Displaying publications 1 - 20 of 311 in total

Abstract:
Sort:
  1. Zarina O, Radzali O
    Med J Malaysia, 2004 May;59 Suppl B:160-1.
    PMID: 15468867
    Hydroxyapatite powder was mechanochemically synthesized from calcium pyrophosphate (Ca2P2O7) and calcium carbonate (CaCO3) using a solid-state reaction. The two powders were mixed in distilled water, milled for 8 hours, dried and calcined at 1100 degrees C for 1 hour. The phase(s) formed was analyzed by x-ray diffraction (XRD). It was found that hydroxyapatite was not the only one formed. This result will be used as the starting point to produce a single-phase hydroxyapatite in terms of excess hydroxyl group in a mechanochemical reaction.
    Matched MeSH terms: Nanostructures*
  2. Tan SA, Ahmad Fauzi MN, Luay BH, Radzali O
    Med J Malaysia, 2004 May;59 Suppl B:162-3.
    PMID: 15468868
    In this work, nanometer HA crystals have been synthesized via wet chemical precipitation and characterized. This research studies how key synthesis parameters affect the size and phase purity of the produced HA. Characterization work was carried out using X-ray powder diffraction method and scanning electron microscopy for phase identification and particle sizing, respectively.
    Matched MeSH terms: Nanostructures*
  3. Gaber NN, Darwis Y, Peh KK, Tan YT
    J Nanosci Nanotechnol, 2006 10 20;6(9-10):3095-101.
    PMID: 17048523
    The potential of using poly-(ethylene oxide)-block-distearoyl phosphatidyl-ethanolamine (mPEG-DSPE) polymer to prepare BDP-loaded micelles with high entrapment efficiency and mass median aerodynamic diameter of less than 5 microm demonstrating sustained release properties was evaluated. The result showed that lyophilized BDP-loaded polymeric micelles with entrapment efficiency of more than 96% could be achieved. Entrapment efficiency was affected by both the drug to polymer molar ratio and the amount of drug used. Investigation using FTIR and DSC confirmed that there was no chemical or physical interaction and the drug was molecularly dispersed within the micelles. TEM images showed that the drug-loaded polymeric micelles were spherical in shape with multivesicular morphology. Further analysis by photon correlation spectroscopy indicated that the particle size of the BDP-loaded micelles was about 22 nm in size. In vitro drug release showed a promising sustained release profile over six days following the Higuchi model. The mass median aerodynamic diameter and fine particle fraction were suitable for pulmonary delivery. Moreover, the small amount of deposited drug in the induction port (throat deposition) suggested possible reduction in incidence of oropharyngeal candidiasis, a side effect normally associated with inhaled corticosteroids therapy. The high encapsulation efficiency, comparable inhalation properties, sustained release behavior together with biocompatibility nature of the polymer support the potential of BDP-loaded polymeric micelles as a versatile delivery system to be used in the treatment of asthma and chronic obstructive pulmonary disease.
    Matched MeSH terms: Nanostructures/chemistry*
  4. Ahmad AL, Abd Shukor SR, Leo CP
    J Nanosci Nanotechnol, 2006 Dec;6(12):3910-4.
    PMID: 17256351
    Polymeric vanadium pentoxide gel was formed via the reaction of V2O5 powder with hydrogen peroxide. The polymeric vanadium pentoxide gel was then dispersed in alumina gel. Different vanadium loading composites were coated on alumina support and calcined at 500 degrees C for 1 hr. These composite layers were characterized using TGA, FT-IR, XRD, SEM, and Autosorb. It was found that the lamellar structure of polymerized vanadium pentoxide was retained in the inorganic matrix. Crystalline alumina in gamma phase was formed after calcinations. However, the vanadium-alumina mixed oxides are lack of the well defined PXRD peaks for polycrystalline V2O5. This is possibly because the vanadia species are highly dispersed in the alumina matrix or the vanadia species are dispersed as crystalline which is smaller than 4 nm. In addition, the imbedded polymeric vanadium oxide improved the specific area and average pore diameter of the composite layer.
