Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Mamidi MK, Pal R, Govindasamy V, Zakaria Z, Bhonde R
    Med Hypotheses, 2011 Apr;76(4):599-601.
    PMID: 21277690 DOI: 10.1016/j.mehy.2011.01.010
    The staggering number of publications featuring the use of stem cells has revolutionized regenerative medicine research. Preclinical studies indicate that allogeneic human mesenchymal stem cells (MSCs) may be useful for the treatment of several clinical disorders, including sepsis, acute renal failure, acute myocardial infarction, and more recently, acute lung injury (ALI). However, considerable success would not be obtained in clinical trials due to poor survival of transplanted cells under the influence of inflammatory conditions. Despite robust approaches like cellular reprogramming, scaffolds and conditioned media have been tested to overcome this problem; however the success rate of these approaches remain questionable. Recently, pretreatment of bioactive compounds in vitro have been shown to suppress cell apoptosis and promote cell survival. Quite likely a similar phenomenon can take place in vivo. Based on such studies, we hypothesize that MSCs derived from human post-natal tissues could be conditioned and prepared for targeted disease therapy. Depending on the disease condition, the MSCs could be treated prior to delivery with appropriate bioactive compounds to allow them survive longer and perform a better role as biocatalyst. The advantage of this approach could be the tailor made availability of MSCs preconditioned with appropriate bioactive compounds for disease specific therapy. Therefore, the choice of suitable bioactive molecule is likely to enhance the efficacy of targeted stem cell therapy and preconditioning may provide a novel strategy in maximizing biological and functional properties of MSCs.
    Matched MeSH terms: Regeneration/drug effects*
  2. Mohd SM, Abdul Manan MJ
    Malays J Nutr, 2012 Apr;18(1):125-36.
    PMID: 23713236 MyJurnal
    The haruan (Channa striatus) is an indigenous, predatory freshwater fish of Malaysia. It is a common food fish among the local populace with traditionally identified pharmacological benefits in treating wound and pain and in boosting energy of the sick. Channa striatus is also a subject of renewed interest in Malaysian folk medicine in the search for a better cure for diseases and ailments. Amino acids and fatty acids, found in high concentrations in the fish, might have contributed to its pharmacological properties. Important amino acids of the fish include glycine, lysine and arginine, while its fatty acids are arachidonic acid, palmitic acid and docosahexaenoic acid. They appear to effect their influence through the formation of several types of bioactive molecules. Extracts of the fish are produced from whole fish, roe, mucus and skin of the fish. This review updates research findings on potential uses of Channa striatus, beyond the traditional prescription as a wound healer, pain reliever and energy booster to include its properties as a ACE-inhibitor, anti-depressant and neuroregenerative agent. The fish appears to have wide-ranging medical uses and should be studied more intensively to unearth its other properties and mechanisms of action.
    Matched MeSH terms: Nerve Regeneration/drug effects
  3. Yow YY, Goh TK, Nyiew KY, Lim LW, Phang SM, Lim SH, et al.
    Cells, 2021 08 25;10(9).
    PMID: 34571842 DOI: 10.3390/cells10092194
    Despite the progressive advances, current standards of treatments for peripheral nerve injury do not guarantee complete recovery. Thus, alternative therapeutic interventions should be considered. Complementary and alternative medicines (CAMs) are widely explored for their therapeutic value, but their potential use in peripheral nerve regeneration is underappreciated. The present systematic review, designed according to guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, aims to present and discuss the current literature on the neuroregenerative potential of CAMs, focusing on plants or herbs, mushrooms, decoctions, and their respective natural products. The available literature on CAMs associated with peripheral nerve regeneration published up to 2020 were retrieved from PubMed, Scopus, and Web of Science. According to current