Displaying publications 1 - 20 of 215 in total

Abstract:
Sort:
  1. Ugwu CC, Hair-Bejo M, Nurulfiza MI, Omar AR, Ideris A
    Open Vet J, 2024 Feb;14(2):617-629.
    PMID: 38549580 DOI: 10.5455/OVJ.2024.v14.i2.2
    BACKGROUND: Fowl adenovirus (FAdV) 8b causes huge economic losses in the poultry industry worldwide. Attenuated FAdV 8b could be useful in preventing FAdV infections globally and scale-up obstacles could be solved by bioreactor technology.

    AIM: This study was carried out to attenuate the FAdV 8b isolate, propagate it in a bioreactor, molecularly characterize the passage isolates, and determine the immunogenicity, efficacy, and shedding of the virus of chickens.

    METHODS: FAdV serotype 8b (UPM11142) isolate was passaged on chicken embryo liver (CEL) cells until attenuation and propagated in a bioreactor (UPM11142P20B1). Hexon and fiber genes of the isolates were sequenced and analyzed. UPM11142P20B1 was administered to 116-day-old broiler chickens divided into four groups, A (control), B (non-booster), C (booster with UPM11142P20B1), and D (booster with inactivated UPM11142P5B1). Eight chickens from each group were challenged. Body weight (BW) and liver weight (LW), liver: BW ratio (LBR), FAdV antibody titer, T lymphocyte sub-populations in the liver, spleen and thymus; and challenge virus load in the liver and shedding in cloaca were measured at weekly intervals.

    RESULTS: The isolate caused typical cytopathic effects on CEL cells typical of FAdV. Novel molecular changes in the genes occurred which could be markers for FAdV 8b attenuation. BW, LW, and LBR were similar among groups throughout the trial but the uninoculated control-challenged group (UCC) had significantly higher LBR than the inoculated and challenged groups at 35 dpi. Non-booster group had higher FAdV antibodies at all time points than the uninoculated control group (UCG); and the challenged booster groups had higher titer at 35 dpi than UCC. T lymphocytes increased at different time-points in the liver of inoculated chickens, and in the spleen and thymus as well, and was higher in the organs of inoculated challenged groups than the UCC. There was a significantly higher challenge virus load in the liver and cloaca of UCC chickens than in the non-booster chickens.

    CONCLUSION: UPM11142P20B1 was safe, efficacious, significantly reduced shedding, and is recommended as a candidate vaccine in the prevention and control of FAdV 8b infections in broiler chickens.

