Displaying publications 1 - 20 of 76 in total

Abstract:
Sort:
  1. Prasanth VV, Puratchikody A, Mathew ST, Ashok KB
    Res Pharm Sci, 2014 Jul-Aug;9(4):259-68.
    PMID: 25657797
    The purpose of this work was to study the effect of various permeation enhancers on the permeation of salbutamol sulphate (SS) buccal patches through buccal mucosa in order to improve the bioavailability by avoiding the first pass metabolism in the liver and possibly in the gut wall and also achieve a better therapeutic effect. The influence of various permeation enhancers, such as dimethyl sulfoxide (DMSO), linoleic acid (LA), isopropyl myristate (IPM) and oleic acid (OA) on the buccal absorption of SS from buccal patches containing different polymeric combinations such as hydroxypropyl methyl cellulose (HPMC), carbopol, polyvinyl alcohol (PVA), polyvinyl pyrollidone (PVP), sodium carboxymethyl cellulose (NaCMC), acid and water soluble chitosan (CHAS and CHWS) and Eudragit-L100 (EU-L100) was investigated. OA was the most efficient permeation enhancer increasing the flux greater than 8-fold compared with patches without permeation enhancer in HPMC based buccal patches when PEG-400 was used as the plasticizer. LA also exhibited a better permeation enhancing effect of over 4-fold in PVA and HPMC based buccal patches. In PVA based patches, both OA and LA were almost equally effective in improving the SS permeation irrespective of the plasticizer used. DMSO was more effective as a permeation enhancer in HPMC based patches when PG was the plasticizer. IPM showed maximum permeation enhancement of greater than 2-fold when PG was the plasticizer in HPMC based buccal patches.
    Matched MeSH terms: Plasticizers
  2. Yaradoddi JS, Banapurmath NR, Ganachari SV, Soudagar MEM, Mubarak NM, Hallad S, et al.
    Sci Rep, 2020 12 15;10(1):21960.
    PMID: 33319818 DOI: 10.1038/s41598-020-78912-z
    The main goal of the present work was to develop a value-added product of biodegradable material for sustainable packaging. The use of agriculture waste-derived carboxymethyl cellulose (CMC) mainly is to reduce the cost involved in the development of the film, at present commercially available CMS is costly. The main focus of the research is to translate the agricultural waste-derived CMC to useful biodegradable polymer suitable for packaging material. During this process CMC was extracted from the agricultural waste mainly sugar cane bagasse and the blends were prepared using CMC (waste derived), gelatin, agar and varied concentrations of glycerol; 1.5% (sample A), 2% (sample B), and 2.5% (sample C) was added. Thus, the film derived from the sample C (gelatin + CMC + agar) with 2.0% glycerol as a plasticizer exhibited excellent properties than other samples A and B. The physiochemical properties of each developed biodegradable plastics (sample A, B, C) were characterized using Fourier Transform Infra-Red (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA). The swelling test, solubility in different solvents, oil permeability coefficient, water permeability (WP), mechanical strength of the produced material was claimed to be a good material for packaging and meanwhile its biodegradability (soil burial method) indicated their environmental compatibility nature and commercial properties. The reflected work is a novel approach, and which is vital in the conversion of organic waste to value-added product development. There is also another way to utilize commercial CMC in preparation of polymeric blends for the packaging material, which can save considerable time involved in the recovery of CMC from sugarcane bagasse.
    Matched MeSH terms: Plasticizers
  3. Kiing, Sie Cheong, Balasubramaniam, Jaya-Raj, Yiu, Pang Hung, Wong, Sie Chuong, Amartalingam, Rajan
    MyJurnal
    Polyethylene is a widely used packaging material, but its non-biodegradable nature can lead to waste
    disposal problems. This increases the concern in research and development of biodegradable plastics from natural resource as alternatives to petroleum-derived plastics. In this study, biodegradable plastic composites were prepared by blending thermoplastic starch with natural rubber in the present of glycerol as plasticizer. Local sago starch was cast with 0.5 to 10% of natural rubber to prepare the bioplastic. The products were characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), water absorption test, biodegradable test, hydrolysis test, and mechanical analysis. Meanwhile, composite with natural rubber latex was increased from 0.5 to 10% showing that the melting temperature is in the range of 120 to 150˚C, but with no significant difference. The water absorption characteristics, biodegradability, and tensile strength decreased by 11.21%, 30.18%, and 20.733 MPa, respectively. However, the elongation at break was increased from 26.67 to 503.3%. The findings of this study showed that sago starch has a great potential in bioplastic production with good miscibility and compatibility.
