Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Oresegun A, Tarif ZH, Ghassan L, Zin H, Abdul-Rashid HA, Bradley DA
    Appl Radiat Isot, 2021 Oct;176:109812.
    PMID: 34166948 DOI: 10.1016/j.apradiso.2021.109812
    Investigation has been made of the radioluminescence dose response of Ge-doped silica flat and cylindrical fibers subjected to 6 and 10 MV photon beams. The fibers have been custom fabricated, obtaining Ge dopant concentrations of 6 and 10 mol%, subsequently cut into 20 mm lengths. Each sample has been exposed under a set of similar conditions, with use made of a fixed field size and source to surface distance (SSD). Investigation of dosimetric performance has involved radioluminescence linearity, dose-rate dependence, energy dependence, and reproducibility. Mass for mass, the 6 mol% Ge-doped samples provided the greater radioluminescence yield, with both flat and cylindrical fibers responding linearly to the absorbed dose. Further found has been that the cylindrical fibers provided a yield some 38% greater than that of the flat fibers. At 6 MV, the cylindrical fibers were also found to exhibit repeatability variation of <1%, superior to that of the flat fibers, offering strong potential for use in real-time dosimetry applications.
    Matched MeSH terms: Optical Fibers*
  2. Taha BA, Ali N, Sapiee NM, Fadhel MM, Mat Yeh RM, Bachok NN, et al.
    Biosensors (Basel), 2021 Jul 27;11(8).
    PMID: 34436055 DOI: 10.3390/bios11080253
    Understanding environmental information is necessary for functions correlated with human activities to improve healthcare quality and reduce ecological risk. Tapered optical fibers reduce some limitations of such devices and can be considerably more responsive to fluorescence and absorption properties changes. Data have been collected from reliable sources such as Science Direct, IEEE Xplore, Scopus, Web of Science, PubMed, and Google Scholar. In this narrative review, we have summarized and analyzed eight classes of tapered-fiber forms: fiber Bragg grating (FBG), long-period fiber grating (LPFG), Mach-Zehnder interferometer (MZI), photonic crystals fiber (PCF), surface plasmonic resonance (SPR), multi-taper devices, fiber loop ring-down technology, and optical tweezers. We evaluated many issues to make an informed judgement about the viability of employing the best of these methods in optical sensors. The analysis of performance for tapered optical fibers depends on four mean parameters: taper length, sensitivity, wavelength scale, and waist diameter. Finally, we assess the most potent strategy that has the potential for medical and environmental applications.
    Matched MeSH terms: Optical Fibers*
  3. Isah BW, Mohamad H
    Sensors (Basel), 2021 Apr 22;21(9).
    PMID: 33922008 DOI: 10.3390/s21092926
    The paper explores the possibility of using high-resolution fiber Bragg grating (FBG) sensing technology for on-specimen strain measurement in the laboratory. The approach provides a means to assess the surface deformation of the specimen, both the axial and radial, through a chain of FBG sensor (C-FBG), in a basic setup of a uniaxial compression test. The method is cost-effective, straightforward and can be commercialized. Two C-FBG; one was applied directly to the sample (FBGBare), and the other was packaged (FBGPack) for ease of application. The approach measures the local strain with high-resolution and accuracy levels that match up to the existing local strain measuring sensors. The approach enables the evaluation of small-strain properties of the specimen intelligently. The finite element model analysis deployed has proven the adaptability of the technique for measuring material deformation. The adhesive thickness and packaging technique have been shown to influence the sensitivity of the FBG sensors. Owing to the relative ease and low-cost of instrumentation, the suggested method has a great potential to be routinely applied for elemental testing in the laboratory.
    Matched MeSH terms: Optical Fibers
  4. Abushagur AAG, Arsad N, Bakar AAA
    Sensors (Basel), 2021 Mar 12;21(6).
