AREAS COVERED: Mitochondrial deficits impact insulin-resistant skeletal muscles, adipose tissue, liver, and pancreatic β-cells, affecting glucose and lipid balance. Exercise emerges as a key factor in enhancing mitochondrial function, thereby reducing insulin resistance. Additionally, the therapeutic potential of mitochondrial uncoupling, which generates heat instead of ATP, is discussed. We explore the intricate link between mitochondrial function and diabetes, investigating genetic interventions to mitigate diabetes-related complications. We also cover the impact of insulin deficiency on mitochondrial function, the role of exercise in addressing mitochondrial defects in insulin resistance, and the potential of mitochondrial uncoupling. Furthermore, a comprehensive analysis of Mitochondrial Replacement Therapies (MRT) techniques is presented.
EXPERT OPINION: MRTs hold promise in preventing the transmission of mitochondrial disease. However, addressing ethical, regulatory, and technical considerations is crucial. Integrating mitochondrial-based treatments requires a careful balance between innovation and safety. Ethical dimensions and regulatory aspects of MRT are examined, emphasizing collaborative efforts for the responsible advancement of human health.
METHODS: We used the TyG index as a surrogate measure for insulin resistance. Fasting triglycerides and fasting plasma glucose were measured at the baseline visit in 141 243 individuals aged 35-70 years from 22 countries in the Prospective Urban Rural Epidemiology (PURE) study. The TyG index was calculated as Ln (fasting triglycerides [mg/dL] x fasting plasma glucose [mg/dL]/2). We calculated hazard ratios (HRs) using a multivariable Cox frailty model with random effects to test the associations between the TyG index and risk of cardiovascular diseases and mortality. The primary outcome of this analysis was the composite of mortality or major cardiovascular events (defined as death from cardiovascular causes, and non-fatal myocardial infarction, or stroke). Secondary outcomes were non-cardiovascular mortality, cardiovascular mortality, all myocardial infarctions, stroke, and incident diabetes. We also did subgroup analyses to examine the magnitude of associations between insulin resistance (ie, the TyG index) and outcome events according to the income level of the countries.
FINDINGS: During a median follow-up of 13·2 years (IQR 11·9-14·6), we recorded 6345 composite cardiovascular diseases events, 2030 cardiovascular deaths, 3038 cases of myocardial infarction, 3291 cases of stroke, and 5191 incident cases of type 2 diabetes. After adjusting for all other variables, the risk of developing cardiovascular diseases increased across tertiles of the baseline TyG index. Compared with the lowest tertile of the TyG index, the highest tertile (tertile 3) was associated with a greater incidence of the composite outcome (HR 1·21; 95% CI 1·13-1·30), myocardial infarction (1·24; 1·12-1·38), stroke (1·16; 1·05-1·28), and incident type 2 diabetes (1·99; 1·82-2·16). No significant association of the TyG index was seen with non-cardiovascular mortality. In low-income countries (LICs) and middle-income countries (MICs), the highest tertile of the TyG index was associated with increased hazards for the composite outcome (LICs: HR 1·31; 95% CI 1·12-1·54; MICs: 1·20; 1·11-1·31; pinteraction=0·01), cardiovascular mortality (LICs: 1·44; 1·15-1·80; pinteraction=0·01), myocardial infarction (LICs: 1·29; 1·06-1·56; MICs: 1·26; 1·10-1·45; pinteraction=0·08), stroke (LICs: 1·35; 1·02-1·78; MICs: 1·17; 1·05-1·30; pinteraction=0·19), and incident diabetes (LICs: 1·64; 1·38-1·94; MICs: 2·68; 2·40-2·99; pinteraction <0·0001). In contrast, in high-income countries, higher TyG index tertiles were only associated with an increased hazard of incident diabetes (2·95; 2·25-3·87; pinteraction <0·0001), but not of cardiovascular diseases or mortality.
INTERPRETATION: The TyG index is significantly associated with future cardiovascular mortality, myocardial infarction, stroke, and type 2 diabetes, suggesting that insulin resistance plays a promoting role in the pathogenesis of cardiovascular and metabolic diseases. Potentially, the association between the TyG index and the higher risk of cardiovascular diseases and type 2 diabetes in LICs and MICs might be explained by an increased vulnerability of these populations to the presence of insulin resistance.
