Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Zakaria ZA, Abdul Rahim MH, Roosli RAJ, Mohd Sani MH, Omar MH, Mohd Tohid SF, et al.
    Pain Res Manag, 2018;2018:9536406.
    PMID: 29686743 DOI: 10.1155/2018/9536406
    Methanolic extract of Clinacanthus nutans Lindau leaves (MECN) has been proven to possess antinociceptive activity that works via the opioid and NO-dependent/cGMP-independent pathways. In the present study, we aimed to further determine the possible mechanisms of antinociception of MECN using various nociceptive assays. The antinociceptive activity of MECN was (i) tested against capsaicin-, glutamate-, phorbol 12-myristate 13-acetate-, bradykinin-induced nociception model; (ii) prechallenged against selective antagonist of opioid receptor subtypes (β-funaltrexamine, naltrindole, and nor-binaltorphimine); (iii) prechallenged against antagonist of nonopioid systems, namely, α2-noradrenergic (yohimbine), β-adrenergic (pindolol), adenosinergic (caffeine), dopaminergic (haloperidol), and cholinergic (atropine) receptors; (iv) prechallenged with inhibitors of various potassium channels (glibenclamide, apamin, charybdotoxin, and tetraethylammonium chloride). The results demonstrated that the orally administered MECN (100, 250, and 500 mg/kg) significantly (p < 0.05) reversed the nociceptive effect of all models in a dose-dependent manner. Moreover, the antinociceptive activity of 500 mg/kg MECN was significantly (p < 0.05) inhibited by (i) antagonists of μ-, δ-, and κ-opioid receptors; (ii) antagonists of α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and (iii) blockers of different K+ channels (voltage-activated-, Ca2+-activated, and ATP-sensitive-K+ channels, resp.). In conclusion, MECN-induced antinociception involves modulation of protein kinase C-, bradykinin-, TRVP1 receptors-, and glutamatergic-signaling pathways; opioidergic, α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and nonopioidergic receptors as well as the opening of various K+ channels. The antinociceptive activity could be associated with the presence of several flavonoid-based bioactive compounds and their synergistic action with nonvolatile bioactive compounds.
    Matched MeSH terms: Potassium Channels/metabolism
  2. Zhang J, Mohamad FH, Wong JH, Mohamad H, Ismail AH, Mohamed Yusoff AA, et al.
    Malays J Med Sci, 2018 Feb;25(1):101-113.
    PMID: 29599640 DOI: 10.21315/mjms2018.25.1.12
    Background: Bamboo shoot has been used as a treatment for epilepsy in traditional Chinese medicine for generations to treat neuronal disorders such as convulsive, dizziness and headaches. 4-hydroxybenzoic acid (4-hba) is a non-flavonoid phenol found abundantly inDendrocalamus aspershoots (bamboo), fruits (strawberries and apples) and flowers. Kv1.4 is a rapidly inactivatingShaker-related member of the voltage-gated potassium channels with two inactivation mechanisms; the fast N-type and slow C-type. It plays vital roles in repolarisation, hyperpolarisation and signaling the restoration of resting membrane potential through the regulation of the movement of K+across the cellular membrane.

    Methods: Chemical compounds fromDendrocalamus asperbamboo shoots were purified and identified as major palmitic acids mixed with other minor fatty acids, palmitic acid, 4-hydroxybenzaldehyde, lauric acid, 4-hydroxybenzoic acid and cholest-4-ene-3-one. The response of synthetic 4-hydroxybenzoic acid was tested on Kv1.4 potassium channel which was injected into viable oocytes that was extracted fromXenopus laevis. The current were detected by the two-microelectrode voltage clamp, holding potential starting from -80 mV with 20 mV step-up until +80 mV. Readings of treatments with 0.1% DMSO, 4-hba concentrations and K channel blockers were taken at +60 mV. The ratio of tail/peak amplitude is the index of the activity of the Kv1.4 channels withn≥ 6 (number of oocytes tested). The decreases of the ratios of five different concentrations (1 μM, 10 μM, 100 μM, 1 mM and 2.5 mM) were compared with 0.1% DMSO as the control.

    Results: All concentration showed statistically significant results withP< 0.05 except for 100 μM. The normalised current of the 4-hba concentrations were compared with potassium channel blockers (TEA and 4-AP) and all groups showed statistically significant results. This study also showed that time taken for each concentration to affect Kv1.4 does not play any significant roles.

