Displaying all 19 publications

Abstract:
Sort:
  1. Mirghani ME, Che Man YB, Jinap S, Baharin BS, Bakar J
    Phytochem Anal, 2002 Jul-Aug;13(4):195-201.
    PMID: 12184171
    A simple and rapid Fourier transform infrared (FTIR) spectroscopic method has been developed for the quantitative determination of malondialdehyde as secondary oxidation product in a palm olein system. The FTIR method was based on a sodium chloride transmission cell and utilised a partial least square statistical approach to derive a calibration model. The frequency region combinations that gave good calibration were 2900-2800, and 1800-1600 cm-1. The precision and accuracy, in the range 0-60 mumol malondialdehyde/kg oil, were comparable to those of the modified distillation method with a coefficient of determination (r2) of 0.9891 and standard error of calibration of 1.49. The calibration was cross-validated and produced an r2 of 0.9786 and standard error of prediction of 2.136. The results showed that the FTIR method is versatile, efficient and accurate, and suitable for routine quality control analysis with the result obtainable in about 2 min from a sample of less than 2 mL.
    Matched MeSH terms: Oleic Acids/chemistry*
  2. Ramli MR, Siew WL, Cheah KY
    J Food Sci, 2008 Apr;73(3):C140-5.
    PMID: 18387090 DOI: 10.1111/j.1750-3841.2007.00657.x
    High-oleic palm oil (HOPO) with an oleic acid content of 59.0% and an iodine value (IV) of 78.2 was crystallized in a 200-kg De Smet crystallizer with a predetermined cooling program and appropriate agitation. The slurry was then fractionated by means of dry fractionation at 4, 8, 10, 12, and 15 degrees C. The oil and the fractionated products were subjected to physical and chemical analyses, including fatty acid composition, triacylglycerol and diacylglycerol composition, solid fat content, cloud point, slip melting point, and cold stability test. Fractionation at 15 degrees C resulted in the highest olein yield but with minimal oleic acid content. Due to the enhanced unsaturation of the oil, fractionation at relatively lower crystallization temperature showed a considerable effect on fatty acid composition as well as triacylglycerol and diacylglycerol composition of liquid fractions compared to higher crystallization temperature. The olein and stearin fractionated at 4 degrees C had the best cold stability at 0 degrees C and sharper melting profile, respectively.
    Matched MeSH terms: Oleic Acids/analysis; Oleic Acids/chemistry*
  3. Teoh CY, Ng WK
    J Agric Food Chem, 2013 Jun 26;61(25):6056-68.
    PMID: 23718861 DOI: 10.1021/jf400904j
    The present study aimed to investigate the potential role of dietary petroselinic acid (PSA) in enhancing the n-3 long-chain polyunsaturated fatty acid (LC-PUFA) content in fish tissues. Three isolipidic casein-based diets were formulated to comprise graded levels of PSA (0, 10, or 20% of total fatty acid) with the incremented inclusion of coriander seed oil. Fish growth and nutrient digestibility were not significantly (P > 0.05) influenced by dietary PSA level. In general, dietary PSA affected the fatty acid composition of tilapia tissues and whole-body, which reflected dietary fatty acid ratios. Dietary PSA significantly (P < 0.05) increased β-oxidation, particularly on α-linolenic acid (18:3n-3) and linoleic acid (18:2n-6). This study provided evidence that PSA, a pseudoproduct mimicking the structure of 18:3n-6, did reduce Δ-6 desaturation on 18:2n-6 but, contrary to popular speculation, did not stimulate more Δ-6 desaturase activity on 18:3n-3. The overall Δ-6 desaturase enzyme activity may be suppressed at high dietary levels of PSA. Nevertheless, the n-3 and n-6 LC-PUFA biosynthesis was not significantly inhibited by dietary PSA, indicating that the bioconversion efficiency is not modulated only by Δ-6 desaturase. The deposition of n-3 LC-PUFA in liver and fillet lipids was higher in fish fed PSA-supplemented diets.
    Matched MeSH terms: Oleic Acids/analysis; Oleic Acids/metabolism*
  4. Yanty NA, Marikkar JM, Man YB, Long K
    J Oleo Sci, 2011;60(7):333-8.