    Matched MeSH terms: Plasticizers
  4. Maizura, M., Fazilah, A., Norziah, M.H., Karim, A.A.
    MyJurnal
    Antibacterial effect of modified sago starch-alginate edible film incorporating lemongrass oil at various concentrations was studied. Edible films were prepared from a mixture of modified sago starch and alginate. Lemongrass oil (0.1 - 0.4%, v/w) and glycerol (0 and 20%, w/w) were incorporated in the films to act as natural antimicrobial agent and plasticizer, respectively. The films were characterized for antibacterial activity against food pathogenic bacteria such as Escherichia coli O157:H7, Salmonella Enteritidis and Staphylococcus aureus. The edible film exhibited antibacterial activity against Escherichia coli O157:H7 and Salmonella Enteritidis by using agar diffusion assay method. For films tested against Escherichia coli O157:H7, the zone of inhibition increased significantly (p < 0.05) with addition of lemongrass oil at all levels both in the presence and absence of glycerol. The films also significantly (p < 0.05) inhibited the growth of Salmonella enteritidis only with 0.4% lemongrass oil (in the presence and absence of glycerol). However, the films containing lemongrass oil did not show any inhibition effect on Staphylococcus aureus.
    Matched MeSH terms: Plasticizers
  5. Febriyenti, Azmin Mohd. Noor, Saringat Baei
    MyJurnal
    The objective of this research was to formulate an aerosol concentrate containing haruan (Channa
    striatus) water extract that would produce a thin film when sprayed onto a wound and could be used for wound dressing. The aerosol concentrates were formulated with various polymer and plasticiser mixtures and tested in dispersion systems. The polymers evaluated were hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose sodium (CMC Sodium), acacia, tragacanth, chitosan, gelatine and gelatine (bloom 151–160), all at concentrations of 2%. The plasticisers evaluated were polyethylene glycol (PEG) 400 and 4000, glycerine, propylene glycol, and triacetin. Films were prepared from film-forming dispersions by casting techniques. Film-forming dispersions were characterised in terms of pH, density, surface tension, rheological properties, particle size distribution, and tackiness. Based on these evaluations, HPMC was chosen as the best polymer. It produced a film with the expected qualities and was easy to reproduce in the form of dispersions or as thin transparent films. Glycerine was judged as the most appropriate plasticiser because it produced the concentrate having the desired qualities and properties expected from an aerosol concentrate.
    Matched MeSH terms: Plasticizers
  6. Olaiya NG, Nuryawan A, Oke PK, Khalil HPSA, Rizal S, Mogaji PB, et al.
    Polymers (Basel), 2020 Mar 05;12(3).
    PMID: 32151004 DOI: 10.3390/polym12030592
    The current research trend for excellent miscibility in polymer mixing is the use of plasticizers. The use of most plasticizers usually has some negative effects on the mechanical properties of the resulting composite and can sometimes make it toxic, which makes such polymers unsuitable for biomedical applications. This research focuses on the improvement of the miscibility of polymer composites using two-step mixing with a rheomixer and a mix extruder. Polylactic acid (PLA), chitin, and starch were produced after two-step mixing, using a compression molding method with decreasing composition variation (between 8% to 2%) of chitin and increasing starch content. A dynamic mechanical analysis (DMA) was used to study the mechanical behavior of the composite at various temperatures. The tensile strength, yield, elastic modulus, impact, morphology, and compatibility properties were also studied. The DMA results showed a glass transition temperature range of 50 °C to 100 °C for all samples, with a distinct peak value for the loss modulus and factor. The single distinct peak value meant the polymer blend was compatible. The storage and loss modulus increased with an increase in blending, while the loss factor decreased, indicating excellent compatibility and miscibility of the composite components. The mechanical properties of the samples improved compared to neat PLA. Small voids and immiscibility were noticed in the scanning electron microscopy images, and this was corroborated by X-ray diffraction graphs that showed an improvement in the crystalline nature of PLA with starch. Bioabsorption and toxicity tests showed compatibility with the rat system, which is similar to the human system.