    Conclusion: 4-hydroxybenzoic acid was found to be able to enhance the inactivation of Kv1.4 by lowering the membrane potential so that the abnormal neuronal firing can be inhibited. With IC50 slightly higher than 10 μM, increasing concentrations (100 μM, 1 mM and 2.5 mM) had shown to exhibit toxicity effects. The best concentration from this study is 10 μM with Hill slope of 0.1799.

    Matched MeSH terms: Potassium Channels, Voltage-Gated
  3. Abdelwahab SI, Mohamed AH, Mohamed OY, Oall M, Taha MM, Mohan S, et al.
    PMID: 21747892 DOI: 10.1155/2012/137386
    Clerodendron capitatum (Willd) (family: verbenaceae) is locally named as Gung and used traditionally to treat erectile dysfunction. Therefore, the current study was designed to investigate the erectogenic properties of C. capitatum. The relaxation effect of this plant was tested on phenylephrine precontracted rabbit corpus cavernosum smooth muscle (CCSM). The effects of C. capitatum were also examined on isolated Guinea pig atria alone, in the presence of calcium chloride (Ca(2+) channel blocker), atropine (cholinergic blocker), and glibenclamide (ATP-sensitive K(+) channel blocker). These effects were confirmed on isolated rabbit aortic strips. The extract, when tested colorimetrically for its inhibitory activities on phosphordiesterase-5 (PDE-5) in vitro towards p-nitrophenyl phenyl phosphate (PNPPP), was observed to induce significant dose-dependent inhibition of PDE-5, with an ID(50) of 0.161 mg/ml (P < .05). In conclusion, our results suggest that C. capitatum possesses a relaxant effect on CCSM, which is attributable to the inhibition of PDE-5, but not mediated by the release calcium, activation of adrenergic or cholinergic receptors, or the activation of potassium channels.
    Matched MeSH terms: Potassium Channels
  4. Tan GC, Negro G, Pinggera A, Tizen Laim NMS, Mohamed Rose I, Ceral J, et al.
    Hypertension, 2017 07;70(1):129-136.
    PMID: 28584016 DOI: 10.1161/HYPERTENSIONAHA.117.09057
    Mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, and CTNNB1 are thought to cause the excessive autonomous aldosterone secretion of aldosterone-producing adenomas (APAs). The histopathology of KCNJ5 mutant APAs, the most common and largest, has been thoroughly investigated and shown to have a zona fasciculata-like composition. This study aims to characterize the histopathologic spectrum of the other genotypes and document the proliferation rate of the different sized APAs. Adrenals from 39 primary aldosteronism patients were immunohistochemically stained for CYP11B2 to confirm diagnosis of an APA. Twenty-eight adenomas had sufficient material for further analysis and were target sequenced at hot spots in the 5 causal genes. Ten adenomas had a KCNJ5 mutation (35.7%), 7 adenomas had an ATP1A1 mutation (25%), and 4 adenomas had a CACNA1D mutation (14.3%). One novel mutation in exon 28 of CACNA1D (V1153G) was identified. The mutation caused a hyperpolarizing shift of the voltage-dependent activation and inactivation and slowed the channel's inactivation kinetics. Immunohistochemical stainings of CYP17A1 as a zona fasciculata cell marker and Ki67 as a proliferation marker were used. KCNJ5 mutant adenomas showed a strong expression of CYP17A1, whereas ATP1A1/CACNA1D mutant adenomas had a predominantly negative expression (P value =1.20×10-4). ATP1A1/CACNA1D mutant adenomas had twice the nuclei with intense staining of Ki67 than KCNJ5 mutant adenomas (0.7% [0.5%-1.9%] versus 0.4% [0.3%-0.7%]; P value =0.04). Further, 3 adenomas with either an ATP1A1 mutation or a CACNA1D mutation had >30% nuclei with moderate Ki67 staining. In summary, similar to KCNJ5 mutant APAs, ATP1A1 and CACNA1D mutant adenomas have a seemingly specific histopathologic phenotype.
    Matched MeSH terms: G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics*
  5. Nikoui V, Ostadhadi S, Azhand P, Zolfaghari S, Amiri S, Foroohandeh M, et al.
    Eur J Pharmacol, 2016 Nov 15;791:369-376.
    PMID: 27615446 DOI: 10.1016/j.ejphar.2016.09.017