    PMID: 33809028 DOI: 10.3390/s21062002
    This work investigates a new interrogation method of a fiber Bragg grating (FBG) sensor based on longer and shorter wavelengths to distinguish between transversal forces and temperature variations. Calibration experiments were carried out to examine the sensor's repeatability in response to the transversal forces and temperature changes. An automated calibration system was developed for the sensor's characterization, calibration, and repeatability testing. Experimental results showed that the FBG sensor can provide sensor repeatability of 13.21 pm and 17.015 pm for longer and shorter wavelengths, respectively. The obtained calibration coefficients expressed in the linear model using the matrix enabled the sensor to provide accurate predictions for both measurements. Analysis of the calibration and experiment results implied improvements for future work. Overall, the new interrogation method demonstrated the potential to employ the FBG sensing technique where discrimination between two/three measurands is needed.
    Matched MeSH terms: Optical Fibers
  5. Girei SH, Lim HN, Ahmad MZ, Mahdi MA, Md Zain AR, Yaacob MH
    Sensors (Basel), 2020 Aug 21;20(17).
    PMID: 32825539 DOI: 10.3390/s20174713
    The need for environmental protection and water pollution control has led to the development of different sensors for determining many kinds of pollutants in water. Ammonia nitrogen presence is an important indicator of water quality in environmental monitoring applications. In this paper, a high sensitivity sensor for monitoring ammonia nitrogen concentration in water using a tapered microfiber interferometer (MFI) as a sensor platform and a broad supercontinuum laser as the light source is realized. The MFI is fabricated to the waist diameter of 8 µm producing a strong interference pattern due to the coupling of the fundamental mode with the cladding mode. The MFI sensor is investigated for a low concentration of ammonia nitrogen in water in the wide wavelength range from 1500-1800 nm with a high-power signal provided by the supercontinuum source. The broad source allows optical sensing characteristics of the MFI to be evaluated at four different wavelengths (1505, 1605, 1705, and 1785 nm) upon exposure towards various ammonia nitrogen concentrations. The highest sensitivity of 0.099 nm/ppm that indicates the wavelength shift is observed at 1785 nm operating wavelength. The response is linear in the ammonia nitrogen range of 5-30 ppm with the best measurement resolution calculated to be 0.5 ppm. The low concentration ammonia nitrogen detected by the MFI in the unique infrared region reveals the potential application of this optical fiber-based sensor for rivers and drinking water monitoring.
    Matched MeSH terms: Optical Fibers
  6. Mat Nawi SN, Abdul Sani SF, Khandaker MU, Ung NM, Almugren KS, Alkallas FH, et al.
    PLoS One, 2020;15(7):e0235053.
    PMID: 32673337 DOI: 10.1371/journal.pone.0235053
    Study has been made of the thermoluminescence yield of various novel tailor-made silica fibres, 6 and 8 mol % Ge-doped, with four differing outer dimensions, comprised of flat and cylindrical shapes, subjected to electron irradiation. Main thermoluminescence dosimetric characteristics have been investigated, including the glow curve, dose response, energy dependence, minimum detectable dose, effective atomic number, linearity of index and sensitivity of the fibres. The studies have also established the uncertainties involved as well as the stability of response in terms of fading effect, reproducibility and annealing. In addition, dose-rate dependence was accounted for as this has the potential to be a significant factor in radiotherapy applications. The 6 and 8 mol % fibres have been found to provide highly linear dose response within the range 1 to 4 Gy, the smallest size flat fibre, 6 mol% Ge-doped, showing the greatest response by a factor of 1.1 with respect to the highly popular LiF phosphor-based medium TLD100. All of the fibres also showed excellent reproducibility with a standard deviation of < 2% and < 4% for 6 and 8 mol % Ge-doped fibres respectively. For fading evaluation, the smallest 6 mol% Ge-doped dimension flat fibre, i.e., 85 × 270 μm displayed the lowest signal loss within 120 days post-irradiation, at around 26.9% also showing a response superior to that of all of the other fibres. Moreover, all the fibres and TLD-100 chips showed independence with respect to electron irradiation energy and dose-rate. Compared with the 8 mol% Ge-doped optical fibres, the 6 mol% Ge-doped flat optical fibres have been demonstrated to possess more desirable performance features for passive dosimetry, serving as a suitable alternative to TLD-100 for medical irradiation treatment applications.