    PMID: 21701095
    Lard being an edible fat could be used in different forms in food systems. In this study, composition and thermal analysis of lard stearin (LS) and lard olein (LO) were undertaken to determine some common parameters which would enable their detection in food. A sample of native lard was partitioned into LS and LO using acetone as solvent and the fractions were compared to the original sample with respect to basic physico-chemical parameters, fatty acid and triacylglycerol (TAG) composition, and thermal characteristics. Although LS and LO displayed wider variations in basic physico-chemical parameters, thermal properties and solidification behavior, they do possess some common characteristic features with regard to composition. In spite of the proportional differences in the major fatty acids, both LS and LO are found to possess extremely high amount of palmitic (C16:0) acid at the sn-2 positions of their TAG molecules. Similar to native lard, both LS and LO contained approximately equal proportions of TAG molecules namely, linoleoyl-palmitoyl-oleoyl glycerol (LPO) and dioleoyl-palmitoyl glycerol (OPO). Hence, the calculated LPO/OPO ratio for LS and LO are comparably similar to that of native lard.
    Matched MeSH terms: Oleic Acids/analysis*; Oleic Acids/chemistry
  5. Che Marzuki NH, Mahat NA, Huyop F, Buang NA, Wahab RA
    Appl Biochem Biotechnol, 2015 Oct;177(4):967-84.
    PMID: 26267406 DOI: 10.1007/s12010-015-1791-z
    The chemical production of methyl oleate using chemically synthesized fatty acid alcohols and other toxic chemicals may lead to significant environmental hazards to mankind. Being a highly valuable fatty acid replacement raw material in oleochemical industry, the mass production of methyl oleate via environmentally favorable processes is of concern. In this context, an alternative technique utilizing Candida rugosa lipase (CRL) physically adsorbed on multi-walled carbon nanotubes (MWCNTs) has been suggested. In this study, the acid-functionalized MWCNTs prepared using a mixture of HNO3 and H2SO4 (1:3 v/v) was used as support for immobilizing CRL onto MWCNTs (CRL-MWCNTs) as biocatalysts. Enzymatic esterification was performed and the efficiency of CRL-MWCNTs was evaluated against the free CRL under varying conditions, viz. temperature, molar ratio of acid/alcohol, solvent log P, and enzyme loading. The CRL-MWCNTs resulted in 30-110 % improvement in the production of methyl oleate over the free CRL. The CRL-MWCNTs attained its highest yield (84.17 %) at 50 °C, molar ratio of acid/alcohol of 1:3, 3 mg/mL of enzyme loading, and iso-octane (log P 4.5) as solvent. Consequently, physical adsorption of CRL onto acid-functionalized MWCNTs has improved the activity and stability of CRL and hence provides an environmentally friendly means for the production of methyl oleate.
    Matched MeSH terms: Oleic Acids
  6. Choo YM
    Sains Malaysiana, 2017;46:1581-1586.
    Crotalaria pallida Aiton is an herbaceous legume from the family Fabaceae. In the present study, one new cyclopentyliene, crotolidene (1) and seven known compounds, i.e. hydroxydihydrobovolide (2), octacosane (3), trans-phytyl palmitate (4), linoleic acid (5), methyl oleate (6), ethyl palmitate (7), and palmitic acid (8) were isolated from the C. pallida collected from Perak, Malaysia. These compounds were isolated and characterized using extensive chromatographic and spectroscopic methods.
    Matched MeSH terms: Oleic Acids
  7. Sahib NG, Anwar F, Gilani AH, Hamid AA, Saari N, Alkharfy KM
    Phytother Res, 2013 Oct;27(10):1439-56.
    PMID: 23281145 DOI: 10.1002/ptr.4897
    Coriander (Coriandrum sativum L.), a herbal plant, belonging to the family Apiceae, is valued for its culinary and medicinal uses. All parts of this herb are in use as flavoring agent and/or as traditional remedies for the treatment of different disorders in the folk medicine systems of different civilizations. The plant is a potential source of lipids (rich in petroselinic acid) and an essential oil (high in linalool) isolated from the seeds and the aerial parts. Due to the presence of a multitude of bioactives, a wide array of pharmacological activities have been ascribed to different parts of this herb, which include anti-microbial, anti-oxidant, anti-diabetic, anxiolytic, anti-epileptic, anti-depressant, anti-mutagenic, anti-inflammatory, anti-dyslipidemic, anti-hypertensive, neuro-protective and diuretic. Interestingly, coriander also possessed lead-detoxifying potential. This review focuses on the medicinal uses, detailed phytochemistry, and the biological activities of this valuable herb to explore its potential uses as a functional food for the nutraceutical industry.
