Displaying publications 1 - 20 of 85 in total

Abstract:
Sort:
  1. Tangahu BV, Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M
    Int J Phytoremediation, 2013;15(8):814-26.
    PMID: 23819277
    Phytoremediation is an environment-friendly and cost-effective method to clean the environment of heavy metal contamination. A prolonged phytotoxicity test was conducted in a single exposure. Scirpus grossus plants were grown in sand to which the diluted Pb (NO3)2 was added, with the variation of concentration were 0, 100, 200, 400, 600, and 800 mg/L. It was found that Scirpus grossus plants can tolerate Pb at concentrations of up to 400 mg/L. The withering was observed on day-7 for Pb concentrations of 400 mg/L and above. 100% of the plants withered with a Pb concentration of 600 mg/L on day 65. The Pb concentration in water medium decreased while in plant tissues increased. Adsorption of Pb solution ranged between 2 to 6% for concentrations of 100 to 800 mg/L. The Bioaccumulation Coefficient and Translocation Factor of Scirpus grossus were found greater than 1, indicating that this species is a hyperaccumulator plant.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  2. Shuhaimi-Othman M, Yakub N, Ramle NA, Abas A
    Toxicol Ind Health, 2015 Sep;31(9):773-82.
    PMID: 23302712 DOI: 10.1177/0748233712472519
    Two freshwater fish, Rasbora sumatrana (Cyprinidae) and Poecilia reticulata (guppy; Poeciliidae), were exposed to a range of eight heavy metals (copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al), and manganese (Mn)) at varied concentrations for 96 h in the laboratory. Mortality was assessed and median lethal concentrations (LC50) were calculated. It was observed that the LC50 values increased with a decrease in mean exposure times, for all metals and for both fish types. The 96-h LC50 values for Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.006, 0.10, 0.46, 0.63, 0.83, 1.71, 1.53, and 5.71 mg/L for R. sumatrana and 0.038, 0.17, 1.06, 1.99, 15.62, 1.46, 6.76, and 23.91 mg/L for P. reticulata, respectively. The metal toxicity trend for R. sumatrana and P. reticulata from most to least toxic was Cu > Cd > Zn > Pb > Ni > Al > Fe > Mn and Cu > Cd > Zn > Fe > Pb > Al > Ni > Mn, respectively. Results indicated that Cu was the most toxic metal on both fish, and R. sumatrana was more sensitive than P. reticulata to all the eight metals.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  3. Choo TP, Lee CK, Low KS, Hishamuddin O
    Chemosphere, 2006 Feb;62(6):961-7.
    PMID: 16081131
    This study describes an investigation using tropical water lilies (Nymphaea spontanea) to remove hexavalent chromium from aqueous solutions and electroplating waste. The results show that water lilies are capable of accumulating substantial amount of Cr(VI), up to 2.119 mg g(-1) from a 10 mg l(-1) solution. The roots of the plant accumulated the highest amount of Cr(VI) followed by leaves and petioles, indicating that roots play an important role in the bioremediation process. The maturity of the plant exerts a great effect on the removal and accumulation of Cr(VI). Plants of 9 weeks old accumulated the most Cr(VI) followed by those of 6 and 3 weeks old. The results also show that removal of Cr(VI) by water lilies is more efficient when the metal is present singly than in the presence of Cu(II) or in waste solution. This may be largely associated with more pronounced phytotoxicity effect on the biochemical changes in the plants and saturation of binding sites. Significant toxicity effect on the plant was evident as shown in the reduction of chlorophyll, protein and sugar contents in plants exposed to Cr(VI) in this investigation.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity
  4. Wang LY, Wang YS, Cheng H, Zhang JP, Yeok FS
    Ecotoxicology, 2015 Oct;24(7-8):1705-13.