    Matched MeSH terms: Plasticizers
  7. Nor, M.H.M., Nazmi, N.N.M., Sarbon, N.M.
    MyJurnal
    The aim of this study was to investigate the functional properties of chicken skin gelatin films with varied concentrations of a hydrophilic plasticizer. Gelatin film solutions with different glycerol concentrations A(control), B(5%), C(10%), D(15%) and E(20%), were stirred at 45°C for 20min and oven dried at 45°C. Film characterization determination were included, tensile strength (TS), elongation at break (EAB), water vapor permeability (WVP), solubility, transparency, moisture content, Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (X-RD). Glycerol added resulted in improvement of TS and WVP properties. Film B (5% glycerol) demonstrated low EAB (106%), WVP (0.0175 g.mm/h.m2.k.Pa) and solubility (58.64%), but with high TS (3.64 MPa), moisture content (16.0%), UV light transmission (0.04%) and transparency (0.81) compared to films C, D and E. FTIR spectrum analyses demonstrated an aliphatic alcohol group only for Film E (20% glycerol). Hence, chicken skin gelatin film at 5% glycerol concentration showed the most promising potential for industrial food processing applications.
    Matched MeSH terms: Plasticizers
  8. Liew KB, Tan YT, Peh KK
    Drug Dev Ind Pharm, 2014 Jan;40(1):110-9.
    PMID: 23311593 DOI: 10.3109/03639045.2012.749889
    Difficulty in swallowing tablets or capsules has been identified as one of the contributing factors to non-compliance of geriatric patients. Although orally disintegrating tablet was designed for fast disintegration in mouth, the fear of taking solid tablets and the risk of choking for certain patient populations still exist.
    Matched MeSH terms: Plasticizers/chemistry*
  9. Carran M, Shaw IC
    N Z Med J, 2012;125(1358):52-63.
    PMID: 22864157
    It is well known that the endocrine-disrupting chemical (EDC) dibutylphthalate (DBP) inhibits testosterone synthesis and can lead to feminisation in male laboratory animals. Moreover, it has long been speculated that human exposure would result in the similar effects, but this is difficult to study because specific human exposure cohorts are rare. We report increases in the incidences of hypospadias (p<0.05), cryptorchidism (p<0.05) and breast cancer (p<0.05) in the children of New Zealand soldiers who served in Malaya (1948-1960) and were exposed to DBP applied daily to their clothing as an acaricide to prevent tick-transmitted bush typhus. In addition, we modelled absorption of DBP from the soldiers' clothing and using published data for skin absorption, and calculated a large theoretical absorbed dose of 64 mg/kg body weight/day which is similar to DBP's lowest observed adverse effect level (LOAEL) of 50 mg/kg body weight/day and thus indicates a biological effect is possible. This is the first report of a multigenerational developmental effect following DBP exposure in human males.
    Matched MeSH terms: Plasticizers/adverse effects*; Plasticizers/chemistry
  10. Santhi VA, Mustafa AM
    Environ Monit Assess, 2013 Feb;185(2):1541-54.
    PMID: 22552495 DOI: 10.1007/s10661-012-2649-2
    A study on the quality of water abstracted for potable use was conducted in the Selangor River basin from November 2008 to July 2009. Seven sampling sites representing the intake points of water treatment plants in the basin were selected to determine the occurrence and level of 15 organochlorine pesticides (OCPs), six phthalate esters (PAEs) and bisphenol A (BPA). Results indicated OCPs were still detected regularly in 66.1 % of the samples with the Σ(15)OCPs ranging from 0.6-25.2 ng/L. The first data on PAEs contamination in the basin revealed Σ(6)PAEs concentrations were between 39.0 and 1,096.6 ng/L with a median concentration of 186.0 ng/L while BPA concentration ranged from <1.2 to 120.0 ng/L. Although di-n-butyl phthalate was detected in all the samples, concentrations of di-ethyl(hexyl)phthalate were higher. Sampling sites located downstream recorded the highest concentrations, together with samples collected during the dry season. Comparison of the detected contaminants with the Department of Environment Water Quality Index (DOE-WQI) showed some agreement between the concentration and the current classification of stream water. While the results suggest that the sites were only slightly polluted and suitable to be used as drinking water source, its presence is cause for concern especially to the fragile firefly "Pteroptyx tener" ecosystem located further downstream.
    Matched MeSH terms: Plasticizers/analysis*
  11. Guo Y, Alomirah H, Cho HS, Minh TB, Mohd MA, Nakata H, et al.
    Environ Sci Technol, 2011 Apr 1;45(7):3138-44.