    Matched MeSH terms: Oleic Acids/chemistry
  8. Anarjan N, Tan CP
    Molecules, 2013 Jan 09;18(1):768-77.
    PMID: 23303336 DOI: 10.3390/molecules18010768
    The effects of selected nonionic emulsifiers on the physicochemical characteristics of astaxanthin nanodispersions produced by an emulsification/evaporation technique were studied. The emulsifiers used were polysorbates (Polysorbate 20, Polysorbate 40, Polysorbate 60 and Polysorbate 80) and sucrose esters of fatty acids (sucrose laurate, palmitate, stearate and oleate). The mean particle diameters of the nanodispersions ranged from 70 nm to 150 nm, depending on the emulsifier used. In the prepared nanodispersions, the astaxanthin particle diameter decreased with increasing emulsifier hydrophilicity and decreasing carbon number of the fatty acid in the emulsifier structure. Astaxanthin nanodispersions with the smallest particle diameters were produced with Polysorbate 20 and sucrose laurate among the polysorbates and the sucrose esters, respectively. We also found that the Polysorbate 80- and sucrose oleate-stabilized nanodispersions had the highest astaxanthin losses (i.e., the lowest astaxanthin contents in the final products) among the nanodispersions. This work demonstrated the importance of emulsifier type in determining the physicochemical characteristics of astaxanthin nano-dispersions.
    Matched MeSH terms: Oleic Acids/chemistry*
  9. Lau BY, Clerens S, Morton JD, Dyer JM, Deb-Choudhury S, Ramli US
    Protein J, 2016 Apr;35(2):163-70.
    PMID: 26993480 DOI: 10.1007/s10930-016-9655-0
    The details of plant lipid metabolism are relatively well known but the regulation of fatty acid production at the protein level is still not understood. Hence this study explores the importance of phosphorylation as a mechanism to control the activity of fatty acid biosynthetic enzymes using low and high oleic acid mesocarps of oil palm fruit (Elaeis guineensis variety of Tenera). Adaptation of neutral loss-triggered tandem mass spectrometry and selected reaction monitoring to detect the neutral loss of phosphoric acid successfully found several phosphoamino acid-containing peptides. These peptides corresponded to the peptides from acetyl-CoA carboxylase and 3-enoyl-acyl carrier protein reductase as identified by their precursor ion masses. These findings suggest that these enzymes were phosphorylated at 20th week after anthesis. Phosphorylation could have reduce their activities towards the end of fatty acid biosynthesis at ripening stage. Implication of phosphorylation in the regulation of fatty acid biosynthesis at protein level has never been reported.
    Matched MeSH terms: Oleic Acids/biosynthesis
  10. Kam YC, Woo KK, Ong LGA
    Molecules, 2017 Dec 08;22(12).
    PMID: 29292721 DOI: 10.3390/molecules22122106
    Lipases with unique characteristics are of value in industrial applications, especially those targeting cost-effectiveness and less downstream processes. The aims of this research were to: (i) optimize the fermentation parameters via solid state fermentation (SSF); and (ii) study the performance in hydrolysis and esterification processes of the one-step partially purified Schizophyllum commune UTARA1 lipases. Lipase was produced by cultivating S. commune UTARA1 on sugarcane bagasse (SB) with used cooking oil (UCO) via SSF and its production was optimized using Design-Expert® 7.0.0. Fractions 30% (ScLipA) and 70% (ScLipB) which contained high lipase activity were obtained by stepwise (NH₄)₂SO₄ precipitation. Crude fish oil, coconut oil and butter were used to investigate the lipase hydrolysis capabilities by a free glycerol assay. Results showed that ScLipA has affinities for long, medium and short chain triglycerides, as all the oils investigated were degraded, whereas ScLipB has affinities for long chain triglycerides as it only degrades crude fish oil. During esterification, ScLipA was able to synthesize trilaurin and triacetin. Conversely, ScLipB was specific towards the formation of 2-mono-olein and triacetin. From the results obtained, it was determined that ScLipA and ScLipB are sn-2 regioselective lipases. Hence, the one-step partial purification strategy proved to be feasible for partial purification of S. commune UTARA1 lipases that has potential use in industrial applications.
