METHODS: Skeletal human muscle cells were cultured in four different conditions; control, EGF, laminin (Lam) and laminin EGF (Lam + EGF). Using live imaging system, their cellular properties; attachment, migration and growth were exposed to Rho kinase inhibitor, Y-27632, and EGF-receptor (EGF-R) inhibitor, gefitinib were measured.
RESULTS: Myoblast migration and proliferation was enhanced significantly by synergistic stimulation of laminin and EGF (0.61 ± 0.14 µm/min, 0.008 ± 0.001 h-1) compare to that by EGF alone (0.26 ± 0.13 µm/min, 0.004 ± 0.0009 h-1). However, no changes in proliferation and migration were observed for fibroblasts among the culture conditions. Inhibition of Rho kinase resulted in the increase of the myoblast migration on the laminin-coated surface with EGF condition (0.64 ± 0.18 µm/min). Compared to the untreated conditions, myoblasts cultured on the laminin-coated surface and EGF demonstrated elongated morphology, and average cell length increase significantly. In contrast, inhibition of EGF-R resulted in the decrease of myoblast migration on the laminin coated surface with EGF supplemented condition (0.43 ± 0.05 µm/min) in comparison to the untreated control (0.53 ± 0.05 µm/min).
CONCLUSION: Laminin and EGF preferentially enhance the proliferation and migration of myoblasts, and Rho kinase and EGF-R play a role in this synergistic effect. These results will be beneficial for the propagation of skeletal muscle cells for clinical applications.
METHODS: Smaller micro tissues (˂150 μm in diameter) mixed with Matrigel were engrafted subcutaneously into NSG mice to generate the passage 1 (P1) patient-derived xenograft. The micro tumours from P1 patient-derived xenograft were then excised and orthotopically xenografted into another batch of NSG mice to generate a metastatic colorectal cancer patient-derived xenograft, P2. Haematoxylin and eosin and immunohistochemistry staining were performed to compare the characters between patient-derived xenograft tumours and primary tumours.
RESULTS: About 16 out of 18 P1 xenograft models successfully grew a tumour for 50.8 ± 5.1 days (success rate 89.9%). Six out of eight P1 xenograft models originating from metastatic patients successfully grew tumours in the colon and metastasized to liver or lung in the NSG recipients for 60.9 ± 4.5 days (success rate 75%). Histological examination of both P1 and P2 xenografts closely resembled the histological architecture of the original patients' tumours. Immunohistochemical analysis revealed similar biomarker expression levels, including CDH17, Ki-67, active β-catenin, Ki-67 and α smooth muscle actin when compared with the original patients' tumours. The stromal components that support the growth of patient-derived xenograft tumours were of murine origin.
CONCLUSIONS: Metastatic patient-derived xenograft mouse model could be established with shorter time and higher success rate. Although the patient-derived xenograft tumours were supported by the stromal cells of murine origin, they retained the dominant characters of the original patient tumours.
METHODOLOGY/PRINCIPAL FINDINGS: PA exerted selective cytotoxicity on human umbilical vein endothelial cells (HUVECs) with IC(50) value of 6.91 ± 0.85 µM when compared to human normal fibroblast and normal liver epithelial cells. Assessment of the growth kinetics by cell impedance-based Real-Time Cell Analyzer showed that PA induced both cytotoxic and cytostatic effects on HUVECs, depending on the concentration used. Results also showed that PA suppressed VEGF-induced survival and proliferation of HUVECs. Furthermore, endothelial cell migration, invasion, and morphogenesis or tube formation demonstrated significant time- and dose-dependent inhibition by PA. PA also suppressed matrix metalloproteinase-2 (MMP-2) secretion and attenuated its activation to intermediate and active MMP-2. In addition, PA suppressed F-actin stress fiber formation to prevent migration of the endothelial cells. More importantly, anti-angiogenic potential of PA was also evidenced in two in vivo models. PA inhibited neo-vessels formation in murine Matrigel plugs, and angiogenesis in zebrafish embryos.
CONCLUSIONS/SIGNIFICANCE: Taken together, our study demonstrated the distinctive anti-angiogenic properties of PA, both in vitro and in vivo. This report thus reveals another biological activity of PA in addition to its reported anti-inflammatory and anti-cancer activities, suggestive of PA's potential for development as an anti-angiogenic agent for cancer therapy.