METHODS: A total of 15 subjects, aged 4 to 10 years, with at least one cavity on a primary tooth, were recruited for this study. Urine samples were collected at baseline, first 24 h (F1) and second 24 h (F2) after SDF treatment for analysis of silver and fluoride content. Hair samples were also collected at baseline and at 7, 14, 30, 60, 75, and 90 days after SDF treatment to analyze silver content.
RESULTS: Participants with under or over-collection of urine, or failure to provide urine collection were excluded for fluoride analysis. As a result, eight subjects' urine samples were eligible for fluoride analysis. Significant correlations were observed between baseline urinary fluoride levels and F1/F2 levels. Pairwise comparisons from Friedman's test showed significant differences between baseline and F1 fluoride levels. For silver analysis, 15 subjects were studied. F1 urinary silver levels were higher than baseline and F2 levels. Subsequent to SDF treatment, hair silver levels displayed fluctuations around the baseline. None of the participants reported adverse effects, and all caries teeth ceased progression within 30 days.
CONCLUSIONS: The urinary fluoride levels after SDF treatment, although higher, were not clinically significant. Urinary and hair silver levels were negligible. Therefore, SDF appears safe to be used among children.
AIM: To summarize and rank the effectiveness of clinical interventions using different agents for primary prevention of early childhood caries (ECC).
DESIGN: Two reviewers independently searched PubMed, Embase, and Cochrane Library to identify randomized controlled trials with at least 12-month follow-up. The network meta-analysis (NMA) on different agents was based on a random-effects model and frequentist approach. Standardized mean differences (SMD) with 95% CI of the caries increment were calculated in terms of either dmft or dmfs and used in the NMA. Caries incidences at the child level were compared using odds ratios (ORs) with 95% CI. The effectiveness of the agents was ranked using the surface under the cumulative ranking curve (SUCRA).
RESULTS: After screening 3807 publications and selection, the NMA finally included 33 trials. These trials used either a single or combination of agents such as fluorides, chlorhexidine, casein phosphopeptide-amorphous calcium phosphate, probiotics, xylitol, and triclosan. Compared with control, fluoride foam (FF; SMD -0.69, 95% CI: -1.06, -0.32) and fluoride salt (F salt; SMD -0.66, 95% CI: -1.20, -0.13) were effective in preventing caries increment. Probiotic milk plus low fluoride toothpaste (PMLFTP; OR 0.34, 95% CI: 0.15, 0.77), FF (OR 0.48, 95% CI: 0.37, 0.63), fluoride varnish (FV; OR 0.63, 95% CI: 0.48, 0.81), and fluoride varnish plus high fluoride toothpaste (FVHFTP; OR 0.73, 95% CI: 0.57, 0.93) were effectively preventing caries incidence. According to the SUCRA, FF ranked first in preventing caries increment, whereas PMLFTP ranked first in preventing caries incidence.
CONCLUSION: Fluoride foam, F salt, PMLFTP, FV, and FVHFTP all effectively reduce caries increment or caries incidence in preschool children, but the evidence indicates low degree of certainty. Considering the relatively small number of studies, confidence in the findings, and limitations in the study, clinical practitioners and readers should exercise caution when interpreting the NMA results.
MATERIAL AND METHODS: The materials were divided into two groups, Fuji IX GIC® (n = 30) and Cention N® (n = 30) and further divided (n = 10) to test three parameters, the fluoride releasing ability, flexural strength, and shear bond strength. Fluoride release was checked using fluoride ion-selective electrode, and flexural strength and shear bond strength were tested using universal testing machine (Intron 3366, UK).
RESULTS: Fluoride release of Fuji IX GIC® was significantly higher compared to that of control Cention N® over a period of 21 days. Flexural strength of Cention N® was significantly higher compared to Fuji IX GIC® and there were no significant differences in shear bond strength of both the materials.
CONCLUSION: From the results of the study, it can be concluded that Cention N® is an alkasite filling material for the complete and permanent replacement of tooth structure in posterior teeth and can be a good alternative when compared to GICs on the basis of their superior mechanical properties.
CLINICAL SIGNIFICANCE: Cention N® is an innovative filling material for the complete and permanent replacement of tooth structure in posterior teeth and can be a good alternative when compared to GICs on the basis of their superior mechanical properties.
METHODS: A total of 200 teeth from 20 patients undergoing fixed orthodontic therapy were assessed and biofilm formation around the brackets were recorded using the Bonded Bracket Index (Plaque index) at baseline and weekly for 6 weeks. The bacterial count and plaque pH at corresponding weekly intervals were also recorded. Following bracket bonding, the patients were cluster randomised to receive chitosan-based varnish-CHS (UNO Gel Bioschell, Germiphene corp., Brantford, Canada) or chlorhexidine-fluoride varnish-CFV (Cervitec F, Ivoclar Vivadent, Schaan, Liechtenstein) every week on the representative teeth respectively. BBI proportions were compared between groups at all time intervals using Chi square test. Mean plaque bacterial count and plaque pH were compared using Mann Whitney U test and Tukey's HSD test respectively.