    Matched MeSH terms: Oleic Acids/chemistry
  11. Teo KT, Hassan A, Gan SN
    Polymers (Basel), 2018 Dec 11;10(12).
    PMID: 30961299 DOI: 10.3390/polym10121374
    Palm fatty acid distillate (PFAD), is a by-product of the crude palm oil refining process. It comprises mainly of free fatty acids-around 45% palmitic and 33% oleic acids-as the major components. Ultra-violet (UV) curable urethane acrylate (UA) oligomers could be synthesized from PFAD, by the following procedure. A hydroxyl terminated macromer was first prepared by reacting PFAD with a mixture of isophthalic acid, phthalic anhydride, neopentagylcol (NPG), and pentaerythritol. The macromer was then reacted with 2-hydroxylethylacrylate (2HEA) and toluene diisocynate (TDI) to generate a resin, containing acrylate side chains for UV curable application. A series of UA resins were prepared by using 15, 25, 45, 55, and 70% of PFAD, respectively. The UA resin has Mw in the range of 3,200 to 27,000. They could be cured by UV irradiation at an intensity of 225 mW/cm². Glass transition temperature (Tg) of the cured film was measured by differential scanning calorimeter (DSC), and hardness of the film was determined by a pendulum hardness tester, according to American Society for Testing and Materials (ASTM)4366. The resins were used in a wood-coating application. All of the cured films showed good adhesion, hardness, and chemical resistance except for the one using the 70% PFAD, which did not cure properly.
    Matched MeSH terms: Oleic Acids
  12. Abbas Ali, Hadi Mesran, M., Nik Mahmood, N.A., Abd Latip, R.
    MyJurnal
    In the present work, the influence of microwave power and heating times on the quality
    degradation of corn oil was evaluated. Microwave heating test was carried out using a domestic
    microwave oven for different periods at low- and medium-power settings for the corn oil sample.
    The changes in physicochemical characteristics related to oil degradation of the samples during
    heating were determined by standard methods. In this study, refractive index, free fatty acid
    content, peroxide value, p-anisidine value, TOTOX value, viscosity and total polar compound
    of the oils all increased with increasing heating power and time of exposure. In GLC analysis,
    the percentage of linoleic acid tended to decrease, whereas the percentage of palmitic, stearic
    and oleic acids increased. The C18:2/C16:0 ratio decreased in all oil samples with increasing
    heating times. Exposing the corn oil to various microwave power settings and heating periods
    caused the formation of hydroperoxides and secondary oxidation products. The heating reduced
    the various tocopherol isomers in corn oil and highest reduction was detected in γ-tocopherol.
    Longer microwave heating times resulted in a greater degree of oil deterioration. Microwave
    heating caused the formation of comparatively lower amounts of some degradative products in
    the oil samples heated at low-power setting compared to medium-power setting. The present
    analysis indicated that oil quality was affected by both microwave power and heating time.
    Matched MeSH terms: Oleic Acids
  13. Yassin AA, Mohamed IO, Ibrahim MN, Yusoff MS
    Appl Biochem Biotechnol, 2003 Jul;110(1):45-52.
    PMID: 12909731
    Immobilized PS-C 'Amano' II lipase was used to catalyze the interesterification of palm olein (POo) with 30, 50, and 70% stearic acid in n-hexane at 60 degrees C. The catalytic performance of the immobilized lipase was evaluated by determining the composition change of fatty acyl groups and triacylglycerol (TAG) by gas liquid chromatography and high-performance liquid chromatography, respectively. The interesterification process resulted in the formation of new TAGs, mainly tripalmitin and dipalmitostearin, both of which were absent in the original oil. These changes in TAG composition resulted in an increase in slip melting point, from the original 25.5 degrees C to 36.3, 37.0, and 40.0 degrees C in the modified POo with 30, 50, and 70% stearic acid, respectively. All the reactions attained steady state in about 6 h. This type of work will find great applications in food industries, such as confectionery.