    Matched MeSH terms: Poultry Diseases*
  2. Hayat MN, Kumar P, Sazili AQ
    Poult Sci, 2023 Sep;102(9):102838.
    PMID: 37392488 DOI: 10.1016/j.psj.2023.102838
    With the continuous rise of Muslim and Jewish populations and their increasing preference for ritually slaughtered poultry meat, the industry is forced to redefine its existing product-centric quality standard toward a new consumer-centric dimension of quality. The new dimension is mainly attributed to ensuring animal welfare and ethical treatment (ethical quality), spiritual quality (such as halal status, cleanliness), and eating quality standards set by religion. To meet consumer quality requirements while maintaining high production performance, the industry has incorporated newer technologies that are compatible with religious regulations such as stunning methods like electrical water bath stunning. However, the introduction of new techniques such as electrical water bath stunning has been met with mixed reactions. Some religious scholars have banned the use of any stunning methods in religious slaughter, as halal status is believed to be compromised in cases where birds have been stunned to death before slaughter. Nevertheless, some studies have shown the positive side of the electrical water bath stunning procedure in terms of preserving eating, ethical, and spiritual quality. Therefore, the present study aims to critically analyze the application of various aspects of electrical water bath stunning such as current intensity and frequency on various quality attributes, namely, ethical, spiritual, and eating quality of poultry meat.
    Matched MeSH terms: Poultry*
  3. Alarefee HA, Ishak CF, Othman R, Karam DS
    J Environ Manage, 2023 Mar 01;329:117051.
    PMID: 36549060 DOI: 10.1016/j.jenvman.2022.117051
    Nitrogen-rich materials such as poultry litter (PL) contributes to substantial N and C loss in the form of ammonia (NH3) and carbon dioxide (CO2) during composting. Biochar can act as a sorbent of ammonia (NH3) and CO2 emission released during co-composting. Thus, co-composting poultry litter with rice husk biochar as a bulking agent is a good technique to mitigate NH3 volatilization and CO2 emission. A study was conducted to evaluate the effects of composting the mixtures of poultry litter with rice husk biochar at different ratios on NH3 and CO2 emissions. Four mixtures of poultry litter and rice husk biochar at different rate were composted at 0:1, 0.5:1, 1.3:1 and 2.3:1 ratio of rice husk biochar (RHB): poultry litter (PL) on a dry weight basis to achieve a suitable C/N ratio of 15, 20, 25, and 30, respectively. The results show that composting poultry litter with rice husk biochar can accelerate the breakdown of organic matter, thereby shortening the thermophilic phase compared to composting using poultry litter alone. There was a significant reduction in the cumulative NH3 emissions, which accounted for 78.38%, 94.60%, and 97.30%, for each C/N ratio of 20, 25, and 30. The total nitrogen (TN) retained relative was 75.96%, 85.61%, 90.24%, and 87.89% for each C/N ratio of 15, 20, 25, and 30 at the completion of composting. Total carbon dioxide lost was 5.64%, 6.62%, 8.91%, and 14.54%, for each C/N ratio of 15, 20, 21, and 30. In addition, the total carbon (TC) retained were 66.60%, 72.56%, 77.39%, and 85.29% for 15, 20, 25, and 30 C/N ratios and shows significant difference as compared with the initial reading of TC of the compost mixtures. In conclusion, mixing and composting rice husk biochar in poultry litter with C/N ratio of 25 helps in reducing the NH3 volatilization and CO2 emissions, while reducing the overall operational costs of waste disposal by shortening the composting time alongside nitrogen conservation and carbon sequestration. In formulating the compost mixture with rice husk biochar, the contribution of C and N from the biochar can be neglected in the determination of C/N ratio to predict the rate of mineralization in the compost because biochar has characteristic of being quite inert and recalcitrant in nature.
    Matched MeSH terms: Poultry
  4. Ugwu CC, Hair-Bejo M, Nurulfiza MI, Omar AR, Aini I
    Open Vet J, 2023 Feb;13(2):171-178.
    PMID: 37073244 DOI: 10.5455/OVJ.2023.v13.i2.4
    BACKGROUND: Fowl adenovirus (FAdV) 8b and other serotypes cause inclusion body hepatitis (IBH) in chickens. Specific detection of aetiologic serotype in mixed infection and vaccine failure could be difficult.

    AIM: The objective of this study was to develop a TaqMan probe-based qPCR method for the detection and quantification of the FAdV 8b challenge virus.

    METHODS: Forty-eight broiler chickens inoculated with live attenuated or inactivated FAdV 8b strains at day 1 of age either with or without booster at day 14 post-inoculation were used. The chickens were challenged with a pathogenic strain of FAdV 8b at day 28 of age. Liver and cloacal swabs were collected on days 7 and 14 post-challenge. Primers and probes were designed, specificity confirmed, and used to carry out qPCR amplification.

    RESULTS: The assay amplified the FAdV DNA challenge virus, but not that of the live attenuated virus. It could detect FAdV 8b DNA as low as 0.001 ng/µl in liver and cloacal swab samples. Copy numbers obtained indicate virus load and shedding.

    CONCLUSIONS: It shows that a selective detection of FAdV 8b within serotype is possible. It can be useful for rapid detection and diagnosis of the disease, virus quantification and differentiation within species, determination of vaccination failure, and efficacy especially the virus load in the target organ and shedding.