    Evidence show that gamma-aminobutyric acid (GABA) receptors are involved in depression, so the aim of this study was to investigate the effect of nitrazepam as agonist of GABAA receptors on depression and curiosity in male mice and the role of potassium channel in antidepressant-like response. For this purpose, we studied the antidepressant-like properties of fluoxetine, nitrazepam, glibenclamide, and cromakalim by both forced swimming test (FST) and tail suspension test (TST). Animals were injected by various doses of nitrazepam (0.05, 0.1, and 0.5mg/kg). Nitrazepam at dose of 0.5mg/kg significantly decreased the immobility time compared to control group in both FST and TST. Fluoxetine also showed such a response. Co-administration of nitrazepam (0.05mg/kg) with glibenclamide in TST (1mg/kg) and in FST (0.3, 1mg/kg) also showed antidepressant-like response. Beside, cromakalim (0.1mg/kg) could reverse the antidepressant-like effect of nitrazepam (0.5mg/kg) in both FST and TST, while cromakalim and glibenclamide alone could not change the immobility time compared to control group (P>0.05). The hole-board test revealed that nitrazepam at doses of 0.5 and 0.1mg/kg could increase the activity of the animal's head-dipping and boost the curiosity and exploration behavior of mice. The results of this study revealed that nitrazepam may possess antidepressant-like properties and this effect is dependent to potassium channels in both FST and TST.
    Matched MeSH terms: Potassium Channels/metabolism*
  6. John CM, Khaddaj Mallat R, Mishra RC, George G, Singh V, Turnbull JD, et al.
    Pharmacol Res, 2020 01;151:104539.
    PMID: 31707036 DOI: 10.1016/j.phrs.2019.104539
    Aging represents an independent risk factor for the development of cardiovascular disease, and is associated with complex structural and functional alterations in the vasculature, such as endothelial dysfunction. Small- and intermediate-conductance, Ca2+-activated K+ channels (KCa2.3 and KCa3.1, respectively) are prominently expressed in the vascular endothelium, and pharmacological activators of these channels induce robust vasodilation upon acute exposure in isolated arteries and intact animals. However, the effects of prolonged in vivo administration of such compounds are unknown. In our study, we hypothesized that such treatment would ameliorate aging-related cardiovascular deficits. Aged (∼18 months) male Sprague Dawley rats were treated daily with either vehicle or the KCa channel activator SKA-31 (10 mg/kg, intraperitoneal injection; n = 6/group) for 8 weeks, followed by echocardiography, arterial pressure myography, immune cell and plasma cytokine characterization, and tissue histology. Our results show that SKA-31 administration improved endothelium-dependent vasodilation, reduced agonist-induced vascular contractility, and prevented the aging-associated declines in cardiac ejection fraction, stroke volume and fractional shortening, and further improved the expression of endothelial KCa channels and associated cell signalling components to levels similar to those observed in young male rats (∼5 months at end of study). SKA-31 administration did not promote pro-inflammatory changes in either T cell populations or plasma cytokines/chemokines, and we observed no overt tissue histopathology in heart, kidney, aorta, brain, liver and spleen. SKA-31 treatment in young rats had little to no effect on vascular reactivity, select protein expression, tissue histology, plasma cytokines/chemokines or immune cell properties. Collectively, these data demonstrate that administration of the KCa channel activator SKA-31 improved aging-related cardiovascular function, without adversely affecting the immune system or promoting tissue toxicity.
    Matched MeSH terms: Potassium Channels, Calcium-Activated/metabolism; Potassium Channels, Calcium-Activated/agonists*
  7. Zhou J, Lam B, Neogi SG, Yeo GS, Azizan EA, Brown MJ
    Hypertension, 2016 12;68(6):1424-1431.
    PMID: 27777363
    Primary aldosteronism is present in ≈10% of hypertensives. We previously performed a microarray assay on aldosterone-producing adenomas and their paired zona glomerulosa and fasciculata. Confirmation of top genes validated the study design and functional experiments of zona glomerulosa selective genes established the role of the encoded proteins in aldosterone regulation. In this study, we further analyzed our microarray data using AmiGO 2 for gene ontology enrichment and Ingenuity Pathway Analysis to identify potential biological processes and canonical pathways involved in pathological and physiological aldosterone regulation. Genes differentially regulated in aldosterone-producing adenoma and zona glomerulosa were associated with steroid metabolic processes gene ontology terms. Terms related to the Wnt signaling pathway were enriched in zona glomerulosa only. Ingenuity Pathway Analysis showed "NRF2-mediated oxidative stress response pathway" and "LPS (lipopolysaccharide)/IL-1 (interleukin-1)-mediated inhibition of RXR (retinoid X receptor) function" were affected in