    PMID: 26044931 DOI: 10.1007/s10646-015-1502-0
    Chitinases in terrestrial plants have been reported these are involved in heavy metal tolerance/detoxification. This is the first attempt to reveal chitinase gene (AcCHI I) and its function on metal detoxification in mangroves Aegiceras corniculatum. RT-PCR and RACE techniques were used to clone AcCHI I, while real-time quantitative PCR was employed to assess AcCHI I mRNA expressions in response to Cadmium (Cd). The deduced AcCHI I protein consists of 316 amino acids, including a signal peptide region, a chitin-binding domain (CBD) and a catalytic domain. Protein homology modeling was performed to identify potential features in AcCHI I. The CBD structure of AcCHI I might be critical for metal tolerance/homeostasis of the plant. Clear tissue-specific differences in AcCHI I expression were detected, with higher transcript levels detected in leaves. Results demonstrated that a short duration of Cd exposure (e.g., 3 days) promoted AcCHI I expression in roots. Upregulated expression was also detected in leaves under 10 mg/kg Cd concentration stress. The present study demonstrates that AcCHI I may play an important role in Cd tolerance/homeostasis in the plant. Further studies of the AcCHI I protein, gene overexpression, the promoter and upstream regulation will be necessary for clarifying the functions of AcCHI I.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity
  5. Baki MA, Shojib MFH, Sehrin S, Chakraborty S, Choudhury TR, Bristy MS, et al.
    Environ Geochem Health, 2020 Feb;42(2):531-543.
    PMID: 31376046 DOI: 10.1007/s10653-019-00386-4
    This study aimed to assess the effects of major ecotoxic heavy metals accumulated in the Buriganga and Turag River systems on the liver, kidney, intestine, and muscle of common edible fish species Puntius ticto, Heteropneustes fossilis, and Channa punctatus and determine the associated health risks. K was the predominant and reported as a major element. A large concentration of Zn was detected in diverse organs of the three edible fishes compared with other metals. Overall, trace metal analysis indicated that all organs (especially the liver and kidney) were under extreme threat because the maximum permissible limit set by different international health organizations was exceeded. The target hazard quotient and target cancer risk due to the trace metal content were the largest for P. ticto. Thus, excessive intake of P. ticto from the rivers Buriganga and Turag could result in chronic risks associated with long-term exposure to contaminants. Histopathological investigations revealed the first detectable indicators of infection and findings of long-term injury in cells, tissues, and organs. Histopathological changes in various tissue structures of fish functioned as key pointers of connection to pollutants, and definite infections and lesion types were established based on biotic pointers of toxic/carcinogenic effects. The analysis of histopathological alterations is a controlling integrative device used to assess pollutants in the environment.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity
  6. Chen SH, Ng SL, Cheow YL, Ting ASY
    J Hazard Mater, 2017 Jul 15;334:132-141.
    PMID: 28407540 DOI: 10.1016/j.jhazmat.2017.04.004
    Four fungal isolates: Simplicillium chinense (iso 9, accession no. KX425621), Penicillium simplicissimum (iso 10, KP713758), Trichoderma asperellum (iso 11, KP792512), and Coriolopsis sp. (1c3, KM403574) were subjected to a series of induced-tolerance training under high metal concentrations to determine if greater tolerance could be achieved from constant exposure to such conditions. Adaptive tolerance assay (Tolerance Index, TI) and Field-Emission Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX) characterized their metal tolerance. "Untrained" S. chinense, P. simplicissimum and T. asperellum showed tolerance towards 4000-4500ppm Al(III) (TI: 0.64-0.71), 1000ppm Cr(III) (0.52-0.83) and Pb(II) (0.32-0.88). With tolerance training, tolerance towards 2000-6000ppm Al(III), 500-3000ppm Pb(II) and 2000-3000ppm Cr(III) were achieved (TI: 0.01-0.82) compared to untrained cultures (0.00-0.59). In contrast, tolerance training for Coriolopsis sp. and P. simplicissimum was less successful, with TI values similar or lower than untrained cultures. SEM-EDX analysis proposed biosorption and bioaccumulation as mechanisms for metal removal. The latter was demonstrated with the removal of Cr(III) and Pb(II) by S. chinense (12.37 and 11.52mgg-1, respectively) and T. asperellum (10.44 and 7.50mgg-1). Induced-tolerance training may render benefit in the long run, but this delicate approach is suggestively species and metal dependent.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  7. Zainuddin AH, Wee SY, Aris AZ
    Environ Geochem Health, 2020 Nov;42(11):3703-3715.