    Matched MeSH terms: Nanostructures/ultrastructure*; Nanostructures/chemistry*
  5. Tabet, Tamer A., Fauziah Abdul Aziz, Shahidan Radiman
    MyJurnal
    Small-angle X-ray scattering (SAXS) was used to investigate the nanostructure of the microfibrils of cell wall in Acacia Mangium wood. Parameters, such as the fibre length (L), surface area of the single fibre (S), the correspondence distance from the center of the fibre to the center of its neighbor and the shape of the fibre were determined as a function to the distance from pith towards the bark. The results indicate that the fibre length ranged from 53.44 nm to 13.72 nm from pith to bark. Surface area of the single fibre varied from 0.65 nm 2 to 4.36 nm 2 , the highest being found at the end of bark region. The mean value of the correspondence distance is 13.95 nm. Surface structure analysis from scattering graph showed a rod shape of fibre in the pith region of Acacia Mangium wood. The use of SAXS technique and scanning electron microscope (SEM) micrographs gives the most reliable dimensions values.
    Matched MeSH terms: Nanostructures
  6. Hussein MZ, Nasir NM, Yahaya AH
    J Nanosci Nanotechnol, 2008 Nov;8(11):5921-8.
    PMID: 19198327
    Metanilate-layered double hydroxide nanohybrid compound was synthesized for controlled release purposes through co-precipitation method of the metal cations and organic anion. The effect of various divalent metal cations (M2+), namely Zn2+, Mg2+ and Ca2+ on the formation of metanilate-LDH nanohybrids, in which metanilate anion was intercalated into three different layered double hydroxide (LDH) systems; Zn-Al, Mg-Al and Ca-Al were investigated. The syntheses were carried out with M2+ to Al3+ initial molar ratio, R of 4. The pH of the mother liquor was maintained at pH 7.5 and 10 during the synthesis, and the resulting mixture was aged at around 70 degrees C for about 18 h. The intercalation of metanilate anion into the host was found to be strongly influenced by the M2+ that formed the inorganic metal hydroxide layers. Under our experimental condition, the formation of the nanohybrid materials was found to be more feasible for the Zn-Al than for the other two systems, in which the former showed well-ordered layered organic-inorganic nanohybrid structure with good crystallinity. Intercalation is confirmed by the expansion of the interlayer spacing to about 15-17 A when metanilate was introduced into the interlamellae of Zn-Al LDHs. In addition, CHNS and FTIR analyses also support that metanilate anion has been successfully intercalated into the interlamellae of the inorganic LDH. Apart from M2+, this study also shows that the initial pH of the mother liquor plays an important role in determining the physicochemical properties of the resulting nanohybrids, especially the mole fraction of the Zn2+ substituted by the Al3+ ion in the LDH inorganic sheets which in turn controlled the loading percentage of the organic anion, surface properties and the true density. Preliminary study shows that LDH can be used to host beneficial guests, active agent with controlled release capability of the guests. Generally the overall process is governed by pseudo second order kinetic but for the first 180 min, the release process can be slightly better described by parabolic diffusion than the other models.
    Matched MeSH terms: Nanostructures/ultrastructure*; Nanostructures/chemistry*
  7. Chai, S.P., Zein, S.H.S., Mohamed, A.R.
    ASM Science Journal, 2008;2(1):57-64.
    MyJurnal
    Since the discovery of carbon nanotubes (CNTs) in 1991, a fundamental question still remained on how to control morphologically the synthesis of CNTs. This task has always been a challenge. In this paper, we report the results that we have published previously with the aim of sharing the possible controlled synthesis approach via this novel production method. Findings demonstrated that various CNTs could be synthesized by using specially developed supported catalysts from the catalytic decomposition of methane. These synthesized CNTs include carbon nanofibres, single-walled and multi-walled CNTs, Y-junction CNTs and CNTs with special morphologies. It was also revealed that catalyst composition and reaction parameters played an important role in controlling the morphology and type of CNTs formed. The synthesis of CNTs with various morphologies is important because this can enrich the nanostructures of the carbon family. This finding also provides useful data for better understanding of the parameters that govern the growth mechanism of CNTs which may be required in the near future for enhanced controlled synthesis of CNTs.