both aldosterone-producing adenoma and zona glomerulosa with associated genes having up to 21- and 8-fold differences, respectively. Comparing KCNJ5-mutant aldosterone-producing adenoma, zona glomerulosa, and zona fasciculata samples with wild-type samples, 138, 56, and 59 genes were differentially expressed, respectively (fold-change >2; P<0.05). ACSS3, encoding the enzyme that synthesizes acetyl-CoA, was the top gene upregulated in KCNJ5-mutant aldosterone-producing adenoma compared with wild-type. NEFM, a gene highly upregulated in zona glomerulosa, was upregulated in KCNJ5 wild-type aldosterone-producing adenomas. NR4A2, the transcription factor for aldosterone synthase, was highly expressed in zona fasciculata adjacent to a KCNJ5-mutant aldosterone-producing adenoma. Further interrogation of these genes and pathways could potentially provide further insights into the pathology of primary aldosteronism.
    Matched MeSH terms: G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics*
  8. Jeevaratnam K, Chadda KR, Huang CL, Camm AJ
    J Cardiovasc Pharmacol Ther, 2018 03;23(2):119-129.
    PMID: 28946759 DOI: 10.1177/1074248417729880
    The development of novel drugs specifically directed at the ion channels underlying particular features of cardiac action potential (AP) initiation, recovery, and refractoriness would contribute to an optimized approach to antiarrhythmic therapy that minimizes potential cardiac and extracardiac toxicity. Of these, K+ channels contribute numerous and diverse currents with specific actions on different phases in the time course of AP repolarization. These features and their site-specific distribution make particular K+ channel types attractive therapeutic targets for the development of pharmacological agents attempting antiarrhythmic therapy in conditions such as atrial fibrillation. However, progress in the development of such temporally and spatially selective antiarrhythmic drugs against particular ion channels has been relatively limited, particularly in view of our incomplete understanding of the complex physiological roles and interactions of the various ionic currents. This review summarizes the physiological properties of the main cardiac potassium channels and the way in which they modulate cardiac electrical activity and then critiques a number of available potential antiarrhythmic drugs directed at them.
    Matched MeSH terms: Potassium Channels/drug effects; Potassium Channels/metabolism*
  9. Neesha Sundramoorthy, Khaiteri R., Jer Ming Low, Chan Soon Thim Darren
    MyJurnal
    Introduction: Artemether and lumefantrine was registered as Riamet in Switzerland in 1999 and is commonly used in Keningau Hospital for managing uncomplicated malaria. Riamet works at the food vacoule of the malarial parasite, where they interfere with the conversion of heme into haemozoin. Case description: We report a case of Riamet induced prolonged corrected QT interval (QTc) in a 37 year old gentleman admitted for severe malaria (hypotension) with normal QTc of 420msc on presentation. Upon starting Riamet, he developed bradycardia and ECG showed sinus bradycardia with prolonged QTc of 551msec and no arrythmias. Echocardiography showed no structural heart abnormalities. All electrolytes were within normal range. He was monitored in cardiac care unit with decision to complete 6 doses of Riamet. Patient was started on Dopamine infusion which maintained his blood pressure and heart rate within normal range. 5 days post Riamet completion, his heart rate improved and dopamine infusion was tapered off and QTc normalized to 407msc. Discussion: The most common mechanism of drugs causing QT inter-val prolongation is by blocking the human ether-à-go-go related gene (hERG) potassium channel. Blockage of the hEGR channel lengthens ventricular re-polarization and duration of ventricular action potential which is reflected in ECG as prolonged QT interval. In the in-vitro whole cell patch clamp study, lumefantrine and its metabolite desbu-tyl-lumefantrine showed a concentration-dependent inhibition of the hERG current. The period of QTc prolongation was 3.5 to 4 days after the last dose of the standard 6 dose regimen. Conclusion: Riamet induced prolonged QTc is a very rare complication. A baseline electrocardiography is therefore imminent for every patient prior to initiation of this medication to avoid cardiac arrythmias.
    Matched MeSH terms: Potassium Channels
  10. Haghvirdizadeh P, Mohamed Z, Abdullah NA, Haghvirdizadeh P, Haerian MS, Haerian BS
    J Diabetes Res, 2015;2015:908152.