    Matched MeSH terms: Poultry Diseases*
  5. Tan HS, Yan P, Agustie HA, Loh HS, Rayamajhi N, Fang CM
    Lett Appl Microbiol, 2023 Jan 23;76(1).
    PMID: 36688778 DOI: 10.1093/lambio/ovac044
    Extended-spectrum beta-lactamases (ESBLs) and AmpC beta-lactamases (AmpCs)-producing Enterobacteriaceae have been increasingly reported and imposing significant threat to public. Livestock production industry might be the important source for clinically important ESBL-producing Enterobacteriaceae. This study aims to investigate the resistance profile, phenotypic ESBL production, beta-lactamase genes, virulence factors, and plasmid replicon types among 59 Enterobacteriaceae strains isolated from poultry faecal samples in Malaysia's commercial poultry farm. There were 38.7% and 32.3% of Escherichia coli resistant to cefotaxime and cefoxitin, respectively, while Klebsiellaspp. demonstrated resistance rate of 52.6% to both mentioned antimicrobials. Majority of the E. coli isolates carried blaTEM and blaCMY-2 group. blaSHV was the most prevalent gene detected in Klebsiellaspp., followed by blaDHA and blaTEM. Resistance to extended spectrum cephalosporin in our isolates was primarily mediated by plasmid mediated AmpC beta-lactamase such as CMY-2 group and DHA enzyme. The CTX-M genes were found in two ESBL-producing E. coli. IncF, IncI1, and IncN plasmids were most frequently detected in E. coli and Klebsiellaspp. The virulence factor, including EAST1 and pAA were identified at low frequency. This study highlights the poultry as a reservoir of resistance and virulence determinants and prevalence of plasmids in Enterobacteriaceae might drive their dissemination.
    Matched MeSH terms: Poultry
  6. Syamsiah Aini S, Leow BL, Faizul Fikri MY, Muhammad Redzwan S, Faizah Hanim MS
    Trop Biomed, 2022 Dec 01;39(4):579-586.
    PMID: 36602219 DOI: 10.47665/tb.39.4.015
    Newcastle disease (ND) is an extremely contagious and fatal viral disease causing huge economic losses to the poultry industry. Following recent ND outbreaks in Sabah in commercial poultry and backyard farms, it was speculated that this could be due to a new introduction of Newcastle Disease Virus (NDV) genotype/sub-genotype. Here we report the genetic characterization of NDVs isolated from Sabah during early 2021. All isolates were amplified and sequenced with primers specific to the viral fusion (F) gene using reverse transcription-polymerase chain reaction (RT-PCR). Nucleotide sequence analysis of the F gene showed that all isolates shared similar homology of 99.4% with NDV strain from Iran isolated in 2018. Amino acid sequences of the F protein cleavage site revealed the motif of 112RRQKRF117 indicating all isolates were of virulent strain. Phylogenetic analysis demonstrated that all isolates were clustered under sub-genotype VII 1.1 and clustered together with isolates from Iran (previously known as subgenotype VIIl). The present findings suggested that there is an emerging of a new sub-genotype into the poultry population in Sabah and this sub-genotype has never been reported before in Malaysia. Therefore, transboundary monitoring and continuous surveillance should be implemented for proper control and prevention of the disease. A further molecular epidemiological analysis of NDV is needed to well understand the circulatory patterns of virulent strains of NDV in the country to prevent future outbreaks.
    Matched MeSH terms: Poultry/genetics
  7. Redhead AK, Azman NFIN, Nasaruddin AI, Vu T, Santos F, Malheiros R, et al.
    J Food Prot, 2022 Oct 01;85(10):1479-1487.
    PMID: 34762731 DOI: 10.4315/JFP-21-205
    ABSTRACT: Salmonella is the leading cause of bacterial foodborne zoonoses in humans. Thus, the development of strategies to control bacterial pathogens in poultry is essential. Peanut skins, a considerable waste by-product of the peanut industry is discarded and of little economic value. However, peanut skins contain identified polyphenolic compounds that have antimicrobial properties. Hence, we aim to investigate the use of peanut skins as an antibacterial feed additive in the diets of broilers to prevent the proliferation of Salmonella Enteritidis (SE). One hundred sixty male hatchlings (Ross 308) were randomly assigned to (i) peanut skin diet without SE inoculation (PS); (ii) peanut skin diet and SE inoculation (PSSE); (iii) control diet without SE inoculation (CON); and (iv) control diet with SE inoculation (CONSE). Feed intake and body weights were determined at weeks 0 and 5. On days 10 and 24 posthatch, three birds per pen (24 total) from each treatment group were euthanized, and the liver, spleen, small intestine, and ceca were collected. The weights of the liver, spleen, and ceca were recorded. Organ invasion was determined by counting SE colonies. Each pen served as an experimental unit and was analyzed by using a t test. Performance data were analyzed in a completely randomized design by using a general linear mixed model to evaluate differences. There were no significant differences (P > 0.05) in weekly average pen body weight, total feed consumption, bird weight gain, and feed conversion ratio between the treatment groups. There were no significant differences in SE CFU per gram for fecal, litter, or feed between the treatment groups CONSE and PSSE. However, for both fecal and litter, the PSSE treatment group tended (P ≤ 0.1) to have a lower Salmonella CFU per gram compared with the CONSE treatment group. The results indicate that peanut skins may have potential application as an antimicrobial feed additive to reduce the transmission or proliferation of SE in poultry environments or flocks.
    Matched MeSH terms: Poultry
  8. Ravindran B, Karmegam N, Awasthi MK, Chang SW, Selvi PK, Balachandar R, et al.
    Bioresour Technol, 2022 Feb;346:126442.
    PMID: 34848334 DOI: 10.1016/j.biortech.2021.126442
    The present study proposes a system for co-composting food waste and poultry manure amended with rice husk biochar at different doses (0, 3, 5, 10%, w/w), saw dust, and salts. The effect of rice husk biochar on the characteristics of final compost was evaluated through stabilization indices such as electrical conductivity, bulk density, total porosity, gaseous emissions and nitrogen conservation. Results indicated that when compared to control, the biochar amendment extended the thermophilic stage of the composting, accelerated the biodegradation and mineralization of substrate mixture and helped in the maturation of the end product. Carbon dioxide, methane and ammonia emissions were reduced and the nitrogen conservation was achieved at a greater level in the 10% (w/w) biochar amended treatments. This study implies that the biochar and salts addition for co-composting food waste and poultry manure is beneficial to enhance the property of the compost.
    Matched MeSH terms: Poultry
  9. Elbestawy AR, Ellakany HF, Abd El-Hamid HS, Gado AR, Geneedy AM, Noreldin AE, et al.
    Avian Dis, 2021 09;65(3):407-413.
    PMID: 34427415 DOI: 10.1637/0005-2086-65.3.407
    Despite the vast Egyptian poultry production, scanty information is available concerning the infection of haemprotozoan parasites as pathogens in commercial broilers. In the present study, we provided the first detection of leucocytozoonosis in five broiler chicken flocks in El-Beheira Egyptian governorate. Despite the low mortality rates in the affected flocks (0.3%-1% as a 5-day mortality), severe postmortem (hemorrhagic spots and scars) and histopathologic lesions appeared in different organs including skeletal muscles, liver, kidney, pancreas, abdominal cavity, and bursa of Fabricius. Evaluation of blood smears revealed gametocytes in erythrocytes and leukocytes. Conventional reverse transcriptase-PCR and partial sequence analysis of mitochondrial cytochrome oxidase b gene detected Leucocytozoon caulleryi. GenBank accession numbers of the five Egyptian L. caulleryi isolates were obtained. The five L. caulleryi were 99.9% identical to each other and 99.14% similar to the L. caulleryi mitochondrial DNA gene of Asian strains from India, Japan, Malaysia, South Korea, Taiwan, and Thailand.
    Matched MeSH terms: Poultry Diseases*
  10. Sabarudin NS, Tan SW, Phang YF, Omar AR
    J Vet Sci, 2021 Jul;22(4):e42.
    PMID: 34313038 DOI: 10.4142/jvs.2021.22.e42
    BACKGROUND: Inclusion body hepatitis (IBH) is an economically important viral disease primarily affecting broiler and breeder chickens. All 12 serotypes of fowl adenovirus (FAdV) can cause IBH.