    Matched MeSH terms: Nanostructures
  8. Hutagalung SD, Darsono T, Khatijah A. Yaacob
    Atomic force microscopes (AFM) as one of the scanning probe microscopy (spm) modes have become useful tools, not only for observing surface morphology and nanostructure topography but also for fabrication of various nanostructures itself. In this work, silicon oxide (SiOx) patterns were formed on Si(100) surface by means of AFM anodization, where a non-contact mode used to oxidize Si wafer at the nanoscale size. The oxide patterns could serve as masks for the chemical etching of Si surface in alkaline solution in order to create the Si nanodots. A special attention is paid to finding relations between the size of dots and operational parameters as tip bias voltage and tip writing speed Dot arrays with 10 nm high and less than 50 nm in diameter have been successfully fabricated. The ability to control oxidation and scanning speed can be utilized in fabrication of complex nanostructures and make scanning probe lithography (SPL) as a very promising lithographic technique in nanoelectronic devices, nanophotonics and other high-tech areas.
    Matched MeSH terms: Nanostructures
  9. Al-Edresi S, Baie S
    Int J Pharm, 2009 May 21;373(1-2):174-8.
    PMID: 19429303 DOI: 10.1016/j.ijpharm.2009.02.011
    Virgin coconut oil (VCO)-in-water, nano-emulsion in the form of cream stabilized by Emulium Kappa as an emulsifier, was prepared by using the Emulsion Inversion Point method. A nano-emulsion with droplet size <300 nm was then obtained. VCO has recently become a more popular new material in the cosmetic industries. Emulium Kappa is an ionic emulsifier that contains sodium stearoyl lactylate, the active whitening ingredient was Kojic Dipalmitate. Ostwald ripening is the main destabilizing factor for the nano-emulsion. This decline can be reduced by adding non-soluble oil, namely squalene, to the virgin coconut oil. We tested VCO:squalene in the ratios of 10:0, 9.8:0.2, 9.6:0.4, 9.4:0.6, 9.2:0.8, 9:1 and 8:2 and discovered that squalene's higher molecular weight (above critical molecular weight) resulted in low polarity and insolubility in the continuous phase. The continuous partitioning between the droplets results in the decline of Ostwald ripening. Furthermore, flocculation may occur due to the instability of nano-emulsion, especially for the preparations with little or no squalene at all. The stability of the nano-emulsion was evaluated by the electrophoretic properties of the emulsion droplets. The zeta potential values for the emulsion increased as the percentage of squalene oil increased.
    Matched MeSH terms: Nanostructures/chemistry*
  10. Hussein MZ, Azmin WH, Mustafa M, Yahaya AH
    J Inorg Biochem, 2009 Aug;103(8):1145-50.
    PMID: 19577306 DOI: 10.1016/j.jinorgbio.2009.05.016
    Currently the development of green chemistry approach with the use of biomaterial-based activities of microbial cells in the synthesis of various nanostructures has attracted a great attention. In this study, we report on the use of bacterium, Bacillus cereus as a biotemplating agent for the formation of zinc oxide nanoparticles with raspberry- and plate-like structures through a simple thermal decomposition of zinc acetate by maintaining the original pH of the reaction mixtures. Possible mechanism on the formation of the nanostructures is proposed based on the surface chemistry and biochemistry processes involved organic-inorganic interactions between zinc oxide and the microbial cells.