    PMID: 26448950 DOI: 10.1155/2015/908152
    Diabetes mellitus (DM) is a major worldwide health problem and its prevalence has been rapidly increasing in the last century. It is caused by defects in insulin secretion or insulin action or both, leading to hyperglycemia. Of the various types of DM, type 2 occurs most frequently. Multiple genes and their interactions are involved in the insulin secretion pathway. Insulin secretion is mediated through the ATP-sensitive potassium (KATP) channel in pancreatic beta cells. This channel is a heteromeric protein, composed of four inward-rectifier potassium ion channel (Kir6.2) tetramers, which form the pore of the KATP channel, as well as sulfonylurea receptor 1 subunits surrounding the pore. Kir6.2 is encoded by the potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) gene, a member of the potassium channel genes. Numerous studies have reported the involvement of single nucleotide polymorphisms of the KCNJ11 gene and their interactions in the susceptibility to DM. This review discusses the current evidence for the contribution of common KCNJ11 genetic variants to the development of DM. Future studies should concentrate on understanding the exact role played by these risk variants in the development of DM.
    Matched MeSH terms: Potassium Channels, Inwardly Rectifying/genetics*
  11. Hussain S, Mohd Ali J, Jalaludin MY, Harun F
    Pediatr Diabetes, 2013 Jun;14(4):299-303.
    PMID: 23350652 DOI: 10.1111/pedi.12011
    We report a rare case of permanent neonatal diabetes (PND) due to insulin (INS) gene mutation in a 51-month-old girl who presented with hyperglycemia in the neonatal period. Mutational analysis of KCNJ11 and INS was performed and this detected a novel heterozygous c.38T>G (p.Leu13Arg) INS de novo mutation. The non-conservative change substitutes the highly conserved L(13) residue within the hydrophobic core region of the preproinsulin signal peptide. Given the frequent tendency of heterozygous INS mutations to exhibit dominant negative disease pathogenesis, it is likely that the mutant preproinsulin perturbed the non-mutant counterpart progression and processing within the β-cells, and this resulted to a permanent form of congenital diabetes.
    Matched MeSH terms: Potassium Channels, Inwardly Rectifying/genetics
  12. Salvage SC, Chandrasekharan KH, Jeevaratnam K, Dulhunty AF, Thompson AJ, Jackson AP, et al.
    Br J Pharmacol, 2018 Apr;175(8):1260-1278.
    PMID: 28369767 DOI: 10.1111/bph.13807
    Flecainide suppresses cardiac tachyarrhythmias including paroxysmal atrial fibrillation, supraventricular tachycardia and arrhythmic long QT syndromes (LQTS), as well as the Ca2+ -mediated, catecholaminergic polymorphic ventricular tachycardia (CPVT). However, flecainide can also exert pro-arrhythmic effects most notably following myocardial infarction and when used to diagnose Brugada syndrome (BrS). These divergent actions result from its physiological and pharmacological actions at multiple, interacting levels of cellular organization. These were studied in murine genetic models with modified Nav channel or intracellular ryanodine receptor (RyR2)-Ca2+ channel function. Flecainide accesses its transmembrane Nav 1.5 channel binding site during activated, open, states producing a use-dependent antagonism. Closing either activation or inactivation gates traps flecainide within the pore. An early peak INa related to activation of Nav channels followed by rapid de-activation, drives action potential (AP) upstrokes and their propagation. This is diminished in pro-arrhythmic conditions reflecting loss of function of Nav 1.5 channels, such as BrS, accordingly exacerbated by flecainide challenge. Contrastingly, pro-arrhythmic effects attributed to prolonged AP recovery by abnormal late INaL following gain-of-function modifications of Nav 1.5 channels in LQTS3 are reduced by flecainide. Anti-arrhythmic effects of flecainide that reduce triggering in CPVT models mediated by sarcoplasmic reticular Ca2+ release could arise from its primary actions on Nav channels indirectly decreasing [Ca2+ ]i through a reduced [Na+ ]i and/or direct open-state RyR2-Ca2+ channel antagonism. The consequent [Ca2+ ]i alterations could also modify AP propagation velocity and therefore arrhythmic substrate through its actions on Nav 1.5 channel function. This is consistent with the paradoxical differences between flecainide actions upon Na+ currents, AP conduction and arrhythmogenesis under circumstances of normal and increased RyR2 function.

