Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Abdullah H, Pearson GJ
    Asian J Aesthet Dent, 1993 Jul;1(2):91-4.
    PMID: 7921802
    The effect of temperature change on the working and setting time of a glass ionomer luting cement and a resin luting cement was measured using the oscillating rheometer. The time taken for each cement to set was calculated from the chart recordings. It was observed that as the temperature increased, the working and setting time of both materials decreased. However, the reduction was much more marked for the dual curing resin cement.
    Matched MeSH terms: Magnesium Oxide/chemistry*
  2. Ahmadian A, Bilal M, Khan MA, Asjad MI
    Sci Rep, 2020 Nov 02;10(1):18776.
    PMID: 33139760 DOI: 10.1038/s41598-020-75905-w
    A three dimensional (3D) numerical solution of unsteady, Ag-MgO hybrid nanoliquid flow with heat and mass transmission caused by upward/downward moving of wavy spinning disk has been scrutinized. The magnetic field has been also considered. The hybrid nanoliquid has been synthesized in the presence of Ag-MgO nanoparticles. The purpose of the study is to improve the rate of thermal energy transmission for several industrial purposes. The wavy rotating surface increases the heat transmission rate up to 15%, comparatively to the flat surface. The subsequent arrangement of modeled equations is diminished into dimensionless differential equation. The obtained system of equations is further analytically expounded via Homotopy analysis method HAM and the numerical Parametric continuation method (PCM) method has been used for the comparison of the outcomes. The results are graphically presented and discussed. It has been presumed that the geometry of spinning disk positively affects the velocity and thermal energy transmission. The addition of hybrid nanoparticles (silver and magnesium-oxide) significantly improved thermal property of carrier fluid. It uses is more efficacious to overcome low energy transmission. Such as, it provides improvement in thermal performance of carrier fluid, which play important role in power generation, hyperthermia, micro fabrication, air conditioning and metallurgical field.
    Matched MeSH terms: Magnesium Oxide
  3. Al-Fahdawi MQ, Al-Doghachi FAJ, Abdullah QK, Hammad RT, Rasedee A, Ibrahim WN, et al.
    Biomed Pharmacother, 2021 Jun;138:111483.
    PMID: 33744756 DOI: 10.1016/j.biopha.2021.111483
    The aim of this study was to prepare, characterize, and determine the in vitro anticancer effects of platinum-doped magnesia (Pt/MgO) nanoparticles. The chemical compositions, functional groups, and size of nanoparticles were determined using X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. Pt/MgO nanoparticles were cuboid and in the nanosize range of 30-50 nm. The cytotoxicity of Pt/MgO nanoparticles was determined via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on the human lung and colonic cancer cells (A549 and HT29 respectively) and normal human lung and colonic fibroblasts cells (MRC-5 and CCD-18Co repectively). The Pt/MgO nanoparticles were relatively innocuous to normal cells. Pt/MgO nanoparticles downregulated Bcl-2 and upregulated Bax and p53 tumor suppressor proteins in the cancer cells. Pt/MgO nanoparticles also induced production of reactive oxygen species, decreased cellular glutathione level, and increased lipid peroxidation. Thus, the anticancer effects of Pt/MgO nanoparticles were attributed to the induction of oxidative stress and apoptosis. The study showed the potential of Pt/MgO nanoparticles as an anti-cancer compound.
    Matched MeSH terms: Magnesium Oxide/toxicity*
  4. Alajerami YS, Hashim S, Ramli AT, Saleh MA, Kadni T
    Radiat Prot Dosimetry, 2013 Jun;155(1):1-10.
    PMID: 23193136 DOI: 10.1093/rpd/ncs310
    The thermoluminescent properties of boric glass modified with lithium and potassium carbonates (LKB) and co-doped with CuO and MgO are reported for the first time. Two techniques are applied to investigate the effect of dopants and co-dopants on the thermal stimulation properties of LKB. The induced TL glow curves of a CuO-doped sample are found to be at 220°C with a single peak. An enhancement of about three times is shown with the increment of 0.1 mol % MgO as a co-dopant impurity. This enhancement may contribute to the ability of magnesium to create extra electron traps and consequently the energy transfer to monovalent Cu(+) ions. LKB:Cu,Mg is low Z material (Zeff=8.55), and observed 15 times less sensitive than LiF: Mg, Ti (TLD-100). The proposed dosemeter showed good linearity in TL dose-response, low fading and excellent reproducibility with a simple glow curve, and thus, can be used in the radiation dosimetry.
