One-dimensional nanostructure materials are very attractive because of their electronic and optical properties depending on their size. It is well known that properties of material can be tuned by reducing size to nanoscale because at the small sizes, that they behave differently with its bulk materials and the band gap will control by the size. The tunability of the band gap makes nanostructured materials useful for many applications. As one of the wide band gaps semiconductor compounds, zinc selenide (ZnSe) nanostructures (nanoparticles, nanowires, nanorods) have received much attention for the application in optoelectronic devices, such as blue laser diode, light emitting diodes, solar cells and IR optical windows. In this study, ZnSe nanostructures have been synthesized by reduction process of zinc selenate using hydrazine hydrate (N2H4.2H2O). The reductive agent of hydrazine hydrate was added to the starting materials of zinc selenate were heat treated at 500 o C for 1 hour under argon flow to form onedimensional nanostructures. The SEM and TEM images show the formation of nanocompositelike structures, which some small nanobars and nanopellets stick to the rod. The x-ray diffraction and elemental composition analysis confirm the formation of mixture zinc oxide and zinc selenide phases.