    OBJECTIVES: To characterize FAdV isolates based on phylogenetic analysis, and to study the pathogenicity of FAdV-8b in specific-pathogen-free (SPF) chickens following virus inoculation via oral and intramuscular (IM) routes.

    METHODS: Suspected organ samples were subjected to virus isolation and polymerase chain reaction (PCR) for FAdV detection. Hexon gene sequencing and phylogenetic analysis were performed on FAdV-positive samples for serotype identification. One FAdV-8b isolate, UPM/FAdV/420/2017, was selected for fiber gene characterization and pathogenicity study and was inoculated in SPF chickens via oral and IM routes.

    RESULTS: The hexon gene phylogenetic analysis revealed that all isolates belonged to FAdV-8b. The fiber gene-based phylogenetic analysis of isolate UPM/FAdV/420/2017 supported the grouping of that isolate into FAdV species E. Pathogenicity study revealed that, chickens infected with UPM/FAdV/420/2017 via the IM route had higher clinical score values, higher percent mortality, higher degree of the liver lesions, higher antibody response (p < 0.05), and higher virus shedding amounts (p < 0.05) than those infected via the oral route. The highest virus copy numbers were detected in liver and gizzard.

    CONCLUSIONS: FAdV-8b is the dominant FAdV serotype in Malaysia, and pathogenicity study of the FAdV-8b isolate UPM/FAdV/420/2017 indicated its ability to induce IBH in young SPF chickens when infected via oral or IM routes.