RESULTS: Baseline characteristics were similar between the groups: Mean age was CHS = 23 and CFV = 21; male to female ratio was CHS = 5/5, CFV = 7/3. At the end of 6 weeks, chitosan-based varnish performed equal to chlorhexidine-fluoride varnish (P > 0.05) with 98% and 95% of teeth with acceptable scores respectively. The plaque bacterial count significantly reduced at 6 weeks for both varnish compared to the baseline; The value for CHS was 0.43 ± 0.4 × 104 and CFV was 0.77 ± 0.64 × 104 CFU (P
OBJECTIVES: To evaluate the effects of sealants compared to no sealant or a different sealant in preventing pit and fissure caries on the occlusal surfaces of primary molars in children and to report the adverse effects and the retention of different types of sealants.
SEARCH METHODS: An information specialist searched four bibliographic databases up to 11 February 2021 and used additional search methods to identify published, unpublished and ongoing studies. Review authors scanned the reference lists of included studies and relevant systematic reviews for further studies.
SELECTION CRITERIA: We included parallel-group and split-mouth randomised controlled trials (RCTs) that compared a sealant with no sealant, or different types of sealants, for the prevention of caries in primary molars, with no restriction on follow-up duration. We included studies in which co-interventions such as oral health preventive measures, oral health education or tooth brushing demonstrations were used, provided that the same adjunct was used with the intervention and comparator. We excluded studies with complex interventions for the prevention of dental caries in primary teeth such as preventive resin restorations, or studies that used sealants in cavitated carious lesions.
DATA COLLECTION AND ANALYSIS: Two review authors independently screened search results, extracted data and assessed risk of bias of included studies. We presented outcomes for the development of new carious lesions on occlusal surfaces of primary molars as odds ratios (OR) with 95% confidence intervals (CIs). Where studies were similar in clinical and methodological characteristics, we planned to pool effect estimates using a random-effects model where appropriate. We used GRADE methodology to assess the certainty of the evidence.
MAIN RESULTS: We included nine studies that randomised 1120 children who ranged in age from 18 months to eight years at the start of the study. One study compared fluoride-releasing resin-based sealant with no sealant (139 tooth pairs in 90 children); two studies compared glass ionomer-based sealant with no sealant (619 children); two studies compared glass ionomer-based sealant with resin-based sealant (278 tooth pairs in 200 children); two studies compared fluoride-releasing resin-based sealant with resin-based sealant (113 tooth pairs in 69 children); one study compared composite with fluoride-releasing resin-based sealant (40 tooth pairs in 40 children); and one study compared autopolymerised sealant with light polymerised sealant (52 tooth pairs in 52 children). Three studies evaluated the effects of sealants versus no sealant and provided data for our primary outcome. Due to differences in study design such as age of participants and duration of follow-up, we elected not to pool the data. At 24 months, there was insufficient evidence of a difference in the development of new caries lesions for the fluoride-releasing sealants or no treatment groups (Becker Balagtas odds ratio (BB OR) 0.76, 95% CI 0.41 to 1.42; 1 study, 85 children, 255 tooth surfaces). For glass ionomer-based sealants, the evidence was equivocal; one study found insufficient evidence of a difference at follow-up between 12 and 30 months (OR 0.97, 95% CI 0.63 to 1.49; 449 children), while another with 12-month follow-up found a large, beneficial effect of sealants (OR 0.03, 95% CI 0.01 to 0.15; 107 children). We judged the certainty of the evidence to be low, downgrading two levels in total for study limitations, imprecision and inconsistency. We included six trials randomising 411 children that directly compared different sealant materials, four of which (221 children) provided data for our primary outcome. Differences in age of the participants and duration of follow-up precluded pooling of the data. The incidence of development of new caries lesions was typically low across the different sealant types evaluated. We judged the certainty of the evidence to be low or very low for the outcome of caries incidence. Only one study assessed and reported adverse events, the nature of which was gag reflex while placing the sealant material.
AUTHORS' CONCLUSIONS: The certainty of the evidence for the comparisons and outcomes in this review was low or very low, reflecting the fragility and uncertainty of the evidence base. The volume of evidence for this review was limited, which typically included small studies where the number of events was low. The majority of studies in this review were of split-mouth design, an efficient study design for this research question; however, there were often shortcomings in the analysis and reporting of results that made synthesising the evidence difficult. An important omission from the included studies was the reporting of adverse events. Given the importance of prevention for maintaining good oral health, there exists an important evidence gap pertaining to the caries-preventive effect and retention of sealants in the primary dentition, which should be addressed through robust RCTs.
Materials and Methods: A cross-sectional study of 80 knee arthritis patients was conducted from February 2017 to April 2018. Serum fluoride levels were measured and patient's pain scores, WOMAC scores and radiological grading were correlated with the elevated fluoride levels.
Results: In our study, 30 out of 80 patients had increased serum fluoride level. Statistically significant differences were noted in VAS score, WOMAC score and Kellgren and Lawrence radiological grades between patients with normal serum fluoride level and those with elevated fluoride level.
Conclusion: There is an increased risk of knee arthritis in patients with elevated blood fluoride levels and patients with increased fluoride levels are associated with more severe symptoms and radiographic disease.