    Matched MeSH terms: Nanostructures/ultrastructure*
  11. Hutagalung, Sabar D., Eng, Siew T., Zainal A. Ahmad, Ishak Mat, Yussof Wahab
    MyJurnal
    One-dimensional nanostructure materials are very attractive because of their electronic and optical properties depending on their size. It is well known that properties of material can be tuned by reducing size to nanoscale because at the small sizes, that they behave differently with its bulk materials and the band gap will control by the size. The tunability of the band gap makes nanostructured materials useful for many applications. As one of the wide band gaps semiconductor compounds, zinc selenide (ZnSe) nanostructures (nanoparticles, nanowires, nanorods) have received much attention for the application in optoelectronic devices, such as blue laser diode, light emitting diodes, solar cells and IR optical windows. In this study, ZnSe nanostructures have been synthesized by reduction process of zinc selenate using hydrazine hydrate (N2H4.2H2O). The reductive agent of hydrazine hydrate was added to the starting materials of zinc selenate were heat treated at 500 o C for 1 hour under argon flow to form onedimensional nanostructures. The SEM and TEM images show the formation of nanocompositelike structures, which some small nanobars and nanopellets stick to the rod. The x-ray diffraction and elemental composition analysis confirm the formation of mixture zinc oxide and zinc selenide phases.
    Matched MeSH terms: Nanostructures
  12. Aspaniza Ahmad, Hutagalung, Sabar D.
    MyJurnal
    Silicon nanostructures have successfully been synthesized by thermal evaporation technique using nickel catalyst. Silicon powder served as starting source material was evaporated at high temperature (900-1100°C) in inert carrier gas. The grown silicon nanostructures were collected on (111) silicon substrate surface that positioned at varied location from source material. By controlling heating rate, gas flow rate, growth temperature and time, substrate position and location; to the optimum condition produced the best quality at silicon nanostructures. In this work, the best parameter to produce silicon nanostructures is system ramping up 1000°C at 20°C/min heating rate, N2 flow at 100ml/min; silicon needle-like one dimensional silicon nanostructures growth on vertically-positioned substrate located at 12cm from source material for 1 hour growth time. The effects of these parameters on the structures and physical of nanostructures were characterized by field emission scanning electron microscope and x-ray diffraction.
    Matched MeSH terms: Nanostructures
  13. Mohd. Azam Mohd. Adnan, Cheong, K.Y., Hutagalung, Sabar D.
    MyJurnal
    Silicon nanowires were synthesized on Si substrates (111) via thermal evaporation using AuPd thin layer catalyst. Pre cleaned of Si wafer was used as a substrate to assemble the nanostructure products. In this work, the effect of growth temperature that ranging from 800 to 1000°C on the formation of silicon nanowires studied extensively. X-ray diffraction and field emission scanning electron microscope were employed to characterize the structures and morphology of nanowires. Vertical aligned silicon nanowires have been successfully grown on Si substrates at 900 and 1000°C. At 1100°C, the high aspect ratio of silicon nanowires can be produced but the formation density is low. The presence of AuPd catalyst on the tip of nanowires, it is expected that VLS is the most suitable to explain the growth mechanism of obtained SiNWs. The crystalline structure of SiNWs was proved by XRD data.
    Matched MeSH terms: Nanostructures
  14. Abu Hassan LH
    Silicon nanomaterial was prepared using the peroxide/acid/salt technique in which an aqueous silicon-based salt solution was added to H2O2/HF etchants. In order to optimize the experimental conditions for silicon nanomaterial production, the amount of nanomaterial produced was studied as a function of the volume of the silicon salt solution used in the synthesis. A set of samples was prepared using: 0, 5, 10, 15, and 20 mL of an aqueous 1 mg/L metasilicate solution. The area under the corresponding peaks in the infrared (ir) absorption spectra was used as a qualitative indicator to the amount of the nanomaterial present. The results indicated that using 10 mL of the metasilicate solution produced the highest amount of nanomaterial. Furthermore, the results demonstrated that the peroxide/acid/salt technique results in the enhancement of the production yield of silicon nanomaterial at a reduced power demand and with a higher material to void ratio. A model in which the silicon salt forms a secondary source of silicon nanomaterial is proposed. The auxiliary nanomaterial is deposited into the porous network causing an increase in the amount of nanomaterial produced and a reduction in the voids present. Thus a reduction in the resistance of the porous layer, and consequently reduction in the power required, are expected.
    Matched MeSH terms: Nanostructures
  15. Ali N, Halim NS, Jusoh A, Endut A
    Bioresour Technol, 2010 Mar;101(5):1459-65.