    Matched MeSH terms: Poultry Diseases/epidemiology; Poultry Diseases/virology*
  11. Di KN, Pham DT, Tee TS, Binh QA, Nguyen TC
    Trop Anim Health Prod, 2021 Jun 05;53(3):340.
    PMID: 34089130 DOI: 10.1007/s11250-021-02780-6
    Inappropriate use of antibiotics in animal production system is one of the major factors leading to the antibiotic resistance (ABR) development. In Vietnam, the ABR situation is crucial as antibiotics have been used indiscriminately for disease prevention and as growth promoters in animals. Thus, a thorough understanding on the ABR in veterinary settings would be beneficial to the Vietnam public health authority in formulating timely interventions. This review aimed to provide information on the current status of antibiotic usage in animal husbandry in Vietnam, identified gaps in research, and suggested possible solutions to tackle ABR. To this end, data on ABR in animals were extracted from 3 major electronic databases (PubMed, Web of Science, and ScienceDirect) in the period of January 2013-December 2020. The review findings were reported according to PRISMA, which highlighted the emergence and persistence of ABR in bacterial isolates, including Escherichia coli, Enterococcus spp., and Salmonella species, obtained from pigs and poultry. The lack of awareness of Vietnamese farmers on the antibiotic utilization guidelines was one of the main causes driving the animal ABR. Hence, this paper calls for interventions to restrict antibiotics use in food-producing animals by national action plan and antibiotics control programs. Additionally, studies to evaluate knowledge, attitude, and practice (KAP) of the community are required to promote rational use of antibiotics in all sectors.
    Matched MeSH terms: Poultry
  12. Chilakamarry CR, Mahmood S, Saffe SNBM, Arifin MAB, Gupta A, Sikkandar MY, et al.
    3 Biotech, 2021 May;11(5):220.
    PMID: 33968565 DOI: 10.1007/s13205-021-02734-7
    Over recent years, keratin has gained great popularity due to its exceptional biocompatible and biodegradable nature. It has shown promising results in various industries like poultry, textile, agriculture, cosmetics, and pharmaceutical. Keratin is a multipurpose biopolymer that has been used in the production of fibrous composites, and with necessary modifications, it can be developed into gels, films, nanoparticles, and microparticles. Its stability against enzymatic degradation and unique biocompatibility has found their way into biomedical applications and regenerative medicine. This review discusses the structure of keratin, its classification and its properties. It also covers various methods by which keratin is extracted like chemical hydrolysis, enzymatic and microbial treatment, dissolution in ionic liquids, microwave irradiation, steam explosion technique, and thermal hydrolysis or superheated process. Special emphasis is placed on its utilisation in the form of hydrogels, films, fibres, sponges, and scaffolds in various biotechnological and industrial sectors. The present review can be noteworthy for the researchers working on natural protein and related usage.
    Matched MeSH terms: Poultry
  13. Muhammad AI, Mohamed DAA, Chwen LT, Akit H, Samsudin AA
    Foods, 2021 Apr 16;10(4).
    PMID: 33923439 DOI: 10.3390/foods10040871
    The chicken egg is one of nature's flawlessly preserved biological products, recognized as an excellent source of nutrients for humans. Selenium (Se) is an essential micro-element that plays a key role in biological processes. Organic selenium can be produced biologically by the microbial reduction of inorganic Se (sodium selenite). Therefore, the possibility of integrating Se enriched bacteria as a supplement in poultry feed can provide an interesting source of organic Se, thereby offering health-related advantages to humans. In this study, bacterial selenoproteins from Stenotrophomonas maltophilia was used as a dietary supplement with other Se sources in Lohman brown Classic laying hens to study the egg yolk color, egg yolk and breast antioxidant profile, oxidative stability, and storage effect for fresh and stored egg yolk at 4 ± 2 °C for 14-days. The results showed that dietary Se supplementation significantly (p < 0.05) improved egg yolk color, the antioxidant profile of egg yolk, and breast meat (total carotenoid and phenol content). When the Se treated groups were compared to control groups, there was a significant (p < 0.05) decrease in total cholesterol in fresh and stored egg yolk and breast muscle. In hens that were fed ADS18-Se, the primary oxidation products (MDA) concentrations in the eggs, breast, and thigh muscle, and plasma were significantly (p < 0.05) lower. However, the MDA content increased (p < 0.05) with an extended storage time in egg yolk. In comparison to inorganic Se and basal diets, egg yolk from hens fed organic Se remained fresh for two weeks. The egg yolk color, antioxidant profile, and oxidative status of egg yolk and tissue improve with dietary Se organic supplementation (ADS18 > Se-Yeast). The source of supplemented organic Se is critical for egg enrichment and antioxidant properties. As a result, ''functional eggs'' enriched with organic Se becomes possible to produce.
    Matched MeSH terms: Poultry
  14. Nasaruddin N, Jinap S, Samsudin NI, Kamarulzaman NH, Sanny M
    J Sci Food Agric, 2021 Mar 30;101(5):1812-1821.
    PMID: 32893877 DOI: 10.1002/jsfa.10795
    BACKGROUND: Corn, a main feed ingredient in the livestock industry, is one of the most susceptible crops to fungal infection and aflatoxin contamination. Livestock feeding on aflatoxin (AF)-contaminated feed have been shown to experience feed refusal, and decreased growth rate, milk production, and feed efficiency. In poultry, AF poisoning causes weight loss, poor feed efficiency, and reduced egg production and egg weight. The present work therefore aimed to determine the prevalence of mycotoxigenic fungi and the occurrence of AF contamination along the integrated corn-based poultry feed supply chain in Malaysia. A total of 51 samples were collected from different points along the feed supply chain from integrated poultry feed companies. The samples were subjected to mycological analyses (fungal isolation, enumeration, identification), and AFs were quantified by high-performance liquid chromatography equipped with a fluorescence detector (HPLC-FLD).