    Matched MeSH terms: Oleic Acids/chemistry*
  14. Chew SY, Ho KL, Cheah YK, Sandai D, Brown AJP, Than LTL
    Int J Mol Sci, 2019 Jun 28;20(13).
    PMID: 31261727 DOI: 10.3390/ijms20133172
    Flexibility in carbon metabolism is pivotal for the survival and propagation of many human fungal pathogens within host niches. Indeed, flexible carbon assimilation enhances pathogenicity and affects the immunogenicity of Candida albicans. Over the last decade, Candida glabrata has emerged as one of the most common and problematic causes of invasive candidiasis. Despite this, the links between carbon metabolism, fitness, and pathogenicity in C. glabrata are largely unexplored. Therefore, this study has investigated the impact of alternative carbon metabolism on the fitness and pathogenic attributes of C. glabrata. We confirm our previous observation that growth on carbon sources other than glucose, namely acetate, lactate, ethanol, or oleate, attenuates both the planktonic and biofilm growth of C. glabrata, but that biofilms are not significantly affected by growth on glycerol. We extend this by showing that C. glabrata cells grown on these alternative carbon sources undergo cell wall remodeling, which reduces the thickness of their β-glucan and chitin inner layer while increasing their outer mannan layer. Furthermore, alternative carbon sources modulated the oxidative stress resistance of C. glabrata as well as the resistance of C. glabrata to an antifungal drug. In short, key fitness and pathogenic attributes of C. glabrata are shown to be dependent on carbon source. This reaffirms the perspective that the nature of the carbon sources available within specific host niches is crucial for C. glabrata pathogenicity during infection.
    Matched MeSH terms: Oleic Acids/metabolism
  15. Chuo SC, Abd-Talib N, Mohd-Setapar SH, Hassan H, Nasir HM, Ahmad A, et al.
    Sci Rep, 2018 01 11;8(1):477.
    PMID: 29323139 DOI: 10.1038/s41598-017-18279-w
    Reverse micelles extraction of erythromycin and amoxicillin were carried out using the novel Sophorolipids biosurfactant. By replacing commonly used chemical surfactants with biosurfactant, reverse micelle extraction can be further improved in terms of environmental friendliness and sustainability. A central composite experimental design was used to investigate the effects of solution pH, KCl concentration, and sophorolipids concentration on the reverse micelle extraction of antibiotics. The most significant factor identified during the reverse micelle extraction of both antibiotics is the pH of aqueous solutions. Best forward extraction performance for erythromycin was found at feed phase pH of approximately 8.0 with low KCl and sophorolipids concentrations. Optimum recovery of erythromycin was obtained at stripping phase pH around 10.0 and with low KCl concentration. On the other hand, best forward extraction performance for amoxicillin was found at feed phase pH around 3.5 with low KCl concentration and high sophorolipids concentration. Optimum recovery of erythromycin was obtained at stripping phase pH around 6.0 with low KCl concentration. Both erythromycin and amoxicillin were found to be very sensitive toaqueous phase pH and can be easily degraded outside of their stable pH ranges.
    Matched MeSH terms: Oleic Acids/chemistry*
  16. Boon CM, Ng MH, Choo YM, Mok SL
    PLoS One, 2013;8(2):e55908.
    PMID: 23409085 DOI: 10.1371/journal.pone.0055908
    Oleic acid has been shown to lower high blood pressure and provide cardiovascular protection. Curiosity arises as to whether super olein (SO), red palm olein (RPO) and palm olein (PO), which have high oleic acid content, are able to prevent the development of hypertension.
    Matched MeSH terms: Oleic Acids/administration & dosage; Oleic Acids/pharmacology*
  17. Ng TK, Hayes KC, DeWitt GF, Jegathesan M, Satgunasingam N, Ong AS, et al.
    J Am Coll Nutr, 1992 Aug;11(4):383-90.