FUNDING: Full funding sources are listed at the end of the paper (see Acknowledgments).
METHODS: A total of 243 participants from MyBFF@home were included in this study. Fasting blood samples at baseline, 6- and 12-month were assessed for fasting plasma glucose (FPG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides. The effect of the intervention on cardiometabolic risk markers were investigated within and between study groups using t-test and general linear model (GLM) repeated measure ANOVA.
RESULTS: Results from repeated measures ANOVA showed intervention effect only in TC where significant reduction was found in the intervention group (- 0.26 mmol/L [95% CI: - 0.47 to - 0.06], p
METHODS AND RESULTS: Blood pressures, fasting lipid profile and fasting glucose were measured, and DASH score was computed based on a 22-item food frequency questionnaire. Older individuals, women, those not consuming alcohol and those undertaking regular physical activity were more likely to have higher DASH scores. In the Malaysian cohort, while total DASH score was not significantly associated with cardio-metabolic risk factors after adjusting for confounders, significant associations were observed for intake of green vegetable [0.011, standard error (SE): 0.004], and red and processed meat (-0.009, SE: 0.004) with total cholesterol. In the Philippines cohort, a 5-unit increase in total DASH score was significantly and inversely associated with systolic blood pressure (-1.41, SE: 0.40), diastolic blood pressure (-1.09, SE: 0.28), total cholesterol (-0.015, SE: 0.005), low-density lipoprotein cholesterol (-0.025, SE: 0.008), and triglyceride (-0.034, SE: 0.012) after adjusting for socio-demographic and lifestyle groups. Intake of milk and dairy products, red and processed meat, and sugared drinks were found to significantly associated with most risk factors.
CONCLUSIONS: Differential associations of DASH diet and dietary components with cardio-metabolic risk factors by country suggest the need for country-specific tailoring of dietary interventions to improve cardio-metabolic risk profiles.
METHODS: The fructophilic characteristics of strain Sy-1 were determined, and the genome was sequenced using Illumina iSeq100 and Oxford Nanopore. The average nucleotide identity and phylogenetic analyses based on 16S rRNA, 92 core genes, and whole-genome sequence were performed to unravel the phylogenetic position of strain Sy-1. NCBI Prokaryotic Genome Annotation Pipeline annotated the genome, while the EggNOG-mapper, BLASTKoala, and GHOSTKoala were used to add functional genes and pathways information.
RESULTS: Strain Sy-1 prefers D-fructose over D-glucose and actively metabolizes D-glucose in the presence of electron acceptors. Genomic annotation of strain Sy-1 revealed few genes involved in carbohydrate transport and metabolism, and partial deletion of adhE gene, in line with the characteristic of FLAB. The 16S rRNA gene sequence of strain Sy-1 showed the highest similarity to unknown LAB species isolated from the gut of honeybees. The phylogenetic analyses discovered that strain Sy-1 belonged to the Lactobacillaceae family and formed a separate branch closer to type strain from the genera of Acetilactobacillus and Apilactobacillus. The ANI analysis showed the similarity of the closest relative, Apilactobacillus micheneri Hlig3T. The assembled genome of Sy-1 contains 3 contigs with 2.03 Mbp and a 41% GC content. A total of 1,785 genes were identified, including 1,685 protein-coding genes, 68 tRNA, and 15 rRNA. Interestingly, strain Sy-1 encoded complete genes for the biosynthesis of folate and riboflavin. High-performance liquid chromatography analysis further confirmed the high production of folic acid (1.346 mg/L) by Sy-1.
DISCUSSION: Based on phylogenetic and biochemical characteristics, strain Sy-1 should be classified as a novel genus in the family of Lactobacillaceae and a new member of FLAB. The genome information coupled with experimental studies supported the ability of strain Sy-1 to produce high folic acid. Our collective findings support the suitable application of FLAB strain Sy-1 in the functional food and pharmaceutical industries.