    RESULTS: Samples collected from sampling point 1 (company A) and sampling point 9 (company B) yielded the highest total fungal load (>log 4 CFU g-1 ). The prevalent fungal genera isolated were Aspergillus, Fusarium, and Penicillium spp. Aflatoxin B1 was detected in 8.3% of corn samples, and 7.4% of corn-based poultry feed samples along the feed supply chain, whereas AFs B2 , G1 , and G2 were not detected.

    CONCLUSION: The incidence of mycotoxigenic fungi along the integrated poultry feed supply chain warrant continuous monitoring of mycotoxin contamination to reduce the exposure risk of mycotoxin intake in poultry. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Poultry/metabolism*
  15. Elmi SA, Simons D, Elton L, Haider N, Abdel Hamid MM, Shuaib YA, et al.
    Antibiotics (Basel), 2021 Jan 26;10(2).
    PMID: 33530462 DOI: 10.3390/antibiotics10020117
    Antimicrobial resistance is of concern to global health security worldwide. We aimed to identify the prevalence, resistance patterns, and risk factors associated with Escherichia coli (E. coli) resistance from poultry farms in Kelantan, Terengganu, and Pahang states of east coast peninsular Malaysia. Between 8 February 2019 and 23 February 2020, a total of 371 samples (cloacal swabs = 259; faecal = 84; Sewage = 14, Tap water = 14) were collected. Characteristics of the sampled farms including management type, biosecurity, and history of disease were obtained using semi-structured questionnaire. Presumptive E. coli isolates were identified based on colony morphology with subsequent biochemical and PCR confirmation. Susceptibility of isolates was tested against a panel of 12 antimicrobials and interpreted alongside risk factor data obtained from the surveys. We isolated 717 E. coli samples from poultry and environmental samples. Our findings revealed that cloacal (17.8%, 46/259), faecal (22.6%, 19/84), sewage (14.3%, 2/14) and tap water (7.1%, 1/14) were significantly (p < 0.003) resistant to at least three classes of antimicrobials. Resistance to tetracycline class were predominantly observed in faecal samples (69%, 58/84), followed by cloacal (64.1%, 166/259), sewage (35.7%, 5/14), and tap water (7.1%, 1/84), respectively. Sewage water (OR = 7.22, 95% CI = 0.95-151.21) had significant association with antimicrobial resistance (AMR) acquisition. Multivariate regression analysis identified that the risk factors including sewage samples (OR = 7.43, 95% CI = 0.96-156.87) and farm size are leading drivers of E. coli antimicrobial resistance in the participating states of east coast peninsular Malaysia. We observed that the resistance patterns of E. coli isolates against 12 panel antimicrobials are generally similar in all selected states of east coast peninsular Malaysia. The highest prevalence of resistance was recorded in tetracycline (91.2%), oxytetracycline (89.1%), sulfamethoxazole/trimethoprim (73.1%), doxycycline (63%), and sulfamethoxazole (63%). A close association between different risk factors and the high prevalence of antimicrobial-resistant E. coli strains reflects increased exposure to resistant bacteria and suggests a concern over rising misuse of veterinary antimicrobials that may contribute to the future threat of emergence of multidrug-resistant pathogen isolates. Public health interventions to limit antimicrobial resistance need to be tailored to local poultry farm practices that affect bacterial transmission.
    Matched MeSH terms: Poultry
  16. Aliyu HB, Hair-Bejo M, Omar AR, Ideris A
    Front Vet Sci, 2021;8:643976.
    PMID: 33959650 DOI: 10.3389/fvets.2021.643976
    Vaccination is an essential component in controlling infectious bursal disease (IBD), however, there is a lack of information on the genetic characteristics of a recent infectious bursal disease virus (IBDV) that was isolated from IBD vaccinated commercial flocks in Malaysia. The present study investigated 11 IBDV isolates that were isolated from commercial poultry farms. The isolates were detected using reverse transcription-polymerase chain reaction (RT-PCR) targeting the hypervariable region (HVR) of VP2. Based on the HVR sequences, five isolates (IBS536/2017, IBS624/2017, UPM766/2018, UPM1056/2018, and UPM1432/2019) were selected for whole-genome sequencing using the MiSeq platform. The nucleotide and amino acid (aa) sequences were compared with the previously characterized IBDV strains. Deduced aa sequences of VP2HVR revealed seven isolates with 94-99% aa identity to very virulent strains (genogroup 3), two isolates with 97-100% aa identity to variant strains (genogroup 2), and two strains with 100% identity to the vaccine strain (genogroup 1) of IBDV. The