    PMID: 32488800 DOI: 10.1007/s10653-020-00604-4
    The application of organophosphorus pesticides (OPPs) increased gradually because of the rise in global food demand that triggered the agriculture sector to increase the production, leading to OPP residues in the surface water. This study elucidated the presence of OPPs and estimated its ecological risk in the riverine ecosystem of the urbanised Linggi River, Negeri Sembilan, Malaysia. The OPP concentration in surface water was determined using solid-phase extraction method and high-performance liquid chromatography coupled with diode array detection. Further, the ecological risk was estimated by using the risk quotient (RQ) method. The three OPPs, i.e. chlorpyrifos, diazinon, and quinalphos were detected with mean concentrations of 0.0275 µg/L, 0.0328 µg/L, and 0.0362 µg/L, respectively. The OPPs were at high risk (in general and worst cases) under acute exposure. The estimated risk of diazinon was observed as medium for general (RQm = 0.5857) and high for worst cases (RQex = 4.4678). Notably, the estimated risk for chlorpyrifos was high for both general and worst cases (RQm = 1.9643 and RQex = 11.5643) towards the aquatic ecosystem of the Linggi River. Chronic risk of quinalphos remains unknown because of the absence of toxicity endpoints. This study presented clear knowledge regarding OPP contamination and possible risk for aquatic ecosystems. Hence, OPPs should be listed as one of the main priority contaminants in pesticide mitigation management in the future.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity
  8. Tan YH, Lim PE, Beardall J, Poong SW, Phang SM
    Aquat Toxicol, 2019 Dec;217:105349.
    PMID: 31734626 DOI: 10.1016/j.aquatox.2019.105349
    Ocean acidification, due to increased levels of anthropogenic carbon dioxide, is known to affect the physiology and growth of marine phytoplankton, especially in polar regions. However, the effect of acidification or carbonation on cellular metabolism in polar marine phytoplankton still remains an open question. There is some evidence that small chlorophytes may benefit more than other taxa of phytoplankton. To understand further how green polar picoplankton could acclimate to high oceanic CO2, studies were conducted on an Antarctic Chlorella sp. Chlorella sp. maintained its growth rate (∼0.180 d-1), photosynthetic quantum yield (Fv/Fm = ∼0.69) and chlorophyll a (0.145 fg cell-1) and carotenoid (0.06 fg cell-1) contents under high CO2, while maximum rates of electron transport decreased and non-photochemical quenching increased under elevated CO2. GCMS-based metabolomic analysis reveal that this polar Chlorella strain modulated the levels of metabolites associated with energy, amino acid, fatty acid and carbohydrate production, which could favour its survival in an increasingly acidified ocean.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity
  9. Sujitha V, Murugan K, Dinesh D, Pandiyan A, Aruliah R, Hwang JS, et al.
    Aquat Toxicol, 2017 Jul;188:100-108.
    PMID: 28482328 DOI: 10.1016/j.aquatox.2017.04.015
    Currently, nano-formulated mosquito larvicides have been widely proposed to control young instars of malaria vector populations. However, the fate of nanoparticles in the aquatic environment is scarcely known, with special reference to the impact of nanoparticles on enzymatic activity of non-target aquatic invertebrates. In this study, we synthesized CdS nanoparticles using a green protocol relying on the cheap extract of Valoniopsis pachynema algae. CdS nanoparticles showed high toxicity on young instars of the malaria vectors Anopheles stephensi and A. sundaicus. The antimalarial activity of the nano-synthesized product against chloroquine-resistant (CQ-r) Plasmodium falciparum parasites was investigated. From a non-target perspective, we focused on the impact of this novel nano-pesticide on antioxidant enzymes acetylcholinesterase (AChE) and glutathione S-transferase (GST) activities of the mud crab Scylla serrata. The characterization of nanomaterials was carried out by UV-vis and FTIR spectroscopy, as well as SEM and XRD analyses. In mosquitocidal assays, LC50 of V. pachynema-synthesized CdS nanoparticles on A. stephensi ranged from 16.856 (larva I), to 30.301μg/ml (pupa), while for An. sundaicus they ranged from 13.584 to 22.496μg/ml. The antiplasmodial activity of V. pachynema extract and CdS nanoparticles was evaluated against CQ-r and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of V. pachynema extract was 58.1μg/ml (CQ-s) and 71.46μg/ml (CQ-r), while nano-CdS IC50 was 76.14μg/ml (CQ-s) and 89.21μg/ml (CQ-r). In enzymatic assays, S. serrata crabs were exposed to sub-lethal concentrations, i.e. 4, 6 and 8μg/ml of CdS nanoparticles, assessing changes in GST and AChE activity after 16days. We observed significantly higher activity of GST, if compared to the control, during the whole experiment period. In addition, a single treatment with CdS nanoparticles led to a significant decrease in AChE activity over time. The toxicity of CdS nanoparticles and Cd ions in aqueous solution was also assessed in mud crabs, showing higher toxicity of aqueous Cd ions if compared to nano-CdS. Overall, our results underlined the efficacy of green-synthesized CdS nanoparticles in malaria vector control, outlining also significant impacts on the enzymatic activity of non-target aquatic organisms, with special reference to mud crabs.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  10. Malakahmad A, Manan TSBA, Sivapalan S, Khan T
    Environ Sci Pollut Res Int, 2018 Feb;25(6):5421-5436.
