination rates and early flowering resulting in lower biomass and poor yield of the desired metabolites. In this study, artificial lighting with light-emitting diodes (LEDs) was used to determine if different light quality within and outside of the photosynthetically active radiation (PAR) range can be used to improve germination rates and yields for production of steviol glycosides for the herbal supplement and food industry.

    RESULTS: Plants treated with red and blue light at an intensity of 130 μmol m-2  s-1 supplemented with 5% of UV-A light under a 16-h photoperiod produced the most desirable overall results with a high rate of germination, low percentage of early flowering, and high yields of dry leaf, stevioside and rebaudioside A, 175 days after planting.

    CONCLUSION: While red and blue light combinations are effective for plant growth, the use of supplemental non-PAR irradiation of UV-A wavelength significantly and desirably delayed flowering, enhanced germination, biomass, rebaudioside A and stevioside yields, while supplemental green light improved yield of biomass and rebaudioside A, but not stevioside. Overall, the combination of red, blue and UV-A light resulted in the best overall productivity for Stevia rebaudiana. © 2021 Society of Chemical Industry.

    Matched MeSH terms: Flowers/drug effects; Flowers/growth & development*; Flowers/metabolism; Flowers/chemistry
  16. Loh KE, Chin YS, Safinar Ismail I, Tan HY
    Phytochem Anal, 2022 Jan;33(1):12-22.
    PMID: 34000756 DOI: 10.1002/pca.3057
    INTRODUCTION: Hyperuricemia is the key risk factor for gout, in which the elevated uric acid is attributed to the oxidation of hypoxanthine and xanthine to uric acid by xanthine oxidase (XO). Adverse effects of the current treatments lead to an urgent need for safer and more effective alternative from natural resources.

    OBJECTIVE: To compare the metabolite profile of Chrysanthemum morifolium flower fraction with that of its detannified fraction in relation to XO inhibitory activity using a rapid and effective metabolomics approach.

    METHODS: Proton nuclear magnetic resonance (1 H-NMR)-based metabolomics approach coupled with multivariate data analysis was utilised to characterise the XO inhibitors related to the antioxidant properties, total phenolic, and total flavonoid contents of the C. morifolium dried flowers.

    RESULTS: The highest XO inhibitory activity, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, total phenolic and flavonoid content with strong positive correlation between them were observed in the ethyl acetate (EtOAc) fraction. Detannified EtOAc showed higher XO inhibitory activity than non-detannified EtOAc fraction. A total of 17 metabolites were tentatively identified, of which three namely kaempferol, 4-hydroxybenzoic acid and apigenin, could be suggested to be responsible for the strong XO inhibitory activity. Additive interaction between 4-hydroxybenzoic acid and apigenin (or kaempferol) in XO inhibition was demonstrated in the interaction assay conducted.

    CONCLUSION: Chrysanthemum morifolium dried flower-part could be further explored as a natural XO inhibitor for its anti-hyperuricemic potential. Metabolomics approach served as an effective classification of plant metabolites responsible for XO inhibitory activity, and demonstrated that multiple active compounds can work additively in giving combined inhibitory effects.