phylogenetic analysis also showed that the isolates formed clusters with the respective genogroups. The characteristic motifs 222T, 249K, 286I, and 318D are typical of the variant strain and were observed for UPM1219/2019 and UPM1432/2019. In comparison, very virulent residues such as 222A, 249Q, 286T, and 318G were found for the vvIBDV, except for the UPM1056/2018 strain with a A222T substitution. In addition, the isolate has aa substitutions such as D213N, G254D, S315T, S317R, and A321E that are not commonly found in previously reported vvIBDV strains. Unlike the other vvIBDVs characterized in this study, UPM766/2018 lacks the MLSL aa residues in VP5. The aa tripeptides 145/146/147 (TDN) of VP1 were conserved for the vvIBDV, while a different motif, NED, was observed for the Malaysian variant strain. The phylogenetic tree showed that the IBDV variant clustered with the American and Chinese variant viruses and are highly comparable to the novel Chinese variants, with 99.9% identity. Based on the sequences and phylogenetic analyses, this is the first identification of an IBDV variant being reported in Malaysia. Further research is required to determine the pathogenicity of the IBDV variant and the protective efficacy of the current IBD vaccines being used against the virus.
    Matched MeSH terms: Poultry; Poultry Diseases
  17. Ismail MI, Wei TS, Hair-Bejo M, Omar AR
    Arch Virol, 2020 Dec;165(12):2777-2788.
    PMID: 32964293 DOI: 10.1007/s00705-020-04812-2
    Besides the vaccine strains, the Malaysian variant (MV) and QX-like are the predominant IBVs detected on commercial poultry farms. These two virus strains are distinct based on genomic and pathogenicity studies. In this study, we determined the sequence of the S1 gene and compared the pathogenicity of serial passage 70 (P70) of Malaysian QX-like (QX/P70) and MV (MV/P70) strains with that of their respective wild-type viruses. The nucleotide and amino acid sequences of the complete S1 genes of QX/P70 and MV/P70 showed 1.4 to 1.6% and 3.0 to 3.3% variation, respectively, when compared to the wild-type virus. Most of the mutations were insertions and substitutions in the hypervariable regions (HVRs), primarily in HVR 3. Furthermore, selection pressure analysis showed that both viruses are under purifying selection. A pathogenicity study in specific-pathogen-free (SPF) chickens showed a reduction in respiratory and kidney lesions in chickens inoculated with MV/P70, but not with QX/P70, when compared to the respective wild-type viruses. However, MV/P70 is still pathogenic and can cause ciliary damage. In conclusion, the MV IBV strain is more responsive than the QX-like IBV strain following the attenuation process used for the development of a live attenuated IBV vaccine.
    Matched MeSH terms: Poultry Diseases/pathology*; Poultry Diseases/prevention & control; Poultry Diseases/virology*
  18. Farah Haziqah MT, Khadijah S
    Trop Biomed, 2020 Dec 01;37(4):896-902.
    PMID: 33612743 DOI: 10.47665/tb.37.4.896
    Indigenous chicken (Gallus domesticus) is reared for both its meat and eggs. Most consumers prefer the meat probably due to its specific texture and taste. The study was conducted to determine the presence of helminth parasites of 240 indigenous chickens (Gallus domesticus) obtained randomly from 12 divisions in Penang Island, Malaysia. Necropsy findings revealed 14 endoparasite species which parasitized these chickens namely, Acuaria hamulosa, Acuaria spiralis, Amoebotaenia sphenoides, Ascaridia galli, Brachylaima sp., Capillaria spp., Gongylonema ingluvicola, Heterakis gallinarum, Hymenolepis sp., Oxyspirura mansoni, Raillietina echinobothrida, Raillietina tetragona, Syngamus trachea and Tetrameres americana. The high abundance of helminth species observed in this study may be attributed to the free-range scavenging production system, where these indigenous chickens were exposed to intermediate or paratenic hosts of helminths which infect poultry. Besides, sustainable methods of helminthic control measure are necessary in order to enhance indigenous chicken production and eventually improve the economy of the rural farmers.
    Matched MeSH terms: Poultry Diseases/parasitology*
  19. Shahzad MI, Anwar S, Ashraf H, Manzoor A, Naseer M, Rani U, et al.
    Trop Biomed, 2020 Dec 01;37(4):1129-1140.
    PMID: 33612765 DOI: 10.47665/tb.37.4.1129