    PMID: 21395215 DOI: 10.1021/es103879m
    The occurrence of 14 phthalate metabolites was found in human urine samples collected from seven Asian countries: China, India, Japan, Korea, Kuwait, Malaysia, and Vietnam. Phthalate metabolites were found in all samples, indicating widespread exposure of humans to phthalates in these Asian countries. The highest total (the sum of 14 phthalates) phthalate metabolite concentrations were found in samples collected from Kuwait (median: 1050 ng/mL), followed in decreasing order by samples from India (389 ng/mL), China (234 ng/mL), Vietnam (133 ng/mL), Japan (120 ng/mL), Korea (117 ng/mL), and Malaysia (94.9 ng/mL). The creatinine-adjusted median concentrations of total phthalates for urine samples from Kuwait, India, China, Vietnam, Japan, Korea, and Malaysia were 692, 506, 289, 119, 103, 104, and 169 μg/g creatinine, respectively. Monomethyl phthalate (mMP), monoethyl phthalate (mEP), mono (2-isobutyl phthalate) (miBP), mono-n-butyl phthalate (mBP), and metabolites of di-(2-ethylhexyl) phthalate (DEHP) were the dominant compounds, collectively accounting for >95% of the total concentrations in the samples from the seven countries. The profiles of urinary phthalate metabolite concentrations varied among the samples collected from the seven countries. Urine samples from Kuwait contained the highest concentrations of mEP (median: 391 ng/mL), mBP (94.1 ng/mL), and the metabolites of DEHP (202 ng/mL), whereas samples from China and Japan contained the highest concentrations of miBP (50.8 ng/mL) and mMP (17.5 ng/mL), respectively. mEP was the predominant metabolite in urine samples from India and Kuwait (accounting for 49% of the total), mBP and miBP were the predominant compounds in samples from China (52%), and DEHP metabolites were the predominant compounds in samples from Korea (46%) and Vietnam (52%). Based on the urinary concentrations of mEP, mBP, miBP, and DEHP metabolites of the samples from the seven Asian countries, we estimated daily intake rates of diethyl phthalate (DEP), dibutyl phthalate (DBP), and DEHP. The results indicated that people in the seven Asian countries are exposed to DEP, DBP, and DEHP at levels well below the reference doses (RfD) suggested as unsafe by the U.S. Environmental Protection Agency (EPA). The estimated exposure doses to DEHP in Kuwait, however, were above the RfD recommended by the EPA.
    Matched MeSH terms: Plasticizers/metabolism
  12. Winie T, Arof AK
    Spectrochim Acta A Mol Biomol Spectrosc, 2006 Mar 1;63(3):677-84.
    PMID: 16157506
    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF(3)SO(3))-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF(3)SO(3) interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR)(2), CONHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF(3)SO(3) has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li(+) ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.
    Matched MeSH terms: Plasticizers/chemistry
  13. Praveena SM, Siok Fong C, Amaruddin AF
    J Steroid Biochem Mol Biol, 2021 10;213:105955.
    PMID: 34311089 DOI: 10.1016/j.jsbmb.2021.105955
    In Malaysia, inexpensive toys are sold in various urban and rural shops. Although safety regulations for toys are available in Malaysia there are limited reports about the chemicals in toys. Thus, this study aimed to assess the levels of phthalates (bis-[2-ethylhexyl] phthalate [DEHP], diethyl phthalate [DEP], diisobutyl phthalate [DiBP] and dibutyl phthalate [DBP]) in inexpensive toys sold at local markets in Kuala Lumpur (Malaysia) and its health risks to children. All 30 toys analysed exceeded the European Union limit (0.1 % by mass) indicating that the phthalate used as plasticizers is still prominent in toys. Bis-[2-ethylhexyl] phthalate (DEHP) was the highest detected phthalate in toy sample which was manufactured in Malaysia and sold without Malaysian Conformity Mark. Significant association was found between phthalate levels and country, indicating a need to monitor and raise public awareness about potential toxic chemicals in inexpensive toys and children's products. There are few inexpensive toys that have a hazard index value of more than one, which is associated with developmental toxicity and causes developmental effects in children. Given the severity and complexity of these toys to children health, there is a need for regular monitoring and effective enforcements to develop an acceptable baseline level of children toys products manufactured in or imported to Malaysia. Furthermore, risk management efforts should also include all the stakeholders involved in toy production, policy makers as well as consumers to ensure only toy products with proper labels being sole and purchased.
    Matched MeSH terms: Plasticizers/toxicity*
  14. Rezayi M, Heng LY, Kassim A, Ahmadzadeh S, Abdollahi Y, Jahangirian H
    Sensors (Basel), 2012;12(7):8806-14.
