Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Baxter R, Patriarca PA, Ensor K, Izikson R, Goldenthal KL, Cox MM
    Vaccine, 2011 Mar 9;29(12):2272-8.
    PMID: 21277410 DOI: 10.1016/j.vaccine.2011.01.039
    Alternative methods for influenza vaccine production are needed to ensure adequate supplies.
    Matched MeSH terms: Influenza Vaccines/immunology*
  2. Künzi V, Klap JM, Seiberling MK, Herzog C, Hartmann K, Kürsteiner O, et al.
    Vaccine, 2009 Jun 2;27(27):3561-7.
    PMID: 19464535 DOI: 10.1016/j.vaccine.2009.03.062
    Despite the established benefit of intramuscular (i.m.) influenza vaccination, new adjuvants and delivery methods for comparable or improved immunogenicity are being explored. Intradermal (i.d.) antigen administration is hypothesized to initiate an efficient immune response at reduced antigen doses similar to that observed after i.m. full dose vaccination.
    Matched MeSH terms: Influenza Vaccines/immunology*
  3. Hussain AI, Cordeiro M, Sevilla E, Liu J
    Vaccine, 2010 May 14;28(22):3848-55.
    PMID: 20307595 DOI: 10.1016/j.vaccine.2010.03.005
    Currently MedImmune manufactures cold-adapted (ca) live, attenuated influenza vaccine (LAIV) from specific-pathogen free (SPF) chicken eggs. Difficulties in production scale-up and potential exposure of chicken flocks to avian influenza viruses especially in the event of a pandemic influenza outbreak have prompted evaluation and development of alternative non-egg based influenza vaccine manufacturing technologies. As part of MedImmune's effort to develop the live attenuated influenza vaccine (LAIV) using cell culture production technologies we have investigated the use of high yielding, cloned MDCK cells as a substrate for vaccine production by assessing host range and virus replication of influenza virus produced from both SPF egg and MDCK cell production technologies. In addition to cloned MDCK cells the indicator cell lines used to evaluate the impact of producing LAIV in cells on host range and replication included two human cell lines: human lung carcinoma (A549) cells and human muco-epidermoid bronchiolar carcinoma (NCI H292) cells. The influenza viruses used to infect the indicators cell lines represented both the egg and cell culture manufacturing processes and included virus strains that composed the 2006-2007 influenza seasonal trivalent vaccine (A/New Caledonia/20/99 (H1N1), A/Wisconsin/67/05 (H3N2) and B/Malaysia/2506/04). Results from this study demonstrate remarkable similarity between influenza viruses representing the current commercial egg produced and developmental MDCK cell produced vaccine production platforms. MedImmune's high yielding cloned MDCK cells used for the cell culture based vaccine production were highly permissive to both egg and cell produced ca attenuated influenza viruses. Both the A549 and NCI H292 cells regardless of production system were less permissive to influenza A and B viruses than the MDCK cells. Irrespective of the indicator cell line used the replication properties were similar between egg and the cell produced influenza viruses. Based on these study results we conclude that the MDCK cell produced and egg produced vaccine strains are highly comparable.
    Matched MeSH terms: Influenza Vaccines/immunology
  4. Souza AR, Braga JA, de Paiva TM, Loggetto SR, Azevedo RS, Weckx LY
    Vaccine, 2010 Jan 22;28(4):1117-20.
    PMID: 20116631 DOI: 10.1016/j.vaccine.2009.05.046
    The immunogenicity and tolerability of virosome and of split influenza vaccines in patients with sickle cell anemia (SS) were evaluated. Ninety SS patients from 8 to 34 years old were randomly assigned to receive either virosome (n=43) or split vaccine (n=47). Two blood samples were collected, one before and one 4-6 weeks after vaccination. Antibodies against viral strains (2006) A/New Caledonia (H1N1), A/California (H3N2), B/Malaysia were determined using the hemagglutinin inhibition test. Post-vaccine reactions were recorded over 7 days. Seroconversion rates for H1N1, H3N2 and B were 65.1%, 60.4% and 83.7% for virosome vaccine, and 68.0%, 61.7% and 68.0% for split vaccine. Seroprotection rates for H1N1, H3N2 e B were 100%, 97.6% and 69.7% for virosome, and 97.8%, 97.8% and 76.6% for split vaccine. No severe adverse reactions were recorded. Virosome and split vaccines in patients with sickle cell anemia were equally immunogenic, with high seroconversion and seroprotection rates. Both vaccines were well tolerated.