    Herbal medicines are becoming more popular and acceptable day by day due to their effectiveness, limited side effects, and cost-effectiveness. Cholistani plants are reported as a rich source of antibacterial, antifungal, antiprotozoal, antioxidant, and anticancer agents. The current study has evaluated antiviral potential of selected Cholistani plants. The whole plants were collected, ground and used in extract formation with n-hexane, ethyl acetate and n-butanol. All the extracts were concentrated by using a rotary evaporator and concentrate was finally dissolved in an appropriate vol of the same solvent. All of the extracts were tested for their antiviral potential by using 9-11 days old chick embryonated eggs. Each extract was tested against the Avian Influenza virus H9N2 strain (AIV), New Castle Disease virus Lasoota strain (NDV), Infectious bronchitis virus (IBV) and an Infectious bursal disease virus (IBDV). Hemagglutination test (HA) and Indirect Hemagglutination (IHA) tests were performed for different viruses. The overall order of the antiviral potential of Cholistani plants against viruses was NDV>IBV>IBDV>AIV. In terms of antiviral activity from extracts, the order of activity was n-butanol>ethyl acetate>n-hexane. The medicinal plants Achyranthes aspera, Neuroda procumbens, Panicum antidotale, Ochthochloa compressa and Suaeda fruticose were very effective against all four poultry viruses through their extracts. The low IC50 values of these extracts confirm the high antiviral potential against these viruses. It is worth to mention that Achyranthes aspera was found positive against IBDV through all its extracts which overcome the problem of unavailability of any known drug against IBDV. In short, the study proved that Cholistani plants are rich source of antiviral agent and their extracts can be used as good source of antiviral drugs both in crude and in purified form.
    Matched MeSH terms: Poultry Diseases/virology
  20. Bande F, Arshad SS, Bejo MH, Omar AR, Moeini H, Khadkodaei S, et al.
    Microb Pathog, 2020 Dec;149:104560.
    PMID: 33068733 DOI: 10.1016/j.micpath.2020.104560
    Infectious Bronchitis (IB) is an economically important avian disease that considerably threatens the global poultry industry. This is partly, as a result of its negative consequences on egg production, weight gain as well as mortality rate.The disease is caused by a constantly evolving avian infectious bronchitis virus whose isolates are classified into several serotypes and genotypes that demonstrate little or no cross protection. In order to curb the menace of the disease therefore, broad based vaccines are urgently needed. The aim of this study was to develop a recombinant DNA vaccine candidate for improved protection of avian infectious bronchitis in poultry. Using bioinformatics and molecular cloning procedures, sets of monovalent and bivalent DNA vaccine constructs were developed based on the S1 glycoprotein from classical and variants IBV strains namely, M41 and CR88 respectively. The candidate vaccine was then encapsulated with a chitosan and saponin formulated nanoparticle for enhanced immunogenicity and protective capacity. RT-PCR assay and IFAT were used to confirm the transcriptional and translational expression of the encoded proteins respectively, while ELISA and Flow-cytometry were used to evaluate the immunogenicity of the candidate vaccine following immunization of various SPF chicken groups (A-F). Furthermore, histopathological changes and virus shedding were determined by quantitative realtime PCR assay and lesion scoring procedure respectively following challenge of various subgroups with respective wild-type IBV viruses. Results obtained from this study showed that, groups vaccinated with a bivalent DNA vaccine construct (pBudCR88-S1/M41-S1) had a significant increase in anti-IBV antibodies, CD3+ and CD8+ T-cells responses as compared to non-vaccinated groups. Likewise, the bivalent vaccine candidate significantly decreased the oropharyngeal and cloacal virus shedding (p < 0.05) compared to non-vaccinated control. Chickens immunized with the bivalent vaccine also exhibited milder clinical signs as well as low tracheal and kidney lesion scores following virus challenge when compared to control groups. Collectively, the present study demonstrated that bivalent DNA vaccine co-expressing dual S1 glycoprotein induced strong immune responses capable of protecting chickens against infection with both M41 and CR88 IBV strains. Moreso, it was evident that encapsulation of the vaccine with chitosan-saponin nanoparticle further enhanced immune responses and abrogates the need for multiple booster administration of vaccine. Therefore, the bivalent DNA vaccine could serve as efficient and effective alternative strategy for the control of IB in poultry.
    Matched MeSH terms: Poultry Diseases/immunology*; Poultry Diseases/prevention & control
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links