    PMID: 23012518
    Novel ionophores comprising various hydroxide and amine structures were immobilized onto poly(vinyl chloride) (PVC) matrices, and these were examined to determine Ti(III) selectivity. To predict the selectivity of Ti(III), a PVC membrane was used to investigate the binding of Ti(III) to c-methylcalix[4]resorcinarene (CMCR). The study showed that the chelating ligand, CMCR, was coordinated selectively to Ti(III) at eight coordination sites involving the oxygen atoms at the interface of the membrane/solution. The membrane was prepared, based on CMCR as an ionophore, sodium tetrakis(4-fluorophenyl) borate (NaTFPB) as a lipophilic ionic additive, and dioctylphthalate (DOP) as a plasticizer. The immobilization of the ionophore and surface characterization studies revealed that the performance of CMCR-immobilized PVC was equivalent to that of mobile ionophores in supported liquid membranes (SLMs). The strengths of the ion-ionophore (CMCR-Ti(OH)(OH(2))(5) (2+)) interactions and the role of ionophores on membranes were studied via UV-Vis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and and X-ray diffraction (XRD).
    Matched MeSH terms: Plasticizers
  15. Saad B, Ariffin M, Saleh MI
    Talanta, 1998 Dec;47(5):1231-6.
    PMID: 18967428
    A flow injection potentiometric method for the rapid determination of paraquat in herbicide formulations and biological samples is described. It is based on the utilization of a flow-through potentiometric detector containing polyvinyl chloride-immobilised octamethylcyclotetrasiloxane, a lipophilic plasticizer (tetra-n-undecyl 3,3',4,4'-benzophenone tetracarboxylate) and membrane additive potassium tetrakis(4-chlorophenyl)borate. The detector was minimally interfered by the presence of constituents such as Na(+), K(+), Ca(2+), Mg(2+), glucose, urea, lactic and citric acids at physiological levels, respectively. Good correlation between results of the proposed method and HPLC for the formulation samples was found, while results for the determination of paraquat in biological samples such as urine, vomitus and stomach washout was less satisfactory.
    Matched MeSH terms: Plasticizers
  16. Saad B, Kanapathy K, Ahmad MN, Hussin AH, Ismail Z
    Talanta, 1991 Dec;38(12):1399-402.
    PMID: 18965315
    Three main types of PVC solvent polymeric membrane ion-selective electrodes for chloroquine are described. They are based on three ion-pairing agents namely dipicrylamine (DPA), tetraphenylborate (TPB) or tetrakis(4-chlorophenyl)borate (TCPB) with either dioctylphenyl phosphonate (DOPP) or trioctyl phosphate (TOP) solvent mediator. All electrodes exhibit Nernstian responses, fast dynamic response times and a wide useful pH range. The best all-round electrode is based on TPB and TOP plasticizing solvent mediators with a limit of detection of 7.1 x 10(-6)M and was utilized for the assay of chloroquine in tablets. Direct potentiometric determinations with either the analyte addition method or the normal calibration method gave results comparable to the official method.
    Matched MeSH terms: Plasticizers
  17. B Aziz S, Brza MA, Brevik I, Hafiz MH, Asnawi ASFM, Yusof YM, et al.
    Polymers (Basel), 2020 Sep 16;12(9).
    PMID: 32947829 DOI: 10.3390/polym12092103
    This research paper investigates the electrochemical performance of chitosan (CS): dextran (DX) polymer-blend electrolytes (PBEs), which have been developed successfully with the incorporation of ammonium hexafluorophosphate (NH4PF6). X-ray diffraction (XRD) analysis indicates that the plasticized electrolyte system with the highest value of direct current (DC) ionic conductivity is the most amorphous system. The glycerol addition increased the amorphous phase and improved the ionic dissociation, which contributed to the enhancement of the fabricated device's performance. Transference number analysis (TNM) has shown that the charge transport process is mainly by ions rather than electrons, as tion = 0.957. The CS:DX:NH4PF6 system was found to decompose as the voltage goes beyond 1.5 V. Linear sweep voltammetry (LSV) revealed that the potential window for the most plasticized system is 1.5 V. The fabricated electrochemical double-layer capacitor (EDLC) was analyzed with cyclic voltammetry (CV) and charge-discharge analysis. The results from CV verify that the EDLC in this work holds the characteristics of a capacitor. The imperative parameters of the fabricated EDLC such as specific capacitance and internal resistance were found to be 102.9 F/g and 30 Ω, respectively. The energy stored and power delivered by the EDLC were 11.6 Wh/kg and 2741.2 W/kg, respectively.