    Matched MeSH terms: Influenza Vaccines/immunology*
  5. Camilloni B, Neri M, Lepri E, Iorio AM
    Vaccine, 2009 Jun 24;27(31):4099-103.
    PMID: 19410623 DOI: 10.1016/j.vaccine.2009.04.078
    This study evaluated whether MF59-adjuvanted subunit trivalent influenza vaccine for the 2003/04 winter season (A/Moscow/10/99, H3N2; A/New Caledonia/20/99, H1N1; B/Hong Kong/330/01) would confer protection against mismatched and frequently co-circulating variants of influenza B/Victoria- and B/Yamagata-like virus strains. Haemagglutination inhibiting (HI) antibodies were measured in middle-aged and elderly volunteers against the homologous B/Victoria-like vaccine strain (B/Hong Kong/330/01) and against mismatched B/Victoria-like (B/Malaysia/2506/04) and B/Yamagata-like (B/Singapore/379/99 and B/Shanghai/361/02) strains. Immunization induced significant increases in the amounts of HI antibodies against all influenza B strains under investigation. However, the responses against the heterologous B/Shanghai/361/02 virus did not reach the desirable values of seroprotection. An age-dependent decline of the responses was found for B/Victoria-like antigens, but not for B/Yamagata-like strains. Although further studies are needed, our data support the recommendation of including influenza B viruses of the B/Victoria and B/Yamagata lineages in the future influenza vaccine preparations.
    Matched MeSH terms: Influenza Vaccines/immunology*
  6. Lum LC, Borja-Tabora CF, Breiman RF, Vesikari T, Sablan BP, Chay OM, et al.
    Vaccine, 2010 Feb 10;28(6):1566-74.
    PMID: 20003918 DOI: 10.1016/j.vaccine.2009.11.054
    Children aged 11 to <24 months received 2 intranasal doses of live attenuated influenza vaccine (LAIV) or placebo, 35+/-7 days apart. Dose 1 was administered concomitantly with a combined measles, mumps, and rubella vaccine (Priorix). Seroresponses to measles and mumps were similar between groups. Compared with placebo, response rates to rubella in LAIV+Priorix recipients were statistically lower at a 15 IU/mL threshold (83.9% vs 78.0%) and the prespecified noninferiority criteria were not met. In a post hoc analysis using an alternate widely accepted threshold of 10 IU/mL, the noninferiority criteria were met (93.4% vs 89.8%). Concomitant administration with Priorix did not affect the overall influenza protection rate of LAIV (78.4% and 63.8% against antigenically similar influenza strains and any strain, respectively).
    Matched MeSH terms: Influenza Vaccines/immunology*
  7. Isahak I, Mahayiddin AA, Ismail R
    PMID: 18041300
    The aims of the study were to determine the attack rate of influenza-like illness among inhabitants of five old folk homes nationwide using influenza vaccine as a probe and the effectiveness of influenza vaccination in prevention of influenza-like illness. We conducted a nonrandomized, single-blind placebo control study from June 2003 to February 2004. VAXIGRIP(R) 2003 Southern hemisphere formulation was used. Among 527 subjects, the attack rates of influenza-like illness in the influenza vaccine group were 6.4, 4.6 and 2.4% during the first, second and third 2-month periods, respectively. The attack rates of influenza-like illness in the placebo group were 17.7, 13.8 and 10.1%. Influenza vaccination reduced the risk of contracting influenza-like illness by between 14, and 45%. The vaccine effectiveness in reducing the occurrence of influenza-like illness ranged from 55 to 76%, during the 6-month study followup. The presence of cerebrovascular diseases significantly increased the risk of influenza-like illness (p < 0.005). Vaccine recipients had fewer episodes of fever, cough, muscle aches, runny nose (p < 0.001) and experience fewer sick days due to respiratory illness. Subjects who received influenza vaccination had clinically and statistically significant reductions in the attack rate of influenza-like illness. Our data support influenza vaccination of persons with chronic diseases and >50 year olds living in institutions.
    Matched MeSH terms: Influenza Vaccines/immunology
  8. Hojsak I, Avitzur Y, Mor E, Shamir R, Haimi-Cohen Y, Zakay-Rones Z, et al.
    Pediatr Infect Dis J, 2011 Jun;30(6):491-4.