    LINKED ARTICLES: This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.

    Matched MeSH terms: Potassium Channels/physiology
  13. Vazifehkhah Ghaffari B, Kouhnavard M, Aihara T, Kitajima T
    Biomed Res Int, 2015;2015:135787.
    PMID: 25960999 DOI: 10.1155/2015/135787
    Various types of neurons exhibit subthreshold resonance oscillation (preferred frequency response) to fluctuating sinusoidal input currents. This phenomenon is well known to influence the synaptic plasticity and frequency of neural network oscillation. This study evaluates the resonant properties of pacemaker pyloric dilator (PD) neurons in the central pattern generator network through mathematical modeling. From the pharmacological point of view, calcium currents cannot be blocked in PD neurons without removing the calcium-dependent potassium current. Thus, the effects of calcium (I(Ca)) and calcium-dependent potassium (I(KCa)) currents on resonant properties remain unclear. By taking advantage of Hodgkin-Huxley-type model of neuron and its equivalent RLC circuit, we examine the effects of changing resting membrane potential and those ionic currents on the resonance. Results show that changing the resting membrane potential influences the amplitude and frequency of resonance so that the strength of resonance (Q-value) increases by both depolarization and hyperpolarization of the resting membrane potential. Moreover, hyperpolarization-activated inward current (I(h)) and I(Ca) (in association with I(KCa)) are dominant factors on resonant properties at hyperpolarized and depolarized potentials, respectively. Through mathematical analysis, results indicate that I h and I(KCa) affect the resonant properties of PD neurons. However, I(Ca) only has an amplifying effect on the resonance amplitude of these neurons.
    Matched MeSH terms: Potassium Channels, Calcium-Activated/metabolism
  14. Lim SY, Mason WP, Young NP, Chen R, Bower JH, McKeon A, et al.
    Arch. Neurol., 2009 Oct;66(10):1285-7.
    PMID: 19822786 DOI: 10.1001/archneurol.2009.203
    OBJECTIVE:
    To describe and provide audiovisual documentation of a syndrome of polymyoclonus, laryngospasm, and cerebellar ataxia associated with adenocarcinoma and multiple neural cation channel autoantibodies.