    PMID: 19786347 DOI: 10.1016/j.biortech.2009.08.070
    The focus of this research is to study the potential of nanofiltration membrane technology in removing ammonia-nitrogen from the aquaculture system. One of the major fabrication parameters that directly affect the separation performance is shear rate or casting rate during membrane fabrication. In this study, asymmetric polyethersulfone (PES) nanofiltration membranes were prepared at five different shear rates within the range of 67-400 s(-1). Membrane productivity and separation performance were assessed via pure water, salt and ammonia-nitrogen permeation experiments, and their structural properties were determined by employing the combination of the irreversible thermodynamic (IT) model, solution diffusion model, steric hindrance pore (SHP) model and Teorell-Meyers (TMS) model. The study reveals that the alteration of shear rate enormously affects the membrane morphology and structural parameters, hence subsequently significantly influencing the membrane performance. It was found that, membrane produced at the shear rate 200 s(-1) or equivalent to 10s of casting speed during membrane fabrications managed to remove about 68% of ammonia-nitrogen, in which its separation performance is the most favourable by means of highest flux and rejection ability towards unwanted solutes. Besides, from the research findings, nano-membrane technology is a potential candidate for the treatment of aquaculture wastewater.
    Matched MeSH terms: Nanostructures/chemistry
  16. Kamaruddin SA, Chan KY, Sahdan MZ, Rusop M, Saim H
    J Nanosci Nanotechnol, 2010 Sep;10(9):5618-22.
    PMID: 21133082
    Zinc oxide (ZnO) is an emerging material in large area electronic applications such as thin-film solar cells and transistors. We report on the fabrication and characterization of ZnO microstructures and nanostructures. The ZnO microstructures and nanostructures have been synthesized using sol-gel immerse technique on oxidized silicon substrates. Different precursor's concentrations ranging from 0.0001 M to 0.01 M (M=molarity) using zinc nitrate hexahydrate [Zn(NO3)2. 6H2O] and hexamethylenetetramine [C6H12N4] were employed in the synthesis of the ZnO structures. The surface morphologies were examined using scanning electron microscope (SEM) and atomic force microscope (AFM). In order to investigate the structural properties, the ZnO microstructures and nanostructures were measured using X-ray diffractometer (XRD). The optical properties of the ZnO structures were measured using photoluminescence (PL) and ultraviolet-visible (UV-Vis) spectroscopies.
    Matched MeSH terms: Nanostructures
  17. Abdulkarim MF, Abdullah GZ, Chitneni M, Salman IM, Ameer OZ, Yam MF, et al.
    Int J Nanomedicine, 2010 Nov 04;5:915-24.
    PMID: 21116332 DOI: 10.2147/IJN.S13305
    INTRODUCTION: During recent years, there has been growing interest in use of topical vehicle systems to assist in drug permeation through the skin. Drugs of interest are usually those that are problematic when given orally, such as piroxicam, a highly effective anti-inflammatory, anti-pyretic, and analgesic, but with the adverse effect of causing gastrointestinal ulcers. The present study investigated the in vitro and in vivo pharmacodynamic activity of a newly synthesized palm oil esters (POEs)-based nanocream containing piroxicam for topical delivery.

    METHODS: A ratio of 25:37:38 of POEs: external phase: surfactants (Tween 80:Span 20, in a ratio 80:20), respectively was selected as the basic composition for the production of a nanocream with ideal properties. Various nanocreams were prepared using phosphate-buffered saline as the external phase at three different pH values. The abilities of these formulae to deliver piroxicam were assessed in vitro using a Franz diffusion cell fitted with a cellulose acetate membrane and full thickness rat skin. These formulae were also evaluated in vivo by comparing their anti-inflammatory and analgesic activities with those of the currently marketed gel.

    RESULTS: After eight hours, nearly 100% of drug was transferred through the artificial membrane from the prepared formula F3 (phosphate-buffered saline at pH 7.4 as the external phase) and the marketed gel. The steady-state flux through rat skin of all formulae tested was higher than that of the marketed gel. Pharmacodynamically, nanocream formula F3 exhibited the highest anti- inflammatory and analgesic effects as compared with the other formulae.