    PMID: 21248658 DOI: 10.1097/INF.0b013e31820b7c22
    Data on the immunogenicity of the influenza vaccine in children after liver transplantation are sparse. Our study aims to evaluate the response of such patients to the trivalent influenza vaccine, administered by different protocols in 2 influenza seasons.
    Matched MeSH terms: Influenza Vaccines/immunology*
  9. Lee CK
    Med J Malaysia, 2010 Mar;65(1):1-2.
    PMID: 21265237
    In a short period of two months, the novel influenza A/H1N1 virus has circumnavigated the entire planet leaving behind in its wake approximately 3000 reported deaths worldwide. Fortunately, in many areas around the world, September 2009 brought a lull in the number of new H1N1 infections. This brought welcomed relief in many countries that had earlier experienced high respiratory disease activity in their communities. However, based on previous influenza pandemics, this reprieve may well be short-lived. As the Northern hemisphere approaches its winter months, many experts are now predicting a second wave of influenza A/H1N1 infections. This prediction maybe well placed as all 3 influenza pandemics in the last century reported second or even subsequent waves of new infections, all of which appeared to be more severe than the primary event (ref). The timing of these second waves have varied from 6 months to 3 years and invariably seemed to be linked to the winter months. It is unclear precisely what changes caused the increased severity seen during the second waves; one possibility is the progressive adaptation of the novel influenza virus to its new human host . Molecular analysis, for example, suggests that the 1918 Spanish influenza virus that emerged during the second wave had undergone changes in the hemagglutinin binding site that increased the binding specificity for human receptors. This is thought to have increased the replicative capacity and hence, the pathogenicity of the virus. It is also evident that as the H1N1 2009 pandemic virus continues to spread, opportunities for adaptation that increases virulence will also increase. Nonetheless, the changes needed for such adaptation and for increased virulence are unpredictable and by no means inevitable
    Matched MeSH terms: Influenza Vaccines/immunology
  10. Skowronski DM, De Serres G, Dickinson J, Petric M, Mak A, Fonseca K, et al.
    J Infect Dis, 2009 Jan 15;199(2):168-79.
    PMID: 19086914 DOI: 10.1086/595862
    Trivalent inactivated influenza vaccine (TIV) is reformulated annually to contain representative strains of 2 influenza A subtypes (H1N1 and H3N2) and 1 B lineage (Yamagata or Victoria). We describe a sentinel surveillance approach to link influenza variant detection with component-specific vaccine effectiveness (VE) estimation.
    Matched MeSH terms: Influenza Vaccines/immunology
  11. Lim KL, Jazayeri SD, Yeap SK, Mohamed Alitheen NB, Bejo MH, Ideris A, et al.
    Res Vet Sci, 2013 Dec;95(3):1224-34.
    PMID: 23948357 DOI: 10.1016/j.rvsc.2013.07.013
    We had examined the immunogenicity of a series of plasmid DNAs which include neuraminidase (NA) and nucleoprotein (NP) genes from avian influenza virus (AIV). The interleukin-15 (IL-15) and interleukin-18 (IL-18) as genetic adjuvants were used for immunization in combination with the N1 and NP AIV genes. In the first trial, 8 groups of chickens were established with 10 specific-pathogen-free (SPF) chickens per group while, in the second trial 7 SPF chickens per group were used. The overall N1 enzyme-linked immunosorbent assay (ELISA) titer in chickens immunized with the pDis/N1+pDis/IL-15 was higher compared to the chickens immunized with the pDis/N1 and this suggesting that chicken IL-15 could play a role in enhancing the humoral immune response. Besides that, the chickens that were immunized at 14-day-old (Trial 2) showed a higher N1 antibody titer compared to the chickens that were immunized at 1-day-old (Trial 1). Despite the delayed in NP antibody responses, the chickens co-administrated with IL-15 were able to induce earlier and higher antibody response compared to the pDis/NP and pDis/NP+pDis/IL-18 inoculated groups. The pDis/N1+pDis/IL-15 inoculated chickens also induced higher CD8+ T cells increase than the pDis/N1 group in both trials (P<0.05). The flow cytometry results from both trials demonstrated that the pDis/N1+pDis/IL-18 groups were able to induce CD4+ T cells higher than the pDis/N1 group (P<0.05). Meanwhile, pDis/N1+pDis/IL-18 group was able to induce CD8+ T cells higher than the pDis/N1 group (P<0.05) in Trial 2 only. In the present study, pDis/NP was not significant (P>0.05) in inducing CD4+ and CD8+ T cells when co-administered with the pDis/IL-18 in both trials in comparison to the pDis/NP. Our data suggest that the pDis/N1+pDis/IL-15 combination has the potential to be used as a DNA vaccine against AIV in chickens.