    DESIGN:
    Case report with video.

    SETTING:
    University hospitals. Patient A 69-year-old woman presented with subacute onset of whole-body tremulousness and laryngospasm attributed to gastroesophageal reflux.

    RESULTS:
    Further evaluation revealed polymyoclonus, cerebellar ataxia, and laryngospasm suspicious of an underlying malignant neoplasm. Surface electromyography of multiple limb muscles confirmed the presence of polymyoclonus. The patient was seropositive for P/Q-type voltage-gated calcium channel antibody; subsequently, whole-body fluorine 18 fluorodeoxyglucose positron emission tomography and cervical lymph node biopsy revealed widespread metastatic adenocarcinoma. Follow-up serologic evaluation revealed calcium channel antibodies (P/Q type and N type) and potassium channel antibody.

    CONCLUSIONS:
    We highlight the importance of recognizing polymyoclonus. To our knowledge, this is also the first description of a syndrome of polymyoclonus, laryngospasm, and ataxia associated with adenocarcinoma and these cation channel antibodies.
    Matched MeSH terms: Potassium Channels/immunology
  15. Hall DA, Ray J, Watson J, Sharman A, Hutchison J, Harris P, et al.
    Hear Res, 2019 06;377:153-166.
    PMID: 30939361 DOI: 10.1016/j.heares.2019.03.018
    AUT00063 is an experimental new medicine that has been demonstrated to suppress spontaneous hyperactivity by modulating the action of voltage-gated potassium-channels in central auditory cortical neurons of a rodent model. This neurobiological property makes it a good candidate for treating the central component of subjective tinnitus but this has not yet been tested in humans. The main purpose of the QUIET-1 (QUest In Eliminating Tinnitus) trial was to examine the effect of AUT00063 on the severity of tinnitus symptoms in people with subjective tinnitus. The trial was a randomised, placebo-controlled, observer, physician and participant blinded multi-centre superiority trial with two parallel groups and a primary endpoint of functional impact on tinnitus 28 days after the first drug dosing day. The trial design overcame the scale and logistical challenges of delivering a scientifically robust, statistically powered multi-centre study for subjective tinnitus within the National Health Service in England. The trial was terminated early for futility. Overall, 212 participants consented across 18 sites with 91 participants randomised to groups using age, gender, tinnitus symptom severity and hearing status as minimisation factors. While the pharmacokinetic markers confirm the uptake of AUT00063 in the body, within the expected therapeutic range, with respect to clinical benefit findings indicated that AUT00063 was not effective in alleviating tinnitus symptoms (1.56 point change in Tinnitus Functional Index). In terms of clinical harms, results indicated that a daily dose of 800 mg capsules of AUT00063 taken for 28 days was safe and well tolerated. These findings provide significant advances in the drug development field for hearing sciences, but raise questions about the predictive validity of certain rodent models of noise-induced hearing loss and tinnitus, as least for the mechanism evaluated in the present study. Trial Registration: (EudraCT) 2014-002179-27; NCT02315508.
    Matched MeSH terms: Shaw Potassium Channels/drug effects*; Shaw Potassium Channels/metabolism
  16. Koo SH, Ho WF, Lee EJ
    Br J Clin Pharmacol, 2006 Mar;61(3):301-8.
    PMID: 16487223
    To determine the genetic variability of long QT syndrome (LQTS)-associated genes (KCNQ1, HERG, KCNE1 and KCNE2) among three distinct ethnic groups in the Singapore population.
    Matched MeSH terms: Potassium Channels, Voltage-Gated/genetics*; Ether-A-Go-Go Potassium Channels/genetics
  17. Li X, Xu A, Sheng H, Ting TH, Mao X, Huang X, et al.
    Pediatr Diabetes, 2018 03;19(2):251-258.
    PMID: 28791793 DOI: 10.1111/pedi.12560
    BACKGROUND: Sulfonylurea therapy can improve glycemic control and ameliorate neurodevelopmental outcomes in patients suffering from neonatal diabetes mellitus (NDM) with KCNJ11 or ABCC8 mutations. As genetic testing results are often delayed, it remains controversial whether sulfonylurea treatment should be attempted immediately at diagnosis or doctors should await genetic confirmation.

    OBJECTIVE: This study aimed to investigate the effectiveness and safety of sulfonylurea therapy in Chinese NDM patients during infancy before genetic testing results were available.

    METHODS: The medical records of NDM patients with their follow-up details were reviewed and molecular genetic analysis was performed. Sulfonylurea transfer regimens were applied in patients diagnosed after May 2010, and glycemic status and side effects were evaluated in each patient.

    RESULTS: There were 23 NDM patients from 22 unrelated families, 10 had KCNJ11 mutations, 3 harbored ABCC8 mutations, 1 had INS mutations, 4 had chromosome 6q24 abnormalities, 1 had a deletion at chromosome 1p36.23p36.12, and 4 had no genetic abnormality identified. Sixteen NDM infants were treated with glyburide at an average age of 49 days (range 14-120 days) before genetic confirmation. A total of 11 of 16 (69%) were able to successfully switch to glyburide with a more stable glucose profile. The responsive glyburide dose was 0.51 ± 0.16 mg/kg/d (0.3-0.8 mg/kg/d), while the maintenance dose was 0.30 ± 0.07 mg/kg/d (0.2-0.4 mg/kg/d). No serious adverse events were reported.

    CONCLUSIONS: Molecular genetic diagnosis is recommended in all patients with NDM. However, if genetic testing results are delayed, sulfonylurea therapy should be considered before such results are received, even in infants with newly diagnosed NDM.

    Matched MeSH terms: Potassium Channels, Inwardly Rectifying/genetics; Potassium Channels, Inwardly Rectifying/chemistry
  18. Jabbari S, Abed DZ, Zakaria ZA, Mohammadi S
    Inflammopharmacology, 2023 Dec;31(6):3203-3216.
    PMID: 37792093 DOI: 10.1007/s10787-023-01342-6
    BACKGROUND: Chaerophyllum macropodum Boiss. (popularly known as "Jafari farangi kohestani") is a predominant medicinal plant traditionally utilized in the treatments of peritoneal inflammation and headache in Persian folk medicine. Here, we have revealed the anti-neuropathic and anti-nociceptive activities of C. macropodum leaves essential oil (CMEO) in addition to uncovering the possible mechanisms of action.

    METHODS: Formalin-induced paw licking model was used to assess the anti-nociceptive activity of CMEO and its major constituent, terpinolene (TP). The anti-nociceptive activity of these compounds was determined by investigating the roles of various non-opioid and NO-cGMP-K+ channels. Additionally, the anti-neuropathic potential of CMEO and TP was determined using cervical spinal cord contusion/CCS technique.