literature, the neuroregenerative potential of Achyranthes bidentata, Astragalus membranaceus, Curcuma longa, Panax ginseng, and Hericium erinaceus are the most widely studied. Various CAMs enhanced proliferation and migration of Schwann cells in vitro, primarily through activation of MAPK pathway and FGF-2 signaling, respectively. Animal studies demonstrated the ability of CAMs to promote peripheral nerve regeneration and functional recovery, which are partially associated with modulations of neurotrophic factors, pro-inflammatory cytokines, and anti-apoptotic signaling. This systematic review provides evidence for the potential use of CAMs in the management of peripheral nerve injury.
    Matched MeSH terms: Nerve Regeneration/drug effects*
  4. Gorain B, Tekade M, Kesharwani P, Iyer AK, Kalia K, Tekade RK
    Drug Discov Today, 2017 04;22(4):652-664.
    PMID: 28219742 DOI: 10.1016/j.drudis.2016.12.007
    To avoid tissue rejection during organ transplantation, research has focused on the use of tissue engineering to regenerate required tissues or organs for patients. The biomedical applications of hyperbranched, multivalent, structurally uniform, biocompatible dendrimers in tissue engineering include the mimicking of natural extracellular matrices (ECMs) in the 3D microenvironment. Dendrimers are unimolecular architects that can incorporate a variety of biological and/or chemical substances in a 3D architecture to actively support the scaffold microenvironment during cell growth. Here, we review the use of dendritic delivery systems in tissue engineering. We discuss the available literature, highlighting the 3D architecture and preparation of these nanoscaffolds, and also review challenges to, and advances in, the use dendrimers in tissue engineering. Advances in the manufacturing of dendritic nanoparticles and scaffold architectures have resulted in the successful incorporation of dendritic scaffolds in tissue engineering.
    Matched MeSH terms: Regeneration/drug effects
  5. Zainol Abidin IZ, Fazry S, Jamar NH, Ediwar Dyari HR, Zainal Ariffin Z, Johari AN, et al.
    Sci Rep, 2020 08 25;10(1):14165.
    PMID: 32843675 DOI: 10.1038/s41598-020-70962-7
    In Malaysia, Piper sarmentosum or 'kaduk' is commonly used in traditional medicines. However, its biological effects including in vivo embryonic toxicity and tissue regenerative properties are relatively unknown. The purpose of this study was to determine zebrafish (Danio rerio) embryo toxicities and caudal fin tissue regeneration in the presence of P. sarmentosum aqueous extracts. The phytochemical components and antioxidant activity of the extract were studied using GC-MS analysis and DPPH assay, respectively. Embryo toxicity tests involving survival, heartbeat, and morphological analyses were conducted to determine P. sarmentosum extract toxicity (0-60 µg/mL); concentrations of 0-400 µg/mL of the extract were used to study tissue regeneration in the zebrafish caudal fin. The extract contained several phytochemicals with antioxidant activity and exhibited DPPH scavenging activity (IC50 = 50.56 mg/mL). Embryo toxicity assays showed that a concentration of 60 μg/mL showed the highest rates of lethality regardless of exposure time. Slower embryogenesis was observed at 40 µg/mL, with non-viable embryos first detected at 50 µg/mL. Extracts showed significant differences (p 
    Matched MeSH terms: Regeneration/drug effects*
  6. Yadav A, Huang TC, Chen SH, Ramasamy TS, Hsueh YY, Lin SP, et al.
    J Neuroinflammation, 2021 Oct 16;18(1):238.
    PMID: 34656124 DOI: 10.1186/s12974-021-02273-1
    BACKGROUND: Epigenetic regulation by histone deacetylases (HDACs) in Schwann cells (SCs) after injury facilitates them to undergo de- and redifferentiation processes necessary to support various stages of nerve repair. Although de-differentiation activates the synthesis and secretion of inflammatory cytokines by SCs to initiate an immune response during nerve repair, changes in either the timing or duration of prolonged inflammation mediated by SCs can affect later processes associated with repair and regeneration. Limited studies have investigated the regulatory processes through which HDACs in SCs control inflammatory cytokines to provide a favorable environment for peripheral nerve regeneration.