    Matched MeSH terms: Influenza Vaccines/immunology
  12. Horm SV, Mardy S, Rith S, Ly S, Heng S, Vong S, et al.
    PLoS One, 2014;9(10):e110713.
    PMID: 25340711 DOI: 10.1371/journal.pone.0110713
    BACKGROUND: The Cambodian National Influenza Center (NIC) monitored and characterized circulating influenza strains from 2009 to 2011.

    METHODOLOGY/PRINCIPAL FINDINGS: Sentinel and study sites collected nasopharyngeal specimens for diagnostic detection, virus isolation, antigenic characterization, sequencing and antiviral susceptibility analysis from patients who fulfilled case definitions for influenza-like illness, acute lower respiratory infections and event-based surveillance. Each year in Cambodia, influenza viruses were detected mainly from June to November, during the rainy season. Antigenic analysis show that A/H1N1pdm09 isolates belonged to the A/California/7/2009-like group. Circulating A/H3N2 strains were A/Brisbane/10/2007-like in 2009 before drifting to A/Perth/16/2009-like in 2010 and 2011. The Cambodian influenza B isolates from 2009 to 2011 all belonged to the B/Victoria lineage represented by the vaccine strains B/Brisbane/60/2008 and B/Malaysia/2506/2004. Sequences of the M2 gene obtained from representative 2009-2011 A/H3N2 and A/H1N1pdm09 strains all contained the S31N mutation associated with adamantanes resistance except for one A/H1N1pdm09 strain isolated in 2011 that lacked this mutation. No reduction in the susceptibility to neuraminidase inhibitors was observed among the influenza viruses circulating from 2009 to 2011. Phylogenetic analysis revealed that A/H3N2 strains clustered each year to a distinct group while most A/H1N1pdm09 isolates belonged to the S203T clade.

    CONCLUSIONS/SIGNIFICANCE: In Cambodia, from 2009 to 2011, influenza activity occurred throughout the year with peak seasonality during the rainy season from June to November. Seasonal influenza epidemics were due to multiple genetically distinct viruses, even though all of the isolates were antigenically similar to the reference vaccine strains. The drug susceptibility profile of Cambodian influenza strains revealed that neuraminidase inhibitors would be the drug of choice for influenza treatment and chemoprophylaxis in Cambodia, as adamantanes are no longer expected to be effective.

    Matched MeSH terms: Influenza Vaccines/immunology
  13. Gupta V, Dawood FS, Muangchana C, Lan PT, Xeuatvongsa A, Sovann L, et al.
    PLoS One, 2012;7(12):e52842.
    PMID: 23285200 DOI: 10.1371/journal.pone.0052842
    Southeast Asia is a region with great potential for the emergence of a pandemic influenza virus. Global efforts to improve influenza surveillance in this region have documented the burden and seasonality of influenza viruses and have informed influenza prevention strategies, but little information exists about influenza vaccination guidelines and vaccine sales.
    Matched MeSH terms: Influenza Vaccines/immunology
  14. Jee PF, Tiong V, Shu MH, Khoo JJ, Wong WF, Abdul Rahim R, et al.
    PLoS One, 2017;12(11):e0187718.
    PMID: 29108012 DOI: 10.1371/journal.pone.0187718
    Mucosal immunization of influenza vaccine is potentially an effective approach for the prevention and control of influenza. The objective of the present study was to evaluate the ability of oral immunization with a non-recombinant Lactococcus lactis displaying HA1/L/AcmA recombinant protein, LL-HA1/L/AcmA, to induce mucosal immune responses and to accord protection against influenza virus infection in mice. The LL-HA1/L/AcmA was orally administered into mice and the immune response was evaluated. Mice immunized with LL-HA1/L/AcmA developed detectable specific sIgA in faecal extract, small intestine wash, BAL fluid and nasal fluid. The results obtained demonstrated that oral immunization of mice with LL-HA1/L/AcmA elicited mucosal immunity in both the gastrointestinal tract and the respiratory tract. The protective efficacy of LL-HA1/L/AcmA in immunized mice against a lethal dose challenge with influenza virus was also assessed. Upon challenge, the non-immunized group of mice showed high susceptibility to influenza virus infection. In contrast, 7/8 of mice orally immunized with LL-HA1/L/AcmA survived. In conclusion, oral administration of LL-HA1/L/AcmA in mice induced mucosal immunity and most importantly, provided protection against lethal influenza virus challenge. These results highlight the potential application of L. lactis as a platform for delivery of influenza virus vaccine.
