METHODS: The kedondong powder was dried using five methods: convection oven drying, vacuum drying, spray drying, drum drying and freeze drying. The physical properties, flowability and DPPH radical scavenging ability of dried kedondong powder were examined.
RESULTS: Spray-dried powder provided the significantly (p ≤ 0.05) highest process yield, which was 54.93%. All the powder produced had a low moisture content (3.03 to 5.66%) and water activity (0.19–0.37). Visually, whitish and fine powders were observed on spray-dried and freeze-dried samples, while convection oven-dried and vacuum-dried powder appeared yellowish and coarse. The pH of the reconstituted powders varied from 2.71 to 2.83, where drum-dried powder was the most acidic. Spray-dried powder showed the highest wettability and shortest dissolution time, which was 172.65 s and 10.55 s, respectively. With the exception of drum-dried powder, all the dried powders were classified as non-caking powders. The bulk and tapped density of the powders ranged from 0.32 to 0.70 g/mL and 0.38 to 0.86 g/mL, respectively. Vacuum-dried powder had very good flowability, convection oven-dried and drum-dried powder had good flowability, while spray-dried and drum-dried powder had fair flowability. Antioxidant assay showed that freeze-dried powder exhibited the highest free radical scavenging activity (IC50 = 701.29 μg/mL).
CONCLUSIONS: This study indicates that spray-dried kedondong powder has great potential in the food industry due to its high process yield and better powder quality. Meanwhile, freeze drying best preserved the antioxidant properties of the powder, which could potentially be used as a functional ingredient as a result. This study is important for the fruit processing industry as it offers an alternative for the farmer to produce kedondong fruit powder because the fruit has a short shelf life. Converting the fruit into powder can diversify the resulting produce into different applications, such as fruit juice, beverages, jam and other food products.
METHODS: This study compares the effects of spray drying, freeze drying, drum drying, vacuum oven drying, and convection oven drying on the physicochemical properties of Bintangor orange powder, including vitamin C and total carotenoid content. The physicochemical properties analyzed for the powders were color analysis, moisture content, water activity, hygroscopicity, degree of caking, wettability, flowability, water solubility index, and bulk density.
RESULTS: Our results showed that freeze dried and convection oven dried powders retained their color so that the powder was the same as the original puree. All powders used in this showed an acceptable moisture content level, with a range of 2.11–2.31%. Spray dried and drum dried powders had the lowest value of moisture content and water activity. Moreover, spray dried powders showed the lowest value in hygroscopicity and bulk density and took the shortest time to wet the powder. The highest solubility and flowability properties were 12.99%, 0.39 g/mL, 18.39 s, 96.08%, and 19.17°, respectively. However, the freeze drying method retained the highest value for both nutritional pigments of vitamin C and total carotenoid content, 18.31 mg/g and 91.32 μg/g, respectively.
CONCLUSIONS: Freeze drying is the most suitable drying method with favorable powder properties compared to spray drying, drum drying, vacuum oven drying and convection oven drying.