    Matched MeSH terms: Magnesium Oxide/chemistry*
  5. Almessiere MA, Trukhanov AV, Slimani Y, You KY, Trukhanov SV, Trukhanova EL, et al.
    Nanomaterials (Basel), 2019 Feb 04;9(2).
    PMID: 30720737 DOI: 10.3390/nano9020202
    In this work, Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe₂O₄)x (x = 2, 3, 4, and 5) as strongly exchange-coupled nanosized ferrites were fabricated using a one-pot sol⁻gel combustion method (citrate sol-gel method). The X-ray diffraction (XRD) powder patterns of the products confirmed the occurrence of pure, exchange-coupled ferrites. Frequency dependencies of the microwave characteristics (MW) were investigated using a co-axial method. The non-linear behavior of the MW with the composition transformation may be due to different degrees of Fe ion oxidation on the spinel/hexaferrite grain boundaries and strong exchange coupling during the hard and soft phases.
    Matched MeSH terms: Magnesium Oxide
  6. Bhavani P, Manikandan A, Jaganathan SK, Shankar S, Antony SA
    J Nanosci Nanotechnol, 2018 Feb 01;18(2):1388-1395.
    PMID: 29448597 DOI: 10.1166/jnn.2018.14112
    Undoped and Mn2+ doped CoAl2O4 (MnxCo1-xAl2O4; x = 0.0 to 1.0) spinel nanoparticles were successfully synthesized by a microwave heating method using glycine as the fuel. X-ray powder diffraction (XRD) was confirmed the cubic spinel structure. The average crystallite size of the samples was found to be in the range of 16.46 nm to 20.25 nm calculated by Scherrer's formula. The nano-sized particle-like morphology of the samples was confirmed by high resolution scanning electron microscopy (HR-SEM) and transmission electron microscopy (HR-TEM) analysis. Energy dispersive X-ray (EDX) results showed the pure form of spinel aluminate structure. The band gap energy (Eg) of pure CoAl2O4 was estimated to be 3.68 eV from UV-Visible diffuse reflectance spectroscopy (DRS), and the Eg values increased with increase of Mn2+ ions, due to the smaller grain size. The magnetic hysteresis (M-H) loop showed the superparamagnetic nature, and the magnetization and coercivity values increased with increasing Mn2+ ions, which was confirmed by vibrating sample magnetometer (VSM). All compositions of the nano-catalysts were tested as catalyst successfully for the conversion of benzyl alcohol into benzaldehyde and observed good catalytic activity.
    Matched MeSH terms: Magnesium Oxide
  7. Birgani PM, Ranjbar N, Abdullah RC, Wong KT, Lee G, Ibrahim S, et al.
    J Environ Manage, 2016 Dec 15;184(Pt 2):229-239.
    PMID: 27717677 DOI: 10.1016/j.jenvman.2016.09.066
    Considering the chemical properties of batik effluents, an efficient and economical treatment process was established to treat batik wastewater containing not only high levels of Si and chemical oxygen demand (COD), but also toxic heavy metals. After mixing the effluents obtained from the boiling and soaking steps in the batik process, acidification using concentrated hydrochloric acid (conc. HCl) was conducted to polymerize the silicate under acidic conditions. Consequently, sludge was produced and floated. XRD and FT-IR analyses showed that wax molecules were coordinated by hydrogen bonding with silica (SiO2). The acidification process removed ∼78-95% of COD and ∼45-50% of Si, depending on the pH. In the next stage, magnesium oxide (MgO) was applied to remove heavy metals completely and almost 90% of the Si in the liquid phase. During this step, about 70% of COD was removed in the hydrogel that arose as a consequence of the crosslinking characteristics of the formed nano-composite, such as magnesium silicate or montmorillonite. The hydrogel was composed mainly of waxes with polymeric properties. Then, the remaining Si (∼300 mg/L) in the wastewater combined with the effluents from the rinsing steps was further treated using 50 mg/L MgO. As a final step, palm-shell activated carbon (PSAC) was used to remove the remaining COD to 
    Matched MeSH terms: Magnesium Oxide/chemistry
  8. Dabagh S, Chaudhary K, Haider Z, Ali J
    J Nanosci Nanotechnol, 2019 Jul 01;19(7):4142-4146.