    Matched MeSH terms: Optical Fibers/standards*
  7. Mustapha Kamil Y, Al-Rekabi SH, Yaacob MH, Syahir A, Chee HY, Mahdi MA, et al.
    Sci Rep, 2019 09 17;9(1):13483.
    PMID: 31530893 DOI: 10.1038/s41598-019-49891-7
    The exponential escalation of dengue cases has indeed become a global health crisis. This work elaborates on the development of a biofunctionalized tapered optical fiber (TOF) based sensor with the integration of polyamidoamine (PAMAM) dendrimer for the detection of dengue E protein. The dimension of the TOF generated an evanescent field that was sensitive to any changes in the external medium while the integration of PAMAM promoted more adhesion of bio-recognition molecules; anti-DENV II E protein antibodies; that were complementary to the targeted protein. This in return created more active sites for the absorption of DENV II E proteins onto the tapered region. The resolution and detection limit of the sensor are 19.53 nm/nM and 1 pM, respectively with Kd = 1.02 × 10-10 M.
    Matched MeSH terms: Optical Fibers*
  8. Rais NNM, Bradley DA, Hashim A, Isa NM, Osman ND, Ismail I, et al.
    J Radiol Prot, 2019 Sep;39(3):N8-N18.
    PMID: 31018196 DOI: 10.1088/1361-6498/ab1c16
    Novel germanium (Ge)-doped silica glass fibres tailor-made in Malaysia are fast gaining recognition as potential media for thermoluminescence (TL) dosimetry, with active research ongoing into exploitation of their various beneficial characteristics. Investigation is made herein of the capability of these media for use in diagnostic imaging dosimetry, specifically at the radiation dose levels typically obtained in conduct of Computed Tomography (CT). As a first step within such efforts, there is need to investigate the performance of the fibres using tightly defined spectra, use being made of a Philips constant potential industrial x-ray facility, Model MG165, located at the Malaysian Nuclear Agency Secondary Standards Dosimetry Lab (SSDL). Standard radiation beam qualities (termed RQT) have been established for CT, in accord with IEC 61267: 2003 and IAEA Technical Reports Series No. 457: 2007. A calibrated ionisation chamber has also been utilised, forming a component part of the SSDL equipment. The fabricated fibres used in this study are 2.3 mol% flat fibre (FF) of dimensions 643 × 356 μm2 and 2.3 mol% cylindrical fibre (CF) of 481 μm diameter, while the commercial fibre used is 4 mol% with core diameter of 50 μm. The dopant concentrations are nominal preform values. The fibres have been irradiated to doses of 20, 30 and 40 milligray (mGy) for each of the beam qualities RQT 8, RQT 9 and RQT 10. For x-rays generated at constant potential values from 100 to 150 kV, a discernible energy-dependent response is seen, comparisons being made with that of lithium fluoride (LiF) thermoluminescence dosimeters (TLD-100). TL yield versus dose has also been investigated for x-ray doses from 2 to 40 mGy, all exhibiting linearity. Compared to TLD-100, greater sensitivity is observed for the fibres.
    Matched MeSH terms: Optical Fibers
  9. Horiguchi T, Masui Y, Zan MSD
    Sensors (Basel), 2019 Mar 27;19(7).