    CONCLUSION: The nanocream containing the newly synthesized POEs was successful for trans-dermal delivery of piroxicam.

    Matched MeSH terms: Nanostructures/administration & dosage*; Nanostructures/chemistry*
  18. Sakeena MH, Yam MF, Elrashid SM, Munavvar AS, Azmin MN
    J Oleo Sci, 2010;59(12):667-71.
    PMID: 21099145
    Ketoprofen is a potent non-steroidal anti-inflammatory drug has been used in the treatment of various kinds of pains, inflammation and arthritis. However, oral administration of ketoprofen produces serious gastrointestinal adverse effects. One of the promising methods to overcome these adverse effects is to administer the drug through the skin. The aim of the present work is to evaluate the anti-inflammatory and analgesic effects from topically applied ketoprofen entrapped palm oil esters (POEs) based nanoemulsion and to compare with market ketoprofen product, Fastum(®) gel. The novelty of this study is, use of POEs for the oil phase of nanoemulsion. The anti-inflammatory and analgesic studies were performed on rats by carrageenan-induced rat hind paw edema test and carrageenan-induced hyperalgesia pain threshold test to compare the ketoprofen entrapped POEs based nanoemulsion formulation and market formulation. Results indicated that there are no significant different between ketoprofen entrapped POEs nanoemulsion and market formulation in carrageenan-induced rat hind paw edema study and carrageenan-induced hyperalgesia pain threshold study. However, it shows a significant different between POEs nanoemulsion formulation and control group in these studies at p<0.05. From these results it was concluded that the developed nanoemulsion have great potential for topical application of ketoprofen.
    Matched MeSH terms: Nanostructures/chemistry*
  19. Yahya N, Al Habashi RM, Koziol K, Borkowski RD, Akhtar MN, Kashif M, et al.
    J Nanosci Nanotechnol, 2011 Mar;11(3):2652-6.
    PMID: 21449447
    Aluminum substituted yttrium iron garnet nano particles with compositional variation of Y(3.0-x) A1(x)Fe5O12, where x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were prepared using sol gel technique. The X-ray diffraction results showed that the best garnet phase appeared when the sintering temperature was 800 degrees C. Nano-crystalline particles with high purity and sizes ranging from 20 to 100 nm were obtained. It was found that the aluminum substitution had resulted in a sharp fall of the d-spacing when x = 2, which we speculated is due to the preference of the aluminum atoms to the smaller tetrahedron and octahedron sites instead of the much larger dodecahedron site. High resolution transmission electron microscope (HRTEM) and electron diffraction (ED) patterns showed single crystal nanoparticles were obtained from this method. The magnetic measurement gave moderate values of initial permeability; the highest value of 5.3 was shown by sample Y3Fe5O12 at more than 100 MHz which was attributed to the morphology of the microstructure which appeared to be homogeneous. This had resulted in an easy movement of domain walls. The substitution of aluminum for yttrium is speculated to cause a cubic to rhombodedral structural change and had weakened the super-exchange interactions thus a fall of real permeability was observed. This might have created a strain in the sub-lattices and had subsequently caused a shift of resonance frequencies to more than 1.8 GHz when x > 0.5.
    Matched MeSH terms: Nanostructures/ultrastructure*; Nanostructures/chemistry*
  20. Low PL, Yong BE, Ong BH, Matsumoto M, Tou TY
    J Nanosci Nanotechnol, 2011 Mar;11(3):2640-3.
    PMID: 21449444
    The substrate effects on surface morphologies, crystal structures, and magnetic properties of the sputter-deposited FePt thin films on Corning 1737, normal glass, and Si wafer substrates, respectively, were investigated. High in-plane coercivities of 10 kOe were obtained for the air-annealed films on Corning 1737 and Si wafer, where both films similarly have granular-like morphologies. Besides, increasing grain size and surface roughness of all the FePt films with the post-anneal temperature were observed. Moreover, partially separated grains were seen in the film on Si wafer, where the formation of Fe silicides during post-anneal is suspected, in which has enhanced the magnetic ordering.
    Matched MeSH terms: Nanostructures/ultrastructure*; Nanostructures/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links