    PMID: 30764983 DOI: 10.1166/jnn.2019.16331
    Aluminium substituted cobalt-copper Co1-xCuxFe2-xAlxO₄, (x ═ 0.8) nanoparticles are grown and sintered at different temperature in the range 600 to 900 °C. XRD analysis on nanoparticles prepared at sintered temperatures of 700 °C and 800 °C confirms the spinel structure and presence of hematite phase (alpha ferrite) in them. The dielectric behaviour of the prepared nano-particles is investigated. Although crystallinity improved with increase in sintering temperature and there was a dielectric loss at higher probe analyser frequency. The synthesized nanoparticles an average particle size of 20-24 nm while the FTIR absorption in regions of 586-595 cm-1 and 450-460 cm-1 indicated the presence of intrinsic vibrations of the tetrahedral and octahedral complexes respectively. Electrical resistivity as a function of temperature confirms the semiconducting nature of the Cu-Al substituted cobalt ferrite, and is attributed to the hopping mechanism between Fe2+ Fe3+ ions and Co2+ Cu2+, Co2+ Al3+. The lower values of dielectric constants and dielectric losses make Al-Cu doped cobalt ferrite, a potential material for microwave and radio wave absorber applications.
    Matched MeSH terms: Magnesium Oxide
  9. Danagody B, Bose N, Rajappan K, Iqbal A, Ramanujam GM, Anilkumar AK
    ACS Biomater Sci Eng, 2024 Jan 08;10(1):468-481.
    PMID: 38078836 DOI: 10.1021/acsbiomaterials.3c00892
    Developing biomaterial scaffolds using tissue engineering with physical and chemical surface modification processes can improve the bioactivity and biocompatibility of the materials. The appropriate substrate and site for cell attachment are crucial in cell behavior and biological activities. Therefore, the study aims to develop a conventional electrospun nanofibrous biomaterial using reproducible surface topography, which offers beneficial effects on the cell activities of bone cells. The bioactive MgO/gC3N4 was incorporated on PAN/PEG and fabricated into a nanofibrous membrane using electrospinning. The nanocomposite uniformly distributed on the PAN/PEG nanofiber helps to increase the number of induced pores and reduce the hydrophobicity of PAN. The physiochemical characterization of prepared nanoparticles and nanofibers was carried out using FTIR, X-ray diffraction (XRD), thermogravimetry analysis (TGA), X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. SEM and TEM analyses examined the nanofibrous morphology and the structure of MgO/gC3N4. In vitro studies such as on ALP activity demonstrated the membrane's ability to regenerate new bone and healing capacity. Furthermore, alizarin red staining showed the increasing ability of the cell-cell interaction and calcium content for tissue regeneration. The cytotoxicity of the prepared membrane was about 97.09% of live THP-1 cells on the surface of the MgO/gC3N4@PAN/PEG membrane evaluated using MTT dye staining. The soil burial degradation analysis exhibited that the maximum degradation occurs on the 45th day because of microbial activity. In vitro PBS degradation was observed on the 15th day after the bulk hydrolysis mechanism. Hence, on the basis of the study outcomes, we affirm that the MgO/gC3N4@PAN/PEG nanofibrous membrane can act as a potential bone regenerative substrate.
    Matched MeSH terms: Magnesium Oxide/pharmacology
  10. Das Arulsamy A, Kregar Z, Eleršič K, Modic M, Subramani US
    Phys Chem Chem Phys, 2011 Sep 7;13(33):15175-81.