    PMID: 1506599
    To compare the effects of dietary palmitic acid (16:0) vs oleic acid (18:1) on serum lipids, lipoproteins, and plasma eicosanoids, 33 normocholesterolemic subjects (20 males, 13 females; ages 22-41 years) were challenged with a coconut oil-rich diet for 4 weeks. Subsequently they were assigned to either a palm olein-rich or olive oil-rich diet followed by a dietary crossover during two consecutive 6-week periods. Each test oil served as the sole cooking oil and contributed 23% of dietary energy or two-thirds of the total daily fat intake. Dietary myristic acid (14:0) and lauric acid (12:0) from coconut oil significantly raised all the serum lipid and lipoprotein parameters measured. Subsequent one-to-one exchange of 7% energy between 16:0 (palm olein diet) and 18:1 (olive oil diet) resulted in identical serum total cholesterol (192, 193 mg/dl), low-density lipoprotein cholesterol (LDL-C) (130, 131 mg/dl), high-density lipoprotein cholesterol (HDL-C) (41, 42 mg/dl), and triglyceride (TG) (108, 106 mg/dl) concentrations. Effects attributed to gender included higher HDL in females and higher TG in males associated with the tendency for higher LDL and LDL/HDL ratios in men. However, both sexes were equally responsive to changes in dietary fat saturation. The results indicate that in healthy, normocholesterolemic humans, dietary 16:0 can be exchanged for 18:1 within the range of these fatty acids normally present in typical diets without affecting the serum lipoprotein cholesterol concentration or distribution. In addition, replacement of 12:0 + 14:0 by 16:0 + 18:1, but especially 16:0 or some component of palm olein, appeared to have a beneficial impact on an important index of thrombogenesis, i.e., the thromboxane/prostacyclin ratio in plasma.
    Matched MeSH terms: Oleic Acids/pharmacology*
  18. Chajès V, Biessy C, Ferrari P, Romieu I, Freisling H, Huybrechts I, et al.
    PLoS One, 2015;10(2):e0118206.
    PMID: 25675445 DOI: 10.1371/journal.pone.0118206
    BACKGROUND: Few epidemiological studies have examined the association between dietary trans fatty acids and weight gain, and the evidence remains inconsistent. The main objective of the study was to investigate the prospective association between biomarker of industrial trans fatty acids and change in weight within the large study European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.

    METHODS: Baseline plasma fatty acid concentrations were determined in a representative EPIC sample from the 23 participating EPIC centers. A total of 1,945 individuals were followed for a median of 4.9 years to monitor weight change. The association between elaidic acid level and percent change of weight was investigated using a multinomial logistic regression model, adjusted by length of follow-up, age, energy, alcohol, smoking status, physical activity, and region.

    RESULTS: In women, doubling elaidic acid was associated with a decreased risk of weight loss (odds ratio (OR) = 0.69, 95% confidence interval (CI) = 0.55-0.88, p = 0.002) and a trend was observed with an increased risk of weight gain during the 5-year follow-up (OR = 1.23, 95% CI = 0.97-1.56, p = 0.082) (p-trend

    Matched MeSH terms: Oleic Acids
  19. Arifin SA, Paternoster S, Carlessi R, Casari I, Ekberg JH, Maffucci T, et al.
    Biochim Biophys Acta Mol Cell Biol Lipids, 2018 09;1863(9):1132-1141.
    PMID: 29883799 DOI: 10.1016/j.bbalip.2018.06.007
    The gastrointestinal tract is increasingly viewed as critical in controlling glucose metabolism, because of its role in secreting multiple glucoregulatory hormones, such as glucagon like peptide-1 (GLP-1). Here we investigate the molecular pathways behind the GLP-1- and insulin-secreting capabilities of a novel GPR119 agonist, Oleoyl-lysophosphatidylinositol (Oleoyl-LPI). Oleoyl-LPI is the only LPI species able to potently stimulate the release of GLP-1 in vitro, from murine and human L-cells, and ex-vivo from murine colonic primary cell preparations. Here we show that Oleoyl-LPI mediates GLP-1 secretion through GPR119 as this activity is ablated in cells lacking GPR119 and in colonic primary cell preparation from GPR119-/- mice. Similarly, Oleoyl-LPI-mediated insulin secretion is impaired in islets isolated from GPR119-/- mice. On the other hand, GLP-1 secretion is not impaired in cells lacking GPR55 in vitro or in colonic primary cell preparation from GPR55-/- mice. We therefore conclude that GPR119 is the Oleoyl-LPI receptor, upstream of ERK1/2 and cAMP/PKA/CREB pathways, where primarily ERK1/2 is required for GLP-1 secretion, while CREB activation appears dispensable.
    Matched MeSH terms: Oleic Acids/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links