    PMID: 30934806 DOI: 10.3390/s19071497
    Distributed strain and temperature can be measured by using local Brillouin backscatter in optical fibers based on the strain and temperature dependence of the Brillouin frequency shift. The technique of analyzing the local Brillion backscatter in the time domain is called Brillouin optical time domain reflectometry (BOTDR). Although the best spatial resolution of classic BOTDR remains at around 1 m, some recent BOTDR techniques have attained as high as cm-scale spatial resolution. Our laboratory has proposed and demonstrated a high-spatial-resolution BOTDR called phase-shift pulse BOTDR (PSP-BOTDR), using a pair of probe pulses modulated with binary phase-shift keying. PSP-BOTDR is based on the cross-correlation of Brillouin backscatter and on the subtraction of cross-correlations obtained from the Brillouin scatterings evoked by each phase-modulated probe pulse. Although PSP-BOTDR has attained 20-cm spatial resolution, the spectral analysis method of PSP-BOTDR has not been discussed in detail. This article gives in-depth analysis of the Brillouin backscatter and the correlations of the backscatters of the PSP-BOTDR. Based on the analysis, we propose new spectral analysis methods for PSP-BOTDR. The analysis and experiments show that the proposed methods give better frequency resolution than before.
    Matched MeSH terms: Optical Fibers
  10. Hazura Haroon, Abdul Aziz Abu Mansor, Hanim Abdul Razak, Siti Khadijah Idris, Anis Suhaila Mohd Zain, Fauziyah Salehuddin
    MyJurnal
    An investigation of bending loss characteristics of a Polymer Optical Fiber is presented experimentally. Loss of optical power in an optical fiber due to bending has been investigated for a wavelength of 650 nm. Variations of bending loss with different lengths have been measured, with a number of radii of curvature. Bending Loss equations for short length POF is proposed, which shows the dependence of bending loss on the curvature radii. The equations can be an initial reference or aid in predicting the loss contributes by the polymer optical fiber.
    Matched MeSH terms: Optical Fibers
  11. Bradley DA, Zubair HT, Oresegun A, Louay GT, Ariffin A, Khandaker MU, et al.
    Appl Radiat Isot, 2018 Nov;141:176-181.
    PMID: 29673719 DOI: 10.1016/j.apradiso.2018.02.025
    In previous work we investigated the real-time radioluminescence (RL) yield of Ge-doped silica fibres and Al2O3 nanodot media, sensing electron- and x-ray energies and intensities at values familiarly obtained in external beam radiotherapy. The observation of an appreciable low-dose sensitivity has given rise to the realisation that there is strong potential for use of RL dosimetry in diagnostic radiology. Herein use has been made of P-doped silica optical fibre, 2 mm diameter, also including a 271 µm cylindrical doped core. With developing needs for versatile x-ray imaging dosimetry, preliminary investigations have been made covering the range of diagnostic x-ray tube potentials 30 kVp to 120 kVp, demonstrating linearity of RL with kVp as well as in terms of the current-time (mAs) product. RL yields also accord with the inverse-square law. Given typical radiographic-examination exposure durations from tens- to a few hundred milliseconds, particular value is found in the ability to record the influence of x-ray generator performance on the growth and decay of beam intensity, from initiation to termination.
    Matched MeSH terms: Optical Fibers
  12. Amiri IS, Azzuhri SRB, Jalil MA, Hairi HM, Ali J, Bunruangses M, et al.
    Micromachines (Basel), 2018 Sep 11;9(9).