    METHODS: We employed the HDAC inhibitor (HDACi) sodium phenylbutyrate (PBA) to address this question in an in vitro RT4 SC inflammation model and an in vivo sciatic nerve transection injury model to examine the effects of HDAC inhibition on the expression of pro-inflammatory cytokines. Furthermore, we assessed the outcomes of suppression of extended inflammation on the regenerative potential of nerves by assessing axonal regeneration, remyelination, and reinnervation.

    RESULTS: Significant reductions in lipopolysaccharide (LPS)-induced pro-inflammatory cytokine (tumor necrosis factor-α [TNFα]) expression and secretion were observed in vitro following PBA treatment. PBA treatment also affected the transient changes in nuclear factor κB (NFκB)-p65 phosphorylation and translocation in response to LPS induction in RT4 SCs. Similarly, PBA mediated long-term suppressive effects on HDAC3 expression and activity. PBA administration resulted in marked inhibition of pro-inflammatory cytokine secretion at the site of transection injury when compared with that in the hydrogel control group at 6-week post-injury. A conducive microenvironment for axonal regrowth and remyelination was generated by increasing expression levels of protein gene product 9.5 (PGP9.5) and myelin basic protein (MBP) in regenerating nerve tissues. PBA administration increased the relative gastrocnemius muscle weight percentage and maintained the intactness of muscle bundles when compared with those in the hydrogel control group.

    CONCLUSIONS: Suppressing the lengthened state of inflammation using PBA treatment favors axonal regrowth and remyelination following nerve transection injury. PBA treatment also regulates pro-inflammatory cytokine expression by inhibiting the transcriptional activation of NFκB-p65 and HDAC3 in SCs in vitro.

    Matched MeSH terms: Nerve Regeneration/drug effects
  7. Nour S, Imani R, Chaudhry GR, Sharifi AM
    J Biomed Mater Res A, 2021 04;109(4):453-478.
    PMID: 32985051 DOI: 10.1002/jbm.a.37105
    Skin injuries and in particular, chronic wounds, are one of the major prevalent medical problems, worldwide. Due to the pivotal role of angiogenesis in tissue regeneration, impaired angiogenesis can cause several complications during the wound healing process and skin regeneration. Therefore, induction or promotion of angiogenesis can be considered as a promising approach to accelerate wound healing. This article presents a comprehensive overview of current and emerging angiogenesis induction methods applied in several studies for skin regeneration, which are classified into the cell, growth factor, scaffold, and biological/chemical compound-based strategies. In addition, the advantages and disadvantages of these angiogenic strategies along with related research examples are discussed in order to demonstrate their potential in the treatment of wounds.
    Matched MeSH terms: Regeneration/drug effects
  8. Ngan CL, Basri M, Tripathy M, Abedi Karjiban R, Abdul-Malek E
    Eur J Pharm Sci, 2015 Apr 5;70:22-8.
    PMID: 25619806 DOI: 10.1016/j.ejps.2015.01.006
    Despite the fact that intrinsic oxidative stress is inevitable, the extrinsic factor such as ultraviolet radiation enhances reactive oxygen species (ROS) generation resulting in premature skin aging. Nanoemulsion was loaded with fullerene, a strong free radical scavenger, and its efficacy to provide protection and regenerative effect against ROS-induced collagen breakdown in human skin was studied. Stable fullerene nanoemulsions were formulated using high shear homogenization and ultrasonic dispersion technique. An open trial was conducted using fullerene nanoemulsion on skin twice a day for 28 days. The mean collagen score significantly increased (P<0.05) from 36.53±4.39 to 48.69±5.46 with 33.29% increment at the end of the treatment. Biophysical characteristics of skin revealed that skin hydration was increased significantly (P<0.05) from 40.91±7.01 to 58.55±6.08 corneometric units (43.12% increment) and the water was able to contain within the stratum corneum without any increased in transepidermal water loss. In the in vitro safety evaluation, fullerene nanoemulsion showed no acute toxicity on 3T3 fibroblast cell line for 48h and no indication of potential dermal irritation. Hence, the fullerene nanoemulsion may assist in protecting collagen from breakdown with cosmeceutical benefit.
    Matched MeSH terms: Regeneration/drug effects*
  9. Srinivasan V, Pandi-Perumal SR, Maestroni GJ, Esquifino AI, Hardeland R, Cardinali DP
    Neurotox Res, 2005;7(4):293-318.
    PMID: 16179266
    The pineal product melatonin has remarkable antioxidant properties. It scavenges hydroxyl, carbonate and various organic radicals, peroxynitrite and other reactive nitrogen species. Melatonyl radicals formed by scavenging combine with and, thereby, detoxify superoxide anions in processes terminating the radical reaction chains. Melatonin also enhances the antioxidant potential of the cell by stimulating the synthesis of antioxidant enzymes like superoxide dismutase, glutathione peroxidase and glutathione reductase, and by augmenting glutathione levels. The decline in melatonin production in aged individuals has been suggested as one of the primary contributing factors for the development of age-associated neurodegenerative diseases, e.g., Alzheimer's disease. Melatonin has been shown to be effective in arresting neurodegenerative phenomena seen in experimental models of Alzheimer's disease, Parkinsonism and ischemic stroke. Melatonin preserves mitochondrial homeostasis, reduces free radical generation, e.g., by enhancing mitochondrial glutathione levels, and safeguards proton potential and ATP synthesis by stimulating complex I and IV activities. Therapeutic trials with melatonin have been effective in slowing the progression of Alzheimer's disease but not of Parkinson's disease. Melatonin's efficacy in combating free radical damage in the brain suggests that it may be a valuable therapeutic agent in the treatment of cerebral edema after traumatic brain injury.
    Matched MeSH terms: Nerve Regeneration/drug effects
  10. Nuge T, Liu Z, Liu X, Ang BC, Andriyana A, Metselaar HSC, et al.
    Molecules, 2021 Jan 29;26(3).
    PMID: 33572728 DOI: 10.3390/molecules26030699
    Volumetric Muscle Loss (VML) is associated with muscle loss function and often untreated and considered part of the natural sequelae of trauma. Various types of biomaterials with different physical and properties have been developed to treat VML. However, much work remains yet to be done before the scaffolds can pass from the bench to the bedside. The present review aims to provide a comprehensive summary of the latest developments in the construction and application of natural polymers-based tissue scaffolding for volumetric muscle injury. Here, the tissue engineering approaches for treating volumetric muscle loss injury are highlighted and recent advances in cell-based therapies using various sources of stem cells are elaborated in detail. An overview of different strategies of tissue scaffolding and their efficacy on skeletal muscle cells regeneration and migration are presented. Furthermore, the present paper discusses a wide range of natural polymers with a special focus on proteins and polysaccharides that are major components of the extracellular matrices. The natural polymers are biologically active and excellently promote cell adhesion and growth. These bio-characteristics justify natural polymers as one of the most attractive options for developing scaffolds for muscle cell regeneration.
    Matched MeSH terms: Regeneration/drug effects*
  11. Ngah NA, Ratnayake J, Cooper PR, Dias GJ, Tong DC, Mohd Noor SNF, et al.
    Molecules, 2021 Jan 20;26(3).
    PMID: 33498167 DOI: 10.3390/molecules26030517
    OBJECTIVE: The use of platelet concentrates (PCs) in oral and maxillofacial surgery, periodontology, and craniofacial surgery has been reported. While PCs provide a rich reservoir of autologous bioactive growth factors for tissue regeneration, their drawbacks include lack of utility for long-term application, low elastic modulus and strength, and limited storage capability. These issues restrict their broader application. This review focuses on the lyophilization of PCs (LPCs) and how this processing approach affects their biological and mechanical properties for application as a bioactive scaffold for craniofacial tissue regeneration.