    Matched MeSH terms: Influenza Vaccines/immunology
  15. Bukhsh A, Hussain S, Rehman IU, Mallhi TH, Khan YH, Khaliel AM, et al.
    Pak J Pharm Sci, 2019 Jul;32(4(Supplementary)):1789-1796.
    PMID: 31680074
    Seasonal influenza is a highly contagious viral respiratory disorder. Prior knowledge of flu among general community is of paramount importance in order to mitigate its growing burden. In a pandemic, young adults are more likely to be infected increasing the potential for universities to be explosive disease outbreak centers. In this context, current study aims to assess the knowledge and perception of flu among university students from health sciences (HS) and non-HS background. Questionnaire-based cross sectional (August-December 2015) study was conducted among students of 65 universities across Pakistan. The students willing to participate were requested to fill out the self-administered questionnaire and responses were recorded and descriptively analyzed by SPSS. A total of 1694 students (age: 21.12 ± 2.13 years), 95% which belonged to age group 18-25 years, participated in the current study. Most of the participants (91.7%) had suffered from influenza during their life but only 55.7% correctly answered virus as causative agent of flu, while majority of participants, primarily from non-HS disciplines were not aware of flu cause. Very few participants (8.1%) believed that flu can cause death. About 20% students, mainly from non-HS disciplines reported that antibiotic can kill viruses. Similarly, 47.1% respondents agreed on the effectiveness of antibiotic in flu. A large proportion of study population preferred self-medication for influenza. Only 20.1% students were aware of influenza vaccine while majority of students (79.9%) from both disciplines reported that there is no such vaccine. Awareness and health literacy regarding seasonal influenza is poor among university students, especially from non-HS disciplines. These findings necessitate dire need to appropriately structured awareness programs in educational institutes to curb the growing burden of influenza.
    Matched MeSH terms: Influenza Vaccines/immunology
  16. Bosch M, Méndez M, Pérez M, Farran A, Fuentes MC, Cuñé J
    Nutr Hosp, 2012 Mar-Apr;27(2):504-9.
    PMID: 22732975 DOI: 10.1590/S0212-16112012000200023
    The effectiveness of influenza vaccination in preventing illness is lower in the elderly; this is why the ability of Lactobacillus plantarum CECT 7315/7316 to stimulate the response to influenza vaccination in elderly was evaluated.
    Matched MeSH terms: Influenza Vaccines/immunology*
  17. de Jong JC, Rimmelzwaan GF, Donker GA, Meijer A, Fouchier RA, Osterhaus AD
    Ned Tijdschr Geneeskd, 2007 Sep 29;151(39):2158-65.
    PMID: 17957994
    The influenza epidemic of 2006/'07 began late in the season, like the two previous influenza epidemics. In week 8 a peak of modest height was reached. As usual, the causal strains were mainly A/H3N2 viruses and to a lesser extent A/H1N1 and B viruses. A new A/H1N1 virus variant has emerged, an event that on average takes place only every 10 years. However, almost all A/H1N1 virus isolates belonged to the old variant and were similar to the vaccine virus. The A/H3N2 virus isolates appeared to deviate from the vaccine strain, but after antigenic cartographic analysis and correction for low avidity they proved also closely related to the vaccine strain. The few type B virus isolates belonged to the B/Yamagata/16/88 lineage, whereas the used B vaccine virus had been chosen from the B/Victoria/2/87 lineage. The vaccine therefore will have provided almost optimal protection against the circulating influenza A/H1N1 and A/H3N2 viruses but not against the influenza B viruses. For the 2007/'08 influenza season the World Health Organization has recommended the following vaccine composition: A/Solomon Islands/3/06 (H1N1) (new), A/Wisconsin/67/05 (H3N2), and B/Malaysia/2506/04.