    PMID: 30424385 DOI: 10.3390/mi9090452
    Light has found applications in data transmission, such as optical fibers and waveguides and in optoelectronics. It consists of a series of electromagnetic waves, with particle behavior. Photonics involves the proper use of light as a tool for the benefit of humans. It is derived from the root word "photon", which connotes the tiniest entity of light analogous to an electron in electricity. Photonics have a broad range of scientific and technological applications that are practically limitless and include medical diagnostics, organic synthesis, communications, as well as fusion energy. This will enhance the quality of life in many areas such as communications and information technology, advanced manufacturing, defense, health, medicine, and energy. The signal transmission methods used in wireless photonic systems are digital baseband and RoF (Radio-over-Fiber) optical communication. Microwave photonics is considered to be one of the emerging research fields. The mid infrared (mid-IR) spectroscopy offers a principal means for biological structure analysis as well as nonintrusive measurements. There is a lower loss in the propagations involving waveguides. Waveguides have simple structures and are cost-efficient in comparison with optical fibers. These are important components due to their compactness, low profile, and many advantages over conventional metallic waveguides. Among the waveguides, optofluidic waveguides have been found to provide a very powerful foundation for building optofluidic sensors. These can be used to fabricate the biosensors based on fluorescence. In an optical fiber, the evanescent field excitation is employed to sense the environmental refractive index changes. Optical fibers as waveguides can be used as sensors to measure strain, temperature, pressure, displacements, vibrations, and other quantities by modifying a fiber. For some application areas, however, fiber-optic sensors are increasingly recognized as a technology with very interesting possibilities. In this review, we present the most common and recent applications of the optical fiber-based sensors. These kinds of sensors can be fabricated by a modification of the waveguide structures to enhance the evanescent field; therefore, direct interactions of the measurand with electromagnetic waves can be performed. In this research, the most recent applications of photonics components are studied and discussed.
    Matched MeSH terms: Optical Fibers
  13. Zainuddin NH, Chee HY, Ahmad MZ, Mahdi MA, Abu Bakar MH, Yaacob MH
    J Biophotonics, 2018 08;11(8):e201700363.
    PMID: 29570957 DOI: 10.1002/jbio.201700363
    This paper presents the development of tapered optical fiber sensor to detect a specific Leptospira bacteria DNA. The bacteria causes Leptospirosis, a deadly disease but with common early flu-like symptoms. Optical single mode fiber (SMF) of 125 μm diameter is tapered to produce 12 μm waist diameter and 15 cm length. The novel DNA-based optical fiber sensor is functionalized by incubating the tapered region with sodium hydroxide (NaOH), (3-Aminopropyl) triethoxysilane and glutaraldehyde. Probe DNA is immobilized onto the tapered region and subsequently hybridized by its complementary DNA (cDNA). The transmission spectra of the DNA-based optical fiber sensor are measured in the 1500 to 1600 nm wavelength range. It is discovered that the shift of the wavelength in the SMF sensor is linearly proportional with the increase in the cDNA concentrations from 0.1 to 1.0 nM. The sensitivity of the sensor toward DNA is measured to be 1.2862 nm/nM and able to detect as low as 0.1 fM. The sensor indicates high specificity when only minimal shift is detected for non-cDNA testing. The developed sensor is able to distinguish between actual DNA of Leptospira serovars (Canicola and Copenhageni) against Clostridium difficile (control sample) at very low (femtomolar) target concentrations.
    Matched MeSH terms: Optical Fibers*
  14. Noor Zuhartini Md Muslim, Musa Ahmad, Lee YH, Bahruddin Saad
    Sains Malaysiana, 2018;47:707-713.
    An optical fiber chemical sensor for the determination of free glutamate in food samples was fabricated based on the
    immobilization of 0.1 M copper(II) nitrate trihydrate onto sol-gel glass powder which was then mixed with methyl cellulose
    to form a pellet. A distinctive colour change from light blue to dark blue was observed in the presence of glutamate in
    less than 1 min. The colour change was measured by reflectance spectrophotometer at 691 nm. A linear relationship
    between the reflectance intensity and glutamate concentration was observed in the range of 12.5 to 500 mM with a limit
    of detection of 10.6 mM. This method is also reproducible with a relative standard deviation of less than 5%, no effect on
    pH of the glutamate solution and a good recovery of above 80%. The sensor was used for the determination of glutamate
    in common food items such as soups and flavor enhancers. The results obtained from the fabricated sensor were found
    to be comparable with HPLC method.