    PMID: 21776515 DOI: 10.1039/c1cp20138g
    Hydrogen produced from the photocatalytic splitting of water is one of the reliable alternatives to replace the polluting fossil and the radioactive nuclear fuels. Here, we provide unequivocal evidence for the existence of blue- and red-shifting O-H covalent bonds within a single water molecule adsorbed on the MgO surface as a result of asymmetric displacement polarizabilities. The adsorbed H-O-H on MgO gives rise to one weaker H-O bond, while the other O-H covalent bond from the same adsorbed water molecule compensates this effect with a stronger bond. The weaker bond (nearest to the surface), the interlayer tunneling electrons and the silver substrate are shown to be the causes for the smallest dissociative activation energy on the MgO monolayer. The origin that is responsible to initiate the splitting mechanism is proven to be due to the changes in the polarizability of an adsorbed water molecule, which are further supported by the temperature-dependent static dielectric constant measurements for water below the first-order electronic-phase transition temperature.
    Matched MeSH terms: Magnesium Oxide/chemistry
  11. Fan MS, Abdullah AZ, Bhatia S
    ChemSusChem, 2011 Nov 18;4(11):1643-53.
    PMID: 22191096
    A series of bimetallic catalysts containing nickel supported over MgO-ZrO2 were tested for activity in the dry reforming of carbon dioxide. A nickel-cobalt bimetallic catalyst gave the best performance in terms of conversion and coke resistance from a range of Ni-X bimetallic catalysts, X=Ca, K, Ba, La, and Ce. The nitrogen-adsorption and hydrogen-chemisorption studies showed the Ni-Co bimetallic supported catalyst to have good surface area with high metal dispersion. This contributed to the high catalytic activity, in terms of conversion activity and stability of the catalyst, at an equimolar methane/carbon dioxide feed ratio. The kinetics of methane dry reforming are studied in a fixed-bed reactor over an Ni-Co bimetallic catalyst in the temperature range 700-800 °C by varying the partial pressures of CH4 and CO2. The experimental data were analyzed based on the proposed reaction mechanism using the Langmuir-Hinshelwood kinetic model. The activation energies for methane and carbon dioxide consumption were estimated at 52.9 and 48.1 kJ mol(-1), respectively. The lower value of CO2 activation energy compared to the activation energy of CH4 indicated a higher reaction rate of CO2, which owes to the strong basicity of nanocrystalline support, MgO-ZrO2.
    Matched MeSH terms: Magnesium Oxide/chemistry
  12. Hezaveh H, Muhamad II
    J Mater Sci Mater Med, 2013 Jun;24(6):1443-53.
    PMID: 23515904 DOI: 10.1007/s10856-013-4914-5
    In this study, MgO nanoparticles are applied to control the initial burst release by modification of matrix structure, thereby affecting the release mechanism. The effects of MgO nanofiller loading on the in vitro release of a model drug are investigated. Surface topography and release kinetics of hydrogel nanocomposites are also studied in order to have better insight into the release mechanism. It was found that the incorporation of MgO nanofillers can significantly decrease the initial burst release. The effect of genipin (GN) on burst release was also compared with MgO nanoparticles, and it was found that the impact of MgO on burst release reduction is more obvious than GN; however, GN cross-linking caused greater final release compared to blanks and nanocomposites. To confirm the capability of nanocomposite hydrogels to reduce burst release, the release of β-carotene in Simulated Gastric Fluid and Simulated Intestinal Fluid was also carried out. Thus, the application of MgO nanoparticles seems to be a promising strategy to control burst release.
    Matched MeSH terms: Magnesium Oxide/chemistry*
  13. Hezaveh H, Muhamad II
    Int J Biol Macromol, 2012 Jun 1;50(5):1334-40.
    PMID: 22484730 DOI: 10.1016/j.ijbiomac.2012.03.017
    In this article, modified κ-carrageenan hydrogel nanocomposites were synthesized to increase the release ability of carrageenan hydrogels under gastrointestinal conditions. The effect of MgO nanoparticle loading in a model drug (methylene blue) release is investigated. Characterization of hydrogels were carried out using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Differential Scanning Calorimetry (DSC). Genipin was used to increase the delivery performance in gastrointestinal tract delivery by decreasing release in simulated stomach conditions and increasing release in simulated intestine conditions. It is shown that the amount of methylene blue released from genipin-cross-linked nanocomposites can be 67.5% higher in intestine medium and 56% lower in the stomach compared to κ-carrageenan hydrogel. It was found that by changing the nanoparticle loading and genipin concentration in the composite, the amount of drug released can be monitored. Therefore, applying nanoparticles appears to be a potential strategy to develop controlled drug delivery especially in gastrointestinal tract studies.