    Matched MeSH terms: Plasticizers
  18. Dannoun EMA, Aziz SB, Brza MA, M Nofal M, Asnawi ASFM, Yusof YM, et al.
    Polymers (Basel), 2020 Oct 29;12(11).
    PMID: 33138114 DOI: 10.3390/polym12112531
    In this work, plasticized magnesium ion-conducting polymer blend electrolytes based on chitosan:methylcellulose (CS:MC) were prepared using a solution cast technique. Magnesium acetate [Mg(CH3COO)2] was used as a source of the ions. Nickel metal-complex [Ni(II)-complex)] was employed to expand the amorphous phase. For the ions dissociation enhancement, glycerol plasticizer was also engaged. Incorporating 42 wt% of the glycerol into the electrolyte system has been shown to improve the conductivity to 1.02 × 10-4 S cm-1. X-ray diffraction (XRD) analysis showed that the electrolyte with the highest conductivity has a minimum crystallinity degree. The ionic transference number was estimated to be more than the electronic transference number. It is concluded that in CS:MC:Mg(CH3COO)2:Ni(II)-complex:glycerol, ions are the primary charge carriers. Results from linear sweep voltammetry (LSV) showed electrochemical stability to be 2.48 V. An electric double-layer capacitor (EDLC) based on activated carbon electrode and a prepared solid polymer electrolyte was constructed. The EDLC cell was then analyzed by cyclic voltammetry (CV) and galvanostatic charge-discharge methods. The CV test disclosed rectangular shapes with slight distortion, and there was no appearance of any redox currents on both anodic and cathodic parts, signifying a typical behavior of EDLC. The EDLC cell indicated a good cyclability of about (95%) for throughout of 200 cycles with a specific capacitance of 47.4 F/g.
    Matched MeSH terms: Plasticizers
  19. Jau CL, Wan Aizan Wan Abdul Rahman, Avérous L, Teck HL
    Sains Malaysiana, 2016;45:633-641.
    This paper reports the post-processing ageing phenomena of thermoplastic sago starch (TPS) and plasticised sago pith waste (SPW), which were processed using twin-screw extrusion and compression moulding techniques. Wide angle X-ray diffraction (XRD) analyses showed that after processing, starch molecules rearranged into VH-type (which was formed rapidly right post processing and concluded within 4 days) and B-type (which was formed slowly over a period of months) crystallites. Evidence from Fourier transform infrared spectroscopy (FTIR) analyses corroborated the 2-stage crystallisation process, which observed changes in peak styles and peak intensities (at 1043 and 1026 cm-1) and bandnarrowing. Thermogravimetric analysis (TGA) studies showed that the thermal stability of plasticised SPW declined continuously for 90 days before gradual increments ensued. For all formulations tested, post-processing ageing led to drastic changes in the tensile strength (increased) and elongation at break (decreased). Glycerol and fibres restrained the retrogradation of starch molecules in TPS and SPW.
    Matched MeSH terms: Plasticizers
  20. Alrimawi BH, Chan MY, Ooi XY, Chan SY, Goh CF
    Polymers (Basel), 2021 Feb 15;13(4).
    PMID: 33671895 DOI: 10.3390/polym13040578
    Rice starch is a promising biomaterial for thin film development in buccal drug delivery, but the plasticisation and antiplasticisation phenomena from both plasticisers and drugs on the performance of rice starch films are not well understood. This study aims to elucidate the competing effects of sorbitol (plasticiser) and drug (antiplasticiser) on the physicochemical characteristics of rice starch films containing low paracetamol content. Rice starch films were prepared with different sorbitol (10, 20 and 30% w/w) and paracetamol contents (0, 1 and 2% w/w) using the film casting method and were characterised especially for drug release, swelling and mechanical properties. Sorbitol showed a typical plasticising effect on the control rice starch films by increasing film flexibility and by reducing swelling behaviour. The presence of drugs, however, modified both the mechanical and swelling properties by exerting an antiplasticisation effect. This antiplasticisation action was found to be significant at a low sorbitol level or a high drug content. FTIR investigations supported the antiplasticisation action of paracetamol through the disturbance of sorbitol-starch interactions. Despite this difference, an immediate drug release was generally obtained. This study highlights the interplay between plasticiser and drug in influencing the mechanical and swelling characteristics of rice starch films at varying concentrations.
    Matched MeSH terms: Plasticizers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links