    Matched MeSH terms: Optical Fibers
  15. Rozaila ZS, Khandaker MU, Abdul Sani SF, Sabtu SN, Amin YM, Maah MJ, et al.
    J Radiol Prot, 2017 Sep 25;37(3):761-779.
    PMID: 28581438 DOI: 10.1088/1361-6498/aa770e
    The sensitivity of a novel silica-based fibre-form thermoluminescence dosimeter was tested off-site of a rare-earths processing plant, investigating the potential for obtaining baseline measurements of naturally occurring radioactive materials. The dosimeter, a Ge-doped collapsed photonic crystal fibre (PCFc) co-doped with B, was calibrated against commercially available thermoluminescent dosimetry (TLD) (TLD-200 and TLD-100) using a bremsstrahlung (tube-based) x-ray source. Eight sampling sites within 1 to 20 km of the perimeter of the rare-earth facility were identified, the TLDs (silica- as well as TLD-200 and TLD-100) in each case being buried within the soil at fixed depth, allowing measurements to be obtained, in this case for protracted periods of exposure of between two to eight months. The values of the dose were then compared against values projected on the basis of radioactivity measurements of the associated soils, obtained via high-purity germanium gamma-ray spectrometry. Accord was found in relative terms between the TL evaluations at each site and the associated spectroscopic results. Thus said, in absolute terms, the TL evaluated doses were typically less than those derived from gamma-ray spectroscopy, by ∼50% in the case of PCFc-Ge. Gamma spectrometry analysis typically provided an upper limit to the projected dose, and the Marinelli beaker contents were formed from sieving to provide a homogenous well-packed medium. However, with the radioactivity per unit mass typically greater for smaller particles, with preferential adsorption on the surface and the surface area per unit volume increasing with decrease in radius, this made for an elevated dose estimate. Prevailing concentrations of key naturally occurring radionuclides in soil,226Ra,232Th and40K, were also determined, together with radiological dose evaluation. To date, the area under investigation, although including a rare-earth processing facility, gives no cause for concern from radiological impact. The current study reveals the suitability of the optical fibre based micro-dosimeter for all-weather monitoring of low-level environmental radioactivity.
    Matched MeSH terms: Optical Fibers
  16. Al-Fakih E, Arifin N, Pirouzi G, Mahamd Adikan FR, Shasmin HN, Abu Osman NA
    J Biomed Opt, 2017 Aug;22(8):1-8.
    PMID: 28822140 DOI: 10.1117/1.JBO.22.8.087001
    This paper presents a fiber Bragg grating (FBG)-instrumented prosthetic silicone liner that provides cushioning for the residual limb and can successfully measure interface pressures inside prosthetic sockets of lower-limb amputees in a simple and practical means of sensing. The liner is made of two silicone layers between which 12 FBG sensors were embedded at locations of clinical interest. The sensors were then calibrated using a custom calibration platform that mimics a real-life situation. Afterward, a custom gait simulating machine was built to test the liner performance during an amputee's simulated gait. To validate the findings, the results were compared to those obtained by the commonly used F-socket mats. As the statistical findings reveal, both pressure mapping methods measured the interface pressure in a consistent way, with no significant difference (P-values ≥0.05). This pressure mapping technique in the form of a prosthetic liner will allow prosthetics professionals to quickly and accurately create an overall picture of the interface pressure distribution inside sockets in research and clinical settings, thereby improving the socket fit and amputee's satisfaction.
    Matched MeSH terms: Optical Fibers
  17. Liu H, Yang H, Qiao X, Wang Y, Liu X, Lee YS, et al.
    Sensors (Basel), 2017 Jul 27;17(8).