    MATERIALS AND METHODS: A comprehensive search of five electronic databases, including Medline, PubMed, EMBASE, Web of Science, and Scopus, was conducted from 1946 until 2019 using a combination of search terms relating to this topic.

    RESULTS: Ten manuscripts were identified as being relevant. The use of LPCs was mostly studied in in vitro and in vivo craniofacial bone regeneration models. Notably, one clinical study reported the utility of LPCs for guided bone regeneration prior to dental implant placement.

    CONCLUSIONS: Lyophilization can enhance the inherent characteristics of PCs and extends shelf-life, enable their use in emergency surgery, and improve storage and transportation capabilities. In light of this, further preclinical studies and clinical trials are required, as LPCs offer a potential approach for clinical application in craniofacial tissue regeneration.

    Matched MeSH terms: Bone Regeneration/drug effects*
  12. Kouhi M, Jayarama Reddy V, Fathi M, Shamanian M, Valipouri A, Ramakrishna S
    J Biomed Mater Res A, 2019 06;107(6):1154-1165.
    PMID: 30636094 DOI: 10.1002/jbm.a.36607
    Guided bone regeneration (GBR) has been established to be an effective method for the repair of defective tissues, which is based on isolating bone defects with a barrier membrane for faster tissue reconstruction. The aim of the present study is to develop poly (hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/fibrinogen (FG)/bredigite (BR) membranes with applicability in GBR. BR nanoparticles were synthesized through a sol-gel method and characterized using transmission electron microscopy and X-ray diffractometer. PHBV, PHBV/FG, and PHBV/FG/BR membranes were fabricated using electrospinning and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle, pore size, thermogravimetric analysis and tensile strength. The electrospun PHBV, PHBV/FG, and PHBV/FG/BR nanofibers were successfully obtained with the mean diameter ranging 240-410 nm. The results showed that Young's modulus and ultimate strength of the PHBV membrane reduced upon blending with FG and increased by further incorporation of BR nanoparticles, Moreover hydrophilicity of the PHBV membrane improved on addition of FG and BR. The in vitro degradation assay demonstrated that incorporation of FG and BR into PHBV matrix increased its hydrolytic degradation. Cell-membrane interactions were studied by culturing human fetal osteoblast cells on the fabricated membrane. According to the obtained results, osteoblasts seeded on PHBV/FG/BR displayed higher cell adhesion and proliferation compared to PHBV and PHBV/FG membrane. Furthermore, alkaline phosphatase activity and alizarin red-s staining indicated enhanced osteogenic differentiation and mineralization of cells on PHBV/FG/BR membranes. The results demonstrated that developed electrospun PHBV/FG/BR nanofibrous mats have desired potential as a barrier membrane for guided bone tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1154-1165, 2019.
    Matched MeSH terms: Bone Regeneration/drug effects*
  13. Daud N, Taha RM
    Pak J Biol Sci, 2008 Apr 01;11(7):1055-8.
    PMID: 18810979
    Intact immature flower buds of African violet (Saintpaulia ionantha H. Wendl.) were used as explant sources for in vitro studies. The effect of exogenous hormones, NAA and BAP on the indirect organogenesis of this species was observed. Callus was formed on the cut end (base) of pedicels of floral buds where they were in contact with the medium. When maintained on the same medium, callus was differentiated into adventitious shoots after 10 weeks in culture. MS media supplemented with 2.0 mg L(-1) NAA and 1.0 mg L(-1) BAP gave the highest number of sterile or vegetative floral buds from the surface of callus of the explants, but these buds failed to develop further. The floral buds were expanded as abnormal flowers. The floral structures were smaller in size compared to intact flowers. Petals (corolla) were white to purple in colour but did not form any reproductive organs, i.e., stamens or pistils. All sterile or vegetative floral buds and abnormal flowers survived for 3 months in culture but failed to reach anthesis.
    Matched MeSH terms: Regeneration/drug effects
  14. Taha RM, Wafa SN
    ScientificWorldJournal, 2012;2012:359413.
    PMID: 22593677 DOI: 10.1100/2012/359413