    Matched MeSH terms: Magnesium Oxide/chemistry
  14. Islam A, Hwa Teo S, Awual MR, Taufiq-Yap YH
    Sci Rep, 2020 Feb 11;10(1):2324.
    PMID: 32047187 DOI: 10.1038/s41598-020-59325-4
    Since the complexity of photocatalyst synthesis process and high cost of noble cocatalyst leftovers a major hurdle to producing hydrogen (H2) from water, a noble metal-free Ni-Si/MgO photocatalyst was realized for the first time to generate H2 effectively under illumination with visible light. The catalyst was produced by means of simple one-pot solid reaction using self-designed metal reactor. The physiochemical properties of photocatalyst were identified by XRD, FESEM, HRTEM, EDX, UV-visible, XPS, GC and PL. The photocatalytic activities of Ni-Si/MgO photocatalyst at different nickel concentrations were evaluated without adjusting pH, applied voltage, sacrificial agent or electron donor. The ultrathin-nanosheet with hierarchically porous structure of catalyst was found to exhibit higher photocatalytic H2 production than hexagonal nanorods structured catalyst, which suggests that the randomly branched nanosheets are more active surface to increase the light-harvesting efficiency due to its short electron diffusion path. The catalyst exhibited remarkable performance reaching up to 714 µmolh-1 which is higher among the predominant semiconductor catalyst. The results demonstrated that the photocatalytic reaction irradiated under visible light illumination through the production of hydrogen and hydroxyl radicals on metals. The outcome indicates an important step forward one-pot facile approach to prepare noble ultrathin photocatalyst for hydrogen production from water.
    Matched MeSH terms: Magnesium Oxide
  15. Jeevanandam J, Chan YS, Danquah MK, Law MC
    Appl Biochem Biotechnol, 2020 Apr;190(4):1385-1410.
    PMID: 31776944 DOI: 10.1007/s12010-019-03166-z
    Insulin resistance is one of the major factors that leads to type 2 diabetes. Although insulin therapies have been shown to overcome insulin resistance, overweight and hypoglycemia are still observed in most cases. The disadvantages of insulin therapies have driven the interest in developing novel curative agents with enhanced insulin resistance reversibility. Magnesium deficiency has also been recognized as a common problem which leads to insulin resistance in both type 1 and 2 diabetes. Oxide nanoparticles demonstrate highly tunable physicochemical properties that can be exploited by engineers to develop unique oxide nanoparticles for tailored applications. Magnesium supplements for diabetic cells have been reported to increase the insulin resistance reversibility. Hence, it is hypothesized that magnesium oxide (MgO) nanoparticles could be molecularly engineered to offer enhanced therapeutic efficacy in reversing insulin resistance. In the present work, morphologically different MgO nanoparticles were synthesized and evaluated for biophysical characteristics, biocompatibility, cytotoxicity, and insulin resistance reversibility. MTT assay revealed that hexagonally shaped MgO nanoparticles are less toxic to 3T3-L1 adipose cells (diabetic) compared with spherically and rod-shaped MgO nanoparticles. MTT assays using VERO cells (normal, non-diabetic) showed that 400 μg/ml of hexagonal MgO nanoparticles were less toxic to both diabetic and non-diabetic cells. DNS glucose assay and western blot showed that hexagonally shaped MgO nanoparticles had reversed 29.5% of insulin resistance whilst fluorescence microscopy studies indicated that the insulin resistance reversal is due to the activation of intracellular enzymes. The probable mechanism for MgO nanoparticles to induce cytotoxic effect and insulin resistance reversal is discussed.
    Matched MeSH terms: Magnesium Oxide/chemistry*
  16. Khalajabadi SZ, Abu ABH, Ahmad N, Yajid MAM, Hj Redzuan NB, Nasiri R, et al.
    J Mech Behav Biomed Mater, 2018 Jan;77:360-374.