    Matched MeSH terms: Flowers/chemistry
  17. Kundu BC, Mohsin GM, Rahman MS, Ahamed F, Mahato AK, Hossain KMD, et al.
    Braz J Biol, 2022;84:e255605.
    PMID: 35019109 DOI: 10.1590/1519-6984.255605
    Combining ability analysis provides useful information for the selection of parents, also information regarding the nature and magnitude of involved gene actions. Crops improvement involves strategies for enhancing yield potentiality and quality components. Targeting the improvement of respective characters in bitter gourd, combining ability and genetic parameters for 19 characters were estimated from a 6×6 full diallel analysis technique. The results revealed that the variances due to general combining ability (GCA) and specific combining ability (SCA) were highly significant for most of the important characters. It indicated the importance of both additive and non-additive gene actions. GCA variances were higher in magnitude than SCA variances for all the characters studied indicating the predominance of the additive gene effects in their inheritance. The parent P2 (BG 009) appeared as the best general combiner for earliness; P1 (BG 006) for number of fruits, average single fruit weight and fruit yield; P4 (BG 027) for node number of first female flower and days to seed fruit maturity; P3 (BG 011) for fruit length and thickness of the fruit flesh; P5 (BG 033) for 100-seed weight; and P6 for number of nodes per main vine. The SCA effect as well as reciprocal effect was also significant for most of the important characters in different crosses.
    Matched MeSH terms: Flowers
  18. Mohd-Elias NA, Rosli K, Alias H, Juhari MA, Abu-Bakar MF, Md-Isa N, et al.
    Sci Rep, 2021 Dec 08;11(1):23661.
    PMID: 34880337 DOI: 10.1038/s41598-021-03028-x
    Rafflesia is a unique plant species existing as a single flower and produces the largest flower in the world. While Rafflesia buds take up to 21 months to develop, its flowers bloom and wither within about a week. In this study, transcriptome analysis was carried out to shed light on the molecular mechanism of senescence in Rafflesia. A total of 53.3 million high quality reads were obtained from two Rafflesia cantleyi flower developmental stages and assembled to generate 64,152 unigenes. Analysis of this dataset showed that 5,166 unigenes were differentially expressed, in which 1,073 unigenes were identified as genes involved in flower senescence. Results revealed that as the flowers progress to senescence, more genes related to flower senescence were significantly over-represented compared to those related to plant growth and development. Senescence of the R. cantleyi flower activates senescence-associated genes in the transcription activity (members of the transcription factor families MYB, bHLH, NAC, and WRKY), nutrient remobilization (autophagy-related protein and transporter genes), and redox regulation (CATALASE). Most of the senescence-related genes were found to be differentially regulated, perhaps for the fine-tuning of various responses in the senescing R. cantleyi flower. Additionally, pathway analysis showed the activation of genes such as ETHYLENE RECEPTOR, ETHYLENE-INSENSITIVE 2, ETHYLENE-INSENSITIVE 3, and ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR, indicating the possible involvement of the ethylene hormone response pathway in the regulation of R. cantleyi senescence. Our results provide a model of the molecular mechanism underlying R. cantleyi flower senescence, and contribute essential information towards further understanding the biology of the Rafflesiaceae family.
    Matched MeSH terms: Flowers/genetics*
  19. Juhari NH, Martens HJ, Petersen MA
    Molecules, 2021 Oct 16;26(20).
    PMID: 34684840 DOI: 10.3390/molecules26206260
    Fresh roselle are high in moisture and deteriorate easily, which makes drying important for extending shelf-life and increasing availability. This study investigated the influence of different drying methods (oven-drying, freeze-drying, vacuum-drying, and sun-drying) on the quality of roselle calyx expressed as physicochemical properties (moisture content, water activity, soluble solids, color), volatile compounds, and microstructure. Oven-drying and freeze-drying reduced moisture content most while vacuum-drying and sun-drying were not as efficient. All drying methods except sun-drying resulted in water activities low enough to ensure safety and quality. Vacuum-drying had no impact on color of the dry calyx and only small impact on color of water extract of calyx. Drying reduced terpenes, aldehydes, and esters but increased furans. This is expected to reduce fruity, floral, spicy, and green odors and increase caramel-like aroma. Sun-drying produced more ketones, alcohols, and esters. Scanning electron microscopy revealed that freeze-drying preserved the cell structure better, and freeze-dried samples resembled fresh samples most compared to other drying techniques. The study concludes that freeze-drying should be considered as a suitable drying method, especially with respect to preservation of structure.
    Matched MeSH terms: Flowers/chemistry*
  20. Clerget B, Sidibe M, Bueno CS, Grenier C, Kawakata T, Domingo AJ, et al.
    Ann Bot, 2021 07 28;128(1):97-113.
    PMID: 33821947 DOI: 10.1093/aob/mcab048
    BACKGROUND AND AIMS: Daylength determines flowering dates. However, questions remain regarding flowering dates in the natural environment, such as the synchronous flowering of plants sown simultaneously at highly contrasting latitudes. The daily change in sunrise and sunset times is the cue for the flowering of trees and for the synchronization of moulting in birds at the equator. Sunrise and sunset also synchronize the cell circadian clock, which is involved in the regulation of flowering. The goal of this study was to update the photoperiodism model with knowledge acquired since its conception.

    METHODS: A large dataset was gathered, including four 2-year series of monthly sowings of 28 sorghum varieties in Mali and two 1-year series of monthly sowings of eight rice varieties in the Philippines to compare with previously published monthly sowings in Japan and Malaysia, and data from sorghum breeders in France, Nicaragua and Colombia. An additive linear model of the duration in days to panicle initiation (PI) and flowering time using daylength and daily changes in sunrise and sunset times was implemented.

    KEY RESULTS: Simultaneous with the phyllochron, the duration to PI of field crops acclimated to the mean temperature at seedling emergence within the usual range of mean cropping temperatures. A unique additive linear model combining daylength and daily changes in sunrise and sunset hours was accurately fitted for any type of response in the duration to PI to the sowing date without any temperature input. Once calibrated on a complete and an incomplete monthly sowing series at two tropical latitudes, the model accurately predicted the duration to PI of the concerned varieties from the equatorial to the temperate zone.

    CONCLUSIONS: Including the daily changes in sunrise and sunset times in the updated photoperiodism model largely improved its accuracy at the latitude of each experiment. More research is needed to ascertain its multi-latitudinal accuracy, especially at latitudes close to the equator.

    Matched MeSH terms: Flowers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links