    PMID: 29209979 DOI: 10.1007/s11356-017-0721-8
    Allium cepa assay was carried out in this study to evaluate genotoxic effects of raw and treated water samples from Perak River in Perak state, Malaysia. Samples were collected from three surface water treatment plants along the river, namely WTPP, WTPS, and WTPK. Initially, triplicates of equal size Allium cepa (onions) bulbs, 25-30 mm in diameter and average weight of 20 g, were set up in distilled water for 24 h at 20 ± 2 °C and protected from direct sunlight, to let the roots to grow. After germination of roots (0.5-1.0 cm in length), bulbs were transferred to collected water samples each for a 96-h period of exposure. The root physical deformations were observed. Genotoxicity quantification was based on mitotic index and genotoxicity level. Statistical analysis using cross-correlation function for replicates from treated water showed that root length has inverse correlation with mitotic indices (r = - 0.969) and frequencies of cell aberrations (r = - 0.976) at lag 1. Mitotic indices and cell aberrations of replicates from raw water have shown positive correlation at lag 1 (r = 0.946). Genotoxicity levels obtained were 23.4 ± 1.98 (WTPP), 26.68 ± 0.34 (WTPS), and 30.4 ± 1.13 (WTPK) for treated water and 17.8 ± 0.18 (WTPP), 37.15 ± 0.17 (WTPS), and 47.2 ± 0.48 (WTPK) for raw water. The observed cell aberrations were adherence, chromosome delay, C-metaphase, chromosome loss, chromosome bridge, chromosome breaks, binucleated cell, mini cell, and lobulated nuclei. The morphogenetic deformations obtained were likely due to genotoxic substances presence in collected water samples. Thus, water treatment in Malaysia does not remove genotoxic compounds.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  11. Emenike CU, Fauziah SH, Agamuthu P
    Waste Manag Res, 2012 Sep;30(9):888-97.
    PMID: 22593235 DOI: 10.1177/0734242X12443585
    Landfilling is a major option in waste management hierarchy in developing nations. It generates leachate, which has the potential of polluting watercourses. This study analysed the physico-chemical components of leachate from a closed sanitary landfill in Malaysia, in relation to evaluating the toxicological impact on fish species namely Pangasius sutchi S., 1878 and Clarias batrachus L., 1758. The leachate samples were taken from Air Hitam Sanitary Landfill (AHSL) and the static method of acute toxicity testing was experimented on both fish species at different leachate concentrations. Each fish had an average of 1.3 ± 0.2 g wet weight and length of 5.0 ± 0.1 cm. Histology of the fishes was examined by analysing the gills of the response (dead) group, using the Harris haemtoxylin and eosin (H&E) method. Finneys' Probit method was utilized as a statistical tool to evaluate the data from the fish test. The physico-chemical analysis of the leachate recorded pH 8.2 ± 0.3, biochemical oxygen demand 3500 ± 125 mg L(-1), COD 10 234 ± 175 mg L(-1), ammonical nitrogen of 880 ± 74 mg L(-1), benzene 0.22 ± 0.1 mg L(-1) and toluene 1.2 ± 0.4 mg L(-1). The 50% lethality concentration (LC(50)) values calculated after 96 h exposure were 3.2% (v/v) and 5.9% (v/v) of raw leachate on P. sutchi and C. batrachus, respectively. The H&E staining showed denaturation of the nucleus and cytoplasm of the gills of the response groups. Leachate from the sanitary landfill was toxic to both fish species. The P. sutchi and C. batrachus may be used as indicator organisms for leachate pollution in water.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  12. Karami A, Christianus A, Ishak Z, Shamsuddin ZH, Masoumian M, Courtenay SC
    J Hazard Mater, 2012 May 15;215-216:108-14.