    PMID: 28985616 DOI: 10.1016/j.jmbbm.2017.09.032
    This study was aimed to improve of the corrosion resistance and mechanical properties of Mg/15TiO2/5HA nanocomposite by silicon and magnesium oxide coatings prepared using a powder metallurgy method. The phase evolution, chemical composition, microstructure and mechanical properties of uncoated and coated samples were characterized. Electrochemical and immersion tests used to investigate the in vitro corrosion behavior of the fabricated samples. The adhesion strength of ~36MPa for MgO and ~32MPa for Si/MgO coatings to substrate was measured by adhesion test. Fabrication a homogenous double layer coating with uniform thicknesses consisting micro-sized particles of Si as outer layer and flake-like particles of MgO as the inner layer on the surface of Mg/15TiO2/5HA nanocomposite caused the corrosion resistance and ductility increased whereas the ultimate compressive stress decreased. However, after immersion in SBF solution, Si/MgO-coated sample indicates the best mechanical properties compared to those of the uncoated and MgO-coated samples. The increase of cell viability percentage of the normal human osteoblast (NHOst) cells indicates the improvement in biocompatibility of Mg/15TiO2/5HA nanocomposite by Si/MgO coating.
    Matched MeSH terms: Magnesium Oxide/chemistry*
  17. Khan SA, Mohd Zain Z, Siddiqui Z, Khan W, Aabid A, Baig M, et al.
    PLoS One, 2024;19(1):e0296793.
    PMID: 38227597 DOI: 10.1371/journal.pone.0296793
    Ceramics are the oxides of metals and nonmetals with excellent compressive strength. Ceramics usually exhibit inert behavior at high temperatures. Magnesium aluminate (MgAl2O4), a member of the ceramic family, possesses a high working temperature up to 2000°C, low thermal conductivity, high strength even at elevated temperatures, and good corrosion resistance. Moreover, Magnesium Aluminate Nanoparticles (MANPs) can be used in the making of refractory crucible applications. This study focuses on the thermal behavior of Magnesium Aluminate Nanoparticles (MANPs) and their application in the making of refractory crucibles. The molten salt method is used to obtain MANPs. The presence of MANPs is seen by XRD peaks ranging from 66° to 67°. The determination of the smallest crystallite size of the sample is achieved by utilizing the Scherrer formula and is found to be 15.3 nm. The SEM micrographs provided further information, indicating an average particle size of 91.2 nm. At 600°C, DSC curves show that only 0.05 W/g heat flows into the material, and the TGA curve shows only 3% weight loss, which is prominent for thermal insulation applications. To investigate the thermal properties, crucibles of pure MANPs and the different compositions of MANPs and pure alumina are prepared. During the sintering, cracks appear on the crucible of pure magnesium aluminate. To explore the reason for crack development, tablets of MgAl2O4 are made and sintered at 1150°C. Ceramography shows the crack-free surfaces of all the tablets. Results confirm the thermal stability of MANPs at high temperatures and their suitability for melting crucible applications.
    Matched MeSH terms: Magnesium Oxide
  18. Moogi S, Jang SH, Rhee GH, Ko CH, Choi YJ, Lee SH, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132224.
    PMID: 34826918 DOI: 10.1016/j.chemosphere.2021.132224
    Food waste, a renewable resource, was converted to H2-rich gas via a catalytic steam gasification process. The effects of basic oxides (MgO, CaO, and SrO) with 10 wt% Ni/Al2O3 on the gasification properties of food waste were investigated using a U-shaped gasifier. All catalysts prepared by the precipitation method were analyzed by X-ray diffraction, H2-temperature-programmed reduction, NH3-temperature-programmed desorption, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The Ni/Al2O3 catalyst was reduced incompletely, and low nickel concentrations were detected on the surface of the alumina. The basic oxides minimized the number of acid sites and suppressed the formation of nickel-aluminate (NiAlxOy) phase in catalyst. In addition, the basic oxides shifted nickel-aluminate reduction reaction to lower temperatures. It resulted in enhancing nickel concentration on the catalyst surface and increasing gas yield and hydrogen selectivity. The low gas yield of the Ni/Al2O3 catalyst was attributed to the low nickel concentration on the surface. The maximum gas yield (66.0 wt%) and hydrogen selectivity (63.8 vol%) of the 10 wt% SrO- 10 wt% Ni/Al2O3 catalyst correlated with the highly dispersed nickel on the surface and low acidity. Furthermore, coke deposition during steam gasification varied with the surface acidity of the catalysts and less coke was formed on 10 wt% SrO- 10 wt% Ni/Al2O3 due to efficient tar cracking. This study showed that the steam gasification efficiency of the Ni/Al2O3 catalyst could be improved significantly by the addition of SrO.