    Tissue culture studies of Celosia cristata were established from various explants and the effects of various hormones on morphogenesis of this species were examined. It was found that complete plant regeneration occurred at highest percentage on MS medium supplemented with 2.0 mg/L NAA and 1.5 mg/L BAP, with the best response showed by shoot explants. In vitro flowering was observed on MS basal medium after six weeks. The occurrence of somaclonal variation and changes in cellular behavior from in vivo and in vitro grown plants were investigated through cytological studies and image analysis. It was observed that Mitotic Index (MI), mean chromosome numbers, and mean nuclear to cell area ratio of in vitro root meristem cells were slightly higher compared to in vivo values. However, in vitro plants produced lower mean cell areas but higher nuclear areas when compared to in vivo plants. Thus, no occurrence of somaclonal variation was detected, and this was supported by morphological features of the in vitro plants.
    Matched MeSH terms: Regeneration/drug effects
  15. Shi X, Xu L, Le TB, Zhou G, Zheng C, Tsuru K, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Feb;59:542-548.
    PMID: 26652406 DOI: 10.1016/j.msec.2015.10.024
    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O3) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O3 treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100°C since higher temperatures would impair the hardness of TiN coating. By contrast, O3 treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O3 treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant.
    Matched MeSH terms: Bone Regeneration/drug effects*
  16. Selvakumar M, Srivastava P, Pawar HS, Francis NK, Das B, Sathishkumar G, et al.
    ACS Appl Mater Interfaces, 2016 Feb 17;8(6):4086-100.
    PMID: 26799576 DOI: 10.1021/acsami.5b11723
    Guided bone regeneration (GBR) scaffolds are futile in many clinical applications due to infection problems. In this work, we fabricated GBR with an anti-infective scaffold by ornamenting 2D single crystalline bismuth-doped nanohydroxyapatite (Bi-nHA) rods onto segmented polyurethane (SPU). Bi-nHA with high aspect ratio was prepared without any templates. Subsequently, it was introduced into an unprecedented synthesized SPU matrix based on dual soft segments (PCL-b-PDMS) of poly(ε-caprolactone) (PCL) and poly(dimethylsiloxane) (PDMS), by an in situ technique followed by electrospinning to fabricate scaffolds. For comparison, undoped pristine nHA rods were also ornamented into it. The enzymatic ring-opening polymerization technique was adapted to synthesize soft segments of PCL-b-PDMS copolymers of SPU. Structure elucidation of the synthesized polymers is done by nuclear magnetic resonance spectroscopy. Sparingly, Bi-nHA ornamented scaffolds exhibit tremendous improvement (155%) in the mechanical properties with excellent antimicrobial activity against various human pathogens. After confirmation of high osteoconductivity, improved biodegradation, and excellent biocompatibility against osteoblast cells (in vitro), the scaffolds were implanted in rabbits by subcutaneous and intraosseous (tibial) sites. Various histological sections reveal the signatures of early cartilage formation, endochondral ossification, and rapid bone healing at 4 weeks of the critical defects filled with ornamented scaffold compared to SPU scaffold. This implies osteogenic potential and ability to provide an adequate biomimetic microenvironment for mineralization for GBR of the scaffolds. Organ toxicity studies further confirm that no tissue architecture abnormalities were observed in hepatic, cardiac, and renal tissue sections. This finding manifests the feasibility of fabricating a mechanically adequate nanofibrous SPU scaffold by a biomimetic strategy and the advantages of Bi-nHA ornamentation in promoting osteoblast phenotype progression with microbial protection (on-demand) for GBR applications.
    Matched MeSH terms: Bone Regeneration/drug effects*
  17. Shalan NA, Mustapha NM, Mohamed S
    Nutrition, 2017 Jan;33:42-51.
    PMID: 27908549 DOI: 10.1016/j.nut.2016.08.006
    OBJECTIVE: Black tea and Nonileaf are among the dietary compounds that can benefit patients with bone resorption disorders. Their bone regeneration effects and their mechanisms were studied in estrogen-deficient rats.