    Matched MeSH terms: Influenza Vaccines/immunology*
  18. Tsuru T, Terao K, Murakami M, Matsutani T, Suzaki M, Amamoto T, et al.
    Mod Rheumatol, 2014 May;24(3):511-6.
    PMID: 24252023 DOI: 10.3109/14397595.2013.843743
    To evaluate humoral immune response to influenza vaccine and polysaccharide pneumococcal vaccine in patients with rheumatoid arthritis (RA) or Castleman's disease (CD) during tocilizumab therapy.
    Matched MeSH terms: Influenza Vaccines/immunology*
  19. Sirskyj D, Weltzin R, Golshani A, Anderson D, Bozic J, Diaz-Mitoma F, et al.
    J Virol Methods, 2010 Feb;163(2):459-64.
    PMID: 19913054 DOI: 10.1016/j.jviromet.2009.11.014
    Several critical factors of an influenza microneutralization assay, utilizing a rapid biotin-streptavidin conjugated system for detecting influenza virus subtypes A and B, are addressed within this manuscript. Factors such as incubation times, amount of virus, cell seeding, sonication, and TPCK trypsin were evaluated for their ability to affect influenza virus neutralization in a microplate-based neutralization assay using Madin-Darby canine kidney (MDCK) cells. It is apparent that the amount of virus used in the assay is the most critical factor to be optimized in an influenza microneutralization assay. Results indicate that 100xTCID(50) of influenza A/Solomon Islands/03/2006 (H1N1) virus overloads the assay and results in no, to low, neutralization, in both ferret and macaque sera, respectively, whereas using 6xTCID(50) resulted in significantly improved neutralization. Conversely, strong neutralization was observed against 100xTCID(50) of B/Malaysia/2506/04 virus. In this manuscript the critical factors described above were optimized and the results indicate that the described biotin-streptavidin conjugated influenza microneutralization assay is a rapid and robust method for detecting the presence of functional, influenza virus-neutralizing antibodies.
    Matched MeSH terms: Influenza Vaccines/immunology*
  20. Jazayeri SD, Ideris A, Zakaria Z, Shameli K, Moeini H, Omar AR
    J Control Release, 2012 Jul 10;161(1):116-23.
    PMID: 22549012 DOI: 10.1016/j.jconrel.2012.04.015
    DNA formulations provide the basis for safe and cost effective vaccine. Low efficiency is often observed in the delivery of DNA vaccines. In order to assess a new strategy for oral DNA vaccine formulation and delivery, plasmid encoding hemagglutinin (HA) gene of avian influenza virus, A/Ck/Malaysia/5858/04 (H5N1) (pcDNA3.1/H5) was formulated using green synthesis of sliver nanoparticles (AgNP) with polyethylene glycol (PEG). AgNP were successfully synthesized uniformly dispersed with size in the range of 4 to 18 nm with an average size of 11 nm. Cytotoxicity of the prepared AgNP was investigated in vitro and in vivo using MCF-7 cells and cytokine expression, respectively. At the concentration of -5 log₁₀AgNP, no cytotoxic effects were detected in MCF-7 cells with 9.5% cell death compared to the control. One-day-old specific pathogen-free (SPF) chicks immunized once by oral gavage with 10 μl of pcDNA3.1/H5 (200 ng/ml) nanoencapsulated with 40 μl AgNP (3.7×10⁻² μg of Ag) showed no clinical manifestations. PCR successfully detect the AgNP/H5 plasmid from the duodenum of the inoculated chicken as early as 1h post-immunization. Immunization of chickens with AgNP/H5 enhanced both pro inflammatory and Th1-like expressions, although no significant differences were recorded in the chickens inoculated with AgNP, AgNP/pcDNA3.1 and the control. In addition, serum samples collected from immunized chickens with AgNP/H5 showed rapidly increasing antibody against H5 on day 14 after immunization. The highest average antibody titres were detected on day 35 post-immunization at 51.2±7.5. AgNP/H5 also elicited both CD4+ and CD8+ T cells in the immunized chickens as early as day 14 after immunization, at 7.5±2.0 and 20±1.9 percentage, respectively. Hence, single oral administrations of AgNP/H5 led to induce both the antibody and cell-mediated immune responses as well as enhanced cytokine production.
    Matched MeSH terms: Influenza Vaccines/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links