    Matched MeSH terms: Magnesium Oxide
  19. Nik Nur Syafika Pahri, Nur Huda Syazwani Jafri, Husna Ahmad Tajuddin, Yusilawati Ahmad Nor
    MyJurnal
    Effective treatment of wastewater is crucial in order to achieve a sustainable development. For instance, highly efficient treatment processes with low capital requirements are the major prerequisite for implementation of the advanced wastewater treatment operations. Among various available treatment methods, the application of coagulation-flocculation process by using natural coagulant; chitosan has vast advantages such as low operating cost, environmental friendly and highly effective in the wastewater treatment operations. The application of nanotechnology in numerous treatment techniques are considered as the most significant advances in water and wastewater treatment practices. The utilization of magnesium oxide (MgO) as nano-adsorbent has recently gained attention as a potential treatment method in water remediation particularly for treating effluents with high amount of organic dyes and heavy metals due to its high treatment efficiency, low cost, versatility and environment compatibility. The purpose of this study was to determine the effectiveness of coagulation-flocculation process when using novel coagulant in which MgO coated with chitosan by investigating the percentage removal of several significant parameters which were turbidity, chemical oxygen demand (COD) and suspended solid. The removal efficiencies were determined throughout a series of experiments carried out using a standard jar test procedure in which three different coagulants; chitosan, MgO coated with chitosan and MgO were tested on water samples taken from Sg. Pusu. In addition, a set of experiments was designed using response surface methodology (RSM) in order to optimize adsorption of chitosan into MgO. The experiments were conducted at various concentrations of chitosan (10-30 mg/ml) and selected MgO dosage ranges (10-30 mg). From the obtained results, it was found that chitosan-MgO coagulant has good removal efficiencies of turbidity, chemical oxygen demand (COD) and suspended solids at 92%, 91%, and 98% respectively from the optimization of adsorption of chitosan-MgO. The MgO coated with chitosan is the best coagulant in this study compared to chitosan and MgO alone because of the ability of treating the river water with up to 90 % removal for all the main parameters. The results showed that coagulation-flocculation is effective as a treatment for treating river water.
    Matched MeSH terms: Magnesium Oxide
  20. Pan GT, Chong S, Yang TC, Huang CM
    Materials (Basel), 2017 Mar 31;10(4).
    PMID: 28772727 DOI: 10.3390/ma10040370
    Mesoporous Mn1.5Co1.5O₄ (MCO) spinel films were prepared directly on a conductive nickel (Ni) foam substrate via electrodeposition and an annealing treatment as supercapacitor electrodes. The electrodeposition time markedly influenced the surface morphological, textural, and supercapacitive properties of MCO/Ni electrodes. The (MCO/Ni)-15 min electrode (electrodeposition time: 15 min) exhibited the highest capacitance among three electrodes (electrodeposition times of 7.5, 15, and 30 min, respectively). Further, an asymmetric supercapacitor that utilizes (MCO/Ni)-15 min as a positive electrode, a plasma-treated activated carbon (PAC)/Ni electrode as a negative electrode, and carboxymethyl cellulose-lithium nitrate (LiNO₃) gel electrolyte (denoted as (PAC/Ni)//(MCO/Ni)-15 min) was fabricated. In a stable operation window of 2.0 V, the device exhibited an energy density of 27.6 Wh·kg-1 and a power density of 1.01 kW·kg-1 at 1 A·g-1. After 5000 cycles, the specific energy density retention and power density retention were 96% and 92%, respectively, demonstrating exceptional cycling stability. The good supercapacitive performance and excellent stability of the (PAC/Ni)//(MCO/Ni)-15 min device can be ascribed to the hierarchical structure and high surface area of the (MCO/Ni)-15 min electrode, which facilitate lithium ion intercalation and deintercalation at the electrode/electrolyte interface and mitigate volume change during long-term charge/discharge cycling.
    Matched MeSH terms: Magnesium Oxide
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links