    METHODS: Noni leaves (three doses) and black tea water extracts were fed to ovariectomized rats for 4 mo, and their effects (analyzed via mechanical measurements, micro-computed tomography scan, and reverse transcriptase polymerase chain reaction mRNA) were compared with Remifemin (a commercial phytoestrogen product from black cohosh).

    RESULTS: The water extracts (dose-dependently for noni leaves) increased bone regeneration biomarker (runt-related transcription factor 2, bone morphogenetic protein 2, osteoprotegerin, estrogen receptor 1 [ESR1], collagen type I alpha 1A) expressions and reduced the inflammatory biomarkers (interleukin-6, tumor necrosis factor-α, nuclear factor [NF]-κB, and receptor activator of NF-κB ligand) mRNA expressions/levels in the rats. The extracts also improved bone physical and mechanical properties. The extracts demonstrated bone regeneration through improving bone size and structure, bone mechanical properties (strength and flexibility), and bone mineralization and density.

    CONCLUSIONS: The catechin-rich extract favored bone regeneration and suppressed bone resorption. The mechanisms involved enhancing osteoblast generation and survival, inhibiting osteoclast growth and activities, suppressing inflammation, improving bone collagen synthesis and upregulating ESR1 expression to augment phytoestrogenic effects. Estrogen deficiency bone loss and all extracts studied (best effect from Morinda leaf at 300 mg/kg body weight) mitigated the loss, indicating benefits for the aged and menopausal women.