    PMID: 28749437 DOI: 10.3390/s17081725
    We have experimentally demonstrated an optical fiber Mach-Zehnder interferometer (MZI) structure formed by a few-mode photonic crystal fiber (PCF) for curvature measurement and inscribed a fiber Bragg grating (FBG) in the PCF for the purpose of simultaneously measuring temperature. The structure consists of a PCF sandwiched between two multi-mode fibers (MMFs). Bending experimental results show that the proposed sensor has a sensitivity of -1.03 nm/m-1at a curvature range from 10 m-1to 22.4 m-1, and the curvature sensitivity of the embedded FBG was -0.003 nm/m-1. Temperature response experimental results showed that the MZI's wavelength, λa, has a sensitivity of 60.3 pm/°C, and the FBG's Bragg wavelength, λb, has sensitivity of 9.2 pm/°C in the temperature range of 8 to 100 °C. As such, it can be used for simultaneous measurement of curvature and temperature over ranges of 10 m-1to 22.4 m-1and 8 °C to 100 °C, respectively. The results show that the embedded FBG can be a good indicator to compensate the varying ambient temperature during a curvature measurement.
    Matched MeSH terms: Optical Fibers
  18. Luo D, Li P, Yue Y, Ma J, Yang H
    Sensors (Basel), 2017 May 04;17(5).
    PMID: 28471372 DOI: 10.3390/s17050962
    The protection of concrete structures against corrosion in marine environments has always been a challenge due to the presence of a saline solution-A natural corrosive agent to the concrete paste and steel reinforcements. The concentration of salt is a key parameter influencing the rate of corrosion. In this paper, we propose an optical fiber-based salinity sensor based on bundled multimode plastic optical fiber (POF) as a sensor probe and a concave mirror as a reflector in conjunction with an intensity modulation technique. A refractive index (RI) sensing approach is analytically investigated and the findings are in agreement with the experimental results. A maximum sensitivity of 14,847.486/RIU can be achieved at RI = 1.3525. The proposed technique is suitable for in situ measurement and monitoring of salinity in liquid.
    Matched MeSH terms: Optical Fibers
  19. Hazura Haroon, Siti Sarah Khalid
    MyJurnal
    This paper provides a qualitative overview of different Optical Fiber Sensors (OFS),
    which play important role in the field of sensors due to their excellent
    characteristics, spontaneous response and easy handling system. The current
    state of the art of optical fiber technology is reviewed, namely based on its main
    characteristics and sensing advantages. In addition, the working principle of OFS
    and their applications are discussed, particularly for sensor employment.
    Matched MeSH terms: Optical Fibers
  20. Wan Maisarah Mukhtar, Nur Auni Marzuki, Affa Rozana Abdul Rashid
    MyJurnal
    This paper reports the effect of microbending losses in single mode optical fiber
    for pressure sensing system application. Several types of periodical corrugated
    plates were fabricated, namely cylindrical-structured surface (Plate A) and
    rectangular-structured surface (Plate B) with thicknesses of corrugated parts
    were varied at 0.1 cm, 0.2 cm and 0.3 cm. Laser sources with excitation
    wavelengths of 1= 1310 nm and 2= 1550 nm were launched at the first end
    of the fiber. The values of losses were recorded by using an optical power
    meter. It was clearly seen that the microbending losses were polynomially
    increased with the increment of applied pressure and the thicknesses of
    corrugated parts of Plate A and Plate B. The maximum microbending losses of
    1.5185 dBm/kPa was resulted as SMF was coupled with corrugated plates B
    with thicknesses of 0.3cm by using excitation wavelength of 1550nm. These
    values reduced to 0.7628 dBm/kPa and 0.4014 dBm/kPa as the thicknesses
    were decreased to 0.2cm and 0.1cm respectively. In comparison with a plain
    plate which acted as a reference indicator, the maximum percentage of
    microbending losses was obtained as 74.29 % for Plate A and 95.02 % for Plate
    B. In conclusions, we successfully proved the ability of SMF as a pressure sensor
    by manipulating the microbending losses experienced by the fiber. The
    employment of 1550nm of laser wavelength results better sensitivity sensor
    where the system able to detect large losses as the pressure applied on the
    corrugated surfaces.
    Matched MeSH terms: Optical Fibers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links