    RESULTS: The CMEO exerted significant anti-nociceptive activity with a remarkable activity seen in the second phase of formalin-induced paw licking model and this activity were remarkably reversed by pre-treatment of naloxone (an opioid antagonist). Pretreatment with several types of NO-cGMP-potassium channel pathway meaningfully reversed the anti-nociceptive potential of CMEO in phase II of formalin model. Moreover, pre-treatment with several antagonists of non-opioid receptors revealed that only the antagonist of TRPV-1, serotonin type 3, 5-HT2, α2 adrenergic, and CB1 receptors (capsaicin, ondansetron, ketanserin, yohimbine, and SR141716A, respectively) reversed CMEO anti-nociception. CMEO and TP also remarkably reversed hyperalgesia and mechanical allodynia in the CCS technique.

    CONCLUSION: The CMEO exerts anti-nociceptive and anti-neuropathic activities via the modulation of NO-cGMP potassium channel pathway, opioid as well as several non-opioid receptor activity. TP might partly contribute to the observed activities of CMEO.

    Matched MeSH terms: Potassium Channels
  19. Loganathan K, Moriya S, Parhar IS
    Zebrafish, 2018 10;15(5):473-483.
    PMID: 30102584 DOI: 10.1089/zeb.2018.1594
    Ambient light and temperature affect reproductive function by regulating kisspeptin and gonadotrophin-releasing hormone (GnRH) in vertebrates. Melatonin and melatonin receptors, as well as the two-pore domain K+ channel-related K+ (TREK) channels, are affected by light and/or temperature; therefore, these molecules could modulate kisspeptin and GnRH against ambient light and temperature. In this study, we investigated the effect of light and temperature, which affect melatonin levels in gene expression levels of TREK channels, kisspeptin, and GnRH. We first investigated the effects of different light and temperature conditions on brain melatonin concentrations by ELISA. Fish were exposed to either constant darkness, constant light, high temperature (35°C), or low temperature (20°C) for 72 h. Brain melatonin levels were significantly high under constant darkness and high temperature. We further investigated the effects of high brain melatonin levels by constant darkness and high temperature on gene expression levels of melatonin receptors (mt1, mt2, and mel1c), TREK channels (trek1b, trek2a, and trek2b), gnrh3, and kiss2 in the adult zebrafish brain by real-time polymerase chain reaction. Fish were exposed to constant darkness or elevated temperatures (35°C) for 72 h. trek2a, kiss2, and gnrh3 levels were increased under constant darkness. High temperature decreased gene expression levels of mt1, mt2, mel1c, and gnrh3 in the preoptic area, whereas other genes remained unchanged. Melatonin receptors, TREK channels, gnrh3, and kiss2 responded differently under high melatonin conditions. The melatonin receptors and the TREK channels could play roles in the regulation of reproduction by environmental cues, especially ambient light and temperature.
    Matched MeSH terms: Potassium Channels/genetics; Potassium Channels/metabolism*
  20. Loganathan K, Moriya S, Parhar IS
    Zoolog Sci, 2019 04 01;36(2):167-171.
    PMID: 31120653 DOI: 10.2108/zs180111
    The two-pore domain potassium ion (K + ) channel-related K + (TREK) channel and melatonin receptors play roles in the regulation of reproduction in zebrafish. Since reproduction is regulated by diurnal rhythms, the TREK family and melatonin receptors may exhibit diurnal rhythms in expression. In this study, we aimed to investigate diurnal variations of the gene expressions of TREK family and melatonin receptors and their associations with kisspeptin and gonadotrophin-releasing hormone (GnRH). Diurnal variations of trek1b, trek2a, trek2b, mt1, mt2, mel1a, kiss2 and gnrh3 expressions were examined by real-time PCR. For reproduction-related genes, kiss2 and gnrh3 exhibited diurnal rhythms. trek2a revealed a diurnal rhythm in the TREK family. mt2 and mel1c exhibited diurnal rhythms in the melatonin receptors. Since Trek2a regulates gnrh3 expression, the diurnal rhythm of gnrh3 expression suggests to be regulated by the diurnal rhythm of trek2a expression.
    Matched MeSH terms: Potassium Channels, Tandem Pore Domain/genetics; Potassium Channels, Tandem Pore Domain/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links