    Matched MeSH terms: Bone Regeneration/drug effects*
  18. Mohajer S, Mat Taha R, Mohajer M, Khorasani Esmaeili A
    ScientificWorldJournal, 2014;2014:680356.
    PMID: 25045740 DOI: 10.1155/2014/680356
    To explore the potential of in vitro rapid regeneration, three varieties (Golpaygan-181, Orumieh-1763, and Gorgan-1601) of sainfoin (Onobrychis viciifolia Scop. syn. Onobrychis sativa L.) were evaluated. For the first time, an encapsulation protocol was established from somatic embryogenic callus in torpedo and cotyledonary stages to create artificial seeds. Callus derived from different concentrations of Kinetin (0-2.0 mg L(-1)) and Indole-3-acetic acid (0-2.0 mg L(-1)) was coated with sodium alginate and subsequently cultured either in Murashige and Skoog (MS) medium or in soil substrate. Adventitious shoots from synthetic beads developed into rooting in full and half strength MS medium supplemented with various concentrations of auxin and cytokinin. Prolonged water conservation of black and red soils (1:1) had the highest rate of survival plantlets in the acclimatization process. Diverse resistance techniques in Onobrychis viciifolia were evaluated when the plants were subjected to water deficiency. Higher frequency of epicuticular waxes was observed in in vivo leaves compared to in vitro leaves. Jagged trichomes nonsecreting glands covered by spines were only observed in the lower leaf side. Ultimately, stomata indices were 0.127 (abaxial), 0.188 (adaxial) in in vivo and 0.121 (abaxial), 0.201 (adaxial) in in vitro leaves.
    Matched MeSH terms: Regeneration/drug effects
  19. Rozali SE, Rashid KA, Taha RM
    ScientificWorldJournal, 2014;2014:457092.
    PMID: 25136669 DOI: 10.1155/2014/457092
    A successful protocol was established for micropropagation in two selected varieties of exotic ornamental plants, Calathea crotalifera. The effects of different sterilization techniques, explant type, and the combination and concentration of plant growth regulators on shoots induction were studied. The axillary shoot buds explants sprouted from rhizomes in soil free conditions showed high induction rate of shoots with lowest contamination percentage when treated with combination of 30% (v/v) NaOCl, 70% (v/v) ethanol, and 0.3% (w/v) HgCl2. In the present study, the highest number of multiple shoots was obtained in MS basal medium supplemented with 3.5 mg/L 6-Benzylaminopurine (BAP), 1.0 mg/L 1-Naphthaleneacetic acid (NAA), 3% sucrose, and 6 g/L plant agar for both varieties and was used as multiplication medium. Microshoots were highly induced when the young shoot bud explants were incised longitudinally prior subculture. Chlorophyll analysis was studied to test the effects of activated charcoal and L-glutamine on reduction of necrosis problem. The maximum roots induction was recorded on MS medium supplemented with 1.0 mg/L 1-Naphthaleneacetic acid (NAA) compared to indolebutyric acid (IBA). The complete regenerated plantlets were successfully acclimatized in the soilless medium under greenhouse condition. This is the first report of rapid mass propagation for C. crotalifera.
    Matched MeSH terms: Regeneration/drug effects*
  20. Ngah NA, Dias GJ, Tong DC, Mohd Noor SNF, Ratnayake J, Cooper PR, et al.
    Molecules, 2021 Nov 25;26(23).
    PMID: 34885714 DOI: 10.3390/molecules26237131
    BACKGROUND: Platelet-rich fibrin (PRF) has gained popularity in craniofacial surgery, as it provides an excellent reservoir of autologous growth factors (GFs) that are essential for bone regeneration. However, the low elastic modulus, short-term clinical application, poor storage potential and limitations in emergency therapy use restrict its more widespread clinical application. This study fabricates lyophilised PRF (Ly-PRF), evaluates its physical and biological properties, and explores its application for craniofacial tissue engineering purposes.

    MATERIAL AND METHODS: A lyophilisation method was applied, and the outcome was evaluated and compared with traditionally prepared PRF. We investigated how lyophilisation affected PRF's physical characteristics and biological properties by determining: (1) the physical and morphological architecture of Ly-PRF using SEM, and (2) the kinetic release of PDGF-AB using ELISA.

    RESULTS: Ly-PRF exhibited a dense and homogeneous interconnected 3D fibrin network. Moreover, clusters of morphologically consistent cells of platelets and leukocytes were apparent within Ly-PRF, along with evidence of PDGF-AB release in accordance with previously reports.

    CONCLUSIONS: The protocol established in this study for Ly-PRF preparation demonstrated versatility, and provides a biomaterial with growth factor release for potential use as a craniofacial bioscaffold.

    Matched MeSH terms: Bone Regeneration/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links