    PMID: 22417397 DOI: 10.1016/j.jhazmat.2012.02.038
    This study examined the potential of Pseudomonas aeruginosa abundance in the intestines of fish as an indicator of exposure to benzo[a]pyrene (BaP). P. aeruginosa populations were enumerated in juvenile African catfish (Clarias gariepinus) injected intramuscularly three days previous with 0, 10, 30, 40, 50 or 70mg/kg of BaP. Hepatic EROD and GST activities and biliary fluorescent aromatic compounds (FACs) 1-OH BaP, 3-OH BaP, 7,8-D BaP and BaP were quantified to investigate agreements between the new indicator and established fish biomarkers. The shape of bacterial population (logarithm of colony-forming unit) dose-response curve generally matched those of biliary FACs concentrations. Conversely, the EROD and GST dose-response curves were generally the mirror images of the bacterial population curve. Changes in intestinal P. aeruginosa population appear to be an indirect effect of BaP exposure because exposure to 0-100μg/ml BaP had no effect on P. aeruginosa populations grown on agar plates containing BaP. Using intestinal P. aeruginosa population of fish as a universal indicator of BaP pollution in aquatic environments is discussed.Conversely, the EROD and GST dose-response curves were generally the mirror images of the bacterial population curve.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity
  13. Karami A, Christianus A, Bahraminejad B, Gagné F, Courtenay SC
    Ecotoxicol Environ Saf, 2012 Mar;77:28-34.
    PMID: 22101109 DOI: 10.1016/j.ecoenv.2011.10.026
    This study examined the potential of artificial neural network (ANN) modeling to infer timing, route and dose of contaminant exposure from biomarkers in a freshwater fish. Hepatic glutathione S-transferase (GST) activity and biliary concentrations of BaP, 1-OH BaP, 3-OH BaP and 7,8D BaP were quantified in juvenile Clarias gariepinus injected intramuscularly or intraperitoneally with 10-50 mg/kg benzo[a]pyrene (BaP) 1-3 d earlier. A feedforward multilayer perceptron (MLP) ANN resulted in more accurate prediction of timing, route and exposure dose than a linear neural network or a radial basis function (RBF) ANN. MLP sensitivity analyses revealed contribution of all five biomarkers to predicting route of exposure but no contribution of hepatic GST activity or one of the two hydroxylated BaP metabolites to predicting time of exposure and dose of exposure. We conclude that information content of biomarkers collected from fish can be extended by judicious use of ANNs.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  14. Vedamanikam VJ, Shazilli NA
    Bull Environ Contam Toxicol, 2008 Jun;80(6):516-20.
    PMID: 18414763 DOI: 10.1007/s00128-008-9413-x
    A study was conducted to determine the suitability of using selected aquatic dipterian larvae for biomonitoring bioassays. The organisms included a member of the biting midge family that was identified as Culicoides furens and a member of the non-biting midge family, identified as Chironomus plumosus. Median lethal toxicity tests were conducted to observe the variation between metal sensitivities between the two larval forms and how variations in temperature could affect the experimental setup. Nine heavy metals were used in the study. It was observed that the 96 h LC(50) (in mg/L) for the different metals was found to be Zn-16.21 (18.55 +/- 13.87); Cr-0.96 (1.08 +/- 0.84); Ag-4.22 (6.87 +/- 1.57); Ni-0.42 (0.59 +/- 0.25); Hg-0.42 (0.59 +/- 0.25); Pb-16.21 (18.31 +/- 14.11); Cu-42.24 (45.18 +/- 39.30); Mn-4.22 (7.19 +/- 1.25); Cd-0.42 (0.59 +/- 0.25) for the Chironomus plumosus and Zn-4.22 (6.56 +/- 1.88); Cr-0.42 (0.54 +/- 0.30); Ag-0.42 (0.54 +/- 0.30); Ni-0.42 (0.54 +/- 0.30); Hg-0.04 (0.07 +/- 0.01); Pb-0.42 (0.54 +/- 0.30); Cu-42.24 (45.18 +/- 39.30); Mn-4.22 (6.56 +/- 1.88); Cd-0.42 (0.54 +/- 0.30) in the case of the Culicoides furens. With temperature as a variable the LC(50) values were observed to increase from 2.51 mg/L at 10 degrees C to 4.22 ppm at 30 degrees C and to reduce slightly to 3.72 mg/L at 35 degrees C as seen in the case of Zn. It was also observed that at 40 degrees C thermal toxicity and chemical toxicity overlapped as 100% mortality was observed in the controls. This trend was observed in all metals for both C. plumosus and C. furens. Thus indicating temperature played an important role in determining LC(50) values of toxicants.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  15. Yap CK, Noorhaidah A, Azlan A, Nor Azwady AA, Ismail A, Ismail AR, et al.
    Ecotoxicol Environ Saf, 2009 Feb;72(2):496-506.
    PMID: 18243309 DOI: 10.1016/j.ecoenv.2007.12.005
    The distributions of Cu, Zn, and Pb concentrations in the selected soft tissues (foot, cephalic tentacle, mantle, muscle, gill, digestive caecum, and remaining soft tissues) and shells of the mud-flat snail Telescopium telescopium were determined in snails from eight geographical sites in the south-western intertidal area of Peninsular Malaysia. Generally, the digestive caecum compared with other selected soft tissues, accumulated higher concentration of Zn (214.35+/-14.56 microg/g dry weight), indicating that the digestive caecum has higher affinity for the essential Zn to bind to metallothionein. The shell demonstrated higher concentrations of Pb (41.23+/-1.20 microg/g dry weight) when compared to the selected soft tissues except gill from Kuala Sg. Ayam (95.76+/-5.32 microg/g dry weight). The use of different soft tissues also can solve the problem of defecation to reduce error in interpreting the bioavailability of heavy metals in the intertidal area.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  16. Ramachandran S, Patel TR, Colbo MH
    Ecotoxicol Environ Saf, 1997 Mar;36(2):183-8.
    PMID: 9126437
    Three species of tropical estuarine invertebrates were exposed to copper sulfate and cadmium chloride to investigate their potential as test specimens for sediment toxicity assays in the South-east Asian regions. The larvae of the reef sea urchin (Diadema setosum), the oyster (Crassostrea iradalei), and the mud crab (Scylla seratta Forskall) were used in the 48-hr assays with copper and cadmium as reference toxicants. In addition the sea urchin were tested for end point measurements at different stages of the larval development and a 60-min sperm bioassay. The study revealed that the sea urchin first cleavage, which is an assay end point and which takes place about 1 hr after fertilization, was the most sensitive stage for both toxicants, with copper being more toxic than cadmium. Sensitivity comparisons between the three invertebrate larvae revealed the mud crab zoea larvae to be most sensitive for cadmium with an LC50 value of 0.078 microgram/ml, while the sea urchin was more sensitive for copper, with EC50 values of 0.01 microgram/ml at the first cleavage stage and 0.04 microgram/ml at the pluteus larva stage. All the invertebrates tested gave responses that made them suitable test organisms for metal bioassays in the tropical estuarine environment.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  17. Zulkarnain NN, Anuar N, Johari NA, Sheikh Abdullah SR, Othman AR
    Environ Toxicol Pharmacol, 2020 Nov;80:103498.
    PMID: 32950717 DOI: 10.1016/j.etap.2020.103498
    Inefficient ketoprofen removal from pharmaceutical wastewater may negatively impact the ecosystem and cause detrimental risks to human health. This study was conducted to determine the cytotoxicity effects of ketoprofen on HEK 293 cell growth and metabolism, including cyclooxygenase-1 (COX-1) expression, at environmentally relevant concentrations. The cytotoxic effects were evaluated through the trypan blue test, DNS assay, MTT assay, and the expression ratio of the COX-1 gene. The results of this study show insignificant (p > 0.05) cytotoxic effects of ketoprofen on cell viability and cell metabolism. However, high glucose consumption rates among the treated cells cause an imitation of the Warburg effect, which is likely linked to the development of cancer cells. Apart from that, the upregulation of COX-1 expression among the treated cells indicates remote possibility of inflammation. Although no significant cytotoxic effects of ketoprofen were detected throughout this study, the effects of prolonged exposure of residual ketoprofen need to be evaluated in the future.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  18. Karami A, Romano N, Galloway T, Hamzah H
    Environ Res, 2016 Nov;151:58-70.
    PMID: 27451000 DOI: 10.1016/j.envres.2016.07.024
    Despite the ubiquity of microplastics (MPs) in aquatic environments and their proven ability to carry a wide variety of chemicals, very little is known about the impacts of virgin or contaminant-loaded MPs on organisms. The primary aim of this study was to investigate the impacts of virgin or phenanthrene (Phe)-loaded low-density polyethylene (LDPE) fragments on a suite of biomarker responses in juvenile African catfish (Clarias gariepinus). Virgin LDPE (50 or 500µg/L) were preloaded with one of two nominal Phe concentrations (10 or 100µg/L) and were exposed to the fish for 96h. Our findings showed one or both Phe treatments significantly increased the degree of tissue change (DTC) in the liver while decreased the transcription levels of forkhead box L2 (foxl2) and tryptophan hydroxylase2 (tph2) in the brain of C. gariepinus. Exposure to either levels of virgin MPs increased the DTC in the liver and plasma albumin: globulin ratio while decreased the transcription levels of tph2. Moreover, MPs modulated (interacted with) the impact of Phe on the DTC in the gill, plasma concentrations of cholesterol, high-density lipoprotein (HDL), total protein (TP), albumin, and globulin, and the transcription levels of fushi tarazu-factor 1 (ftz-f1), gonadotropin-releasing hormone (GnRH), 11 β-hydroxysteroid dehydrogenase type 2 (11β-hsd2), and liver glycogen stores. Results of this study highlight the ability of virgin LDPE fragments to cause toxicity and to modulate the adverse impacts of Phe in C. gariepinus. Due to the wide distribution of MPs and other classes of contaminants in aquatic environments, further studies are urgently needed to elucidate the toxicity of virgin or contaminant-loaded MPs on organisms.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
  19. Sakai N, Shirasaka J, Matsui Y, Ramli MR, Yoshida K, Ali Mohd M, et al.
    Chemosphere, 2017 Apr;172:234-241.
    PMID: 28081507 DOI: 10.1016/j.chemosphere.2016.12.139
    Five homologs (C10-C14) of linear alkylbenzene sulfonate (LAS) were quantitated in surface water collected in the Langat and Selangor River basins using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A geographic information system (GIS) was used to spatially analyze the occurrence of LAS in both river basins, and the LAS contamination associated with the population was elucidated by spatial analysis at a sub-basin level. The LAS concentrations in the dissolved phase (<0.45 μm) and 4 fractions separated by particle size (<0.1 μm, 0.1-1 μm, 1-11 μm and >11 μm) were analyzed to elucidate the environmental fate of LAS in the study area. The environmental risks of the observed LAS concentration were assessed based on predicted no effect concentration (PNEC) normalized by a quantitative structure-activity relationship model. The LAS contamination mainly occurred from a few populated sub-basins, and it was correlated with the population density and ammonia nitrogen. The dissolved phase was less than 20% in high contamination sites (>1000 μg/L), whereas it was more than 60% in less contaminated sites (<100 μg/L). The environmental fate of LAS in the study area was primarily subject to the adsorption to suspended solids rather than biodegradation because the LAS homologs, particularly in longer alkyl chain lengths, were considerably absorbed to the large size fraction (>11 μm) that settled in a few hours. The observed LAS concentrations exceeded the normalized PNEC at 3 sites, and environmental risk areas and susceptible areas to the LAS contamination were spatially identified based on their catchment areas.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity
  20. Ghanem OB, Mutalib MIA, Lévêque JM, El-Harbawi M
    Chemosphere, 2017 Mar;170:242-250.
    PMID: 28006757 DOI: 10.1016/j.chemosphere.2016.12.003
    Ionic liquids (ILs) are class of solvent whose properties can be modified and tuned to meet industrial requirements. However, a high number of potentially available cations and anions leads to an even increasing members of newly-synthesized ionic liquids, adding to the complexity of understanding on their impact on aquatic organisms. Quantitative structure activity∖property relationship (QSAR∖QSPR) technique has been proven to be a useful method for toxicity prediction. In this work,σ-profile descriptors were used to build linear and non-linear QSAR models to predict the ecotoxicities of a wide variety of ILs towards bioluminescent bacterium Vibrio fischeri. Linear model was constructed using five descriptors resulting in high accuracy prediction of 0.906. The model performance and stability were ascertained using k-fold cross validation method. The selected descriptors set from the linear model was then used in multilayer perceptron (MLP) technique to develop the non-linear model, the accuracy of the model was further enhanced achieving high correlation coefficient with the lowest value being 0.961 with the highest mean square error of 0.157.
    Matched MeSH terms: Water Pollutants, Chemical/toxicity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links