METHODS: A user-friendly software was developed to accurately predict the individual size-specific dose estimation of paediatric patients undergoing computed tomography (CT) scans of the head, thorax, and abdomen. The software includes a calculation equation developed based on a novel SSDE prediction equation that used a population's pre-determined percentage difference between volume-weighted computed tomography dose index (CTDIvol) and SSDE with age. American Association of Physicists in Medicine (AAPM RPT 204) method (manual) and segmentation-based SSDE calculators (indoseCT and XXautocalc) were used to assess the proposed software predictions comparatively.
RESULTS: The results of this study show that the automated equation-based calculation of SSDE and the manual and segmentation-based calculation of SSDE are in good agreement for patients. The differences between the automated equation-based calculation of SSDE and the manual and segmentation-based calculation are less than 3%.
CONCLUSION: This study validated an accurate SSDE calculator that allows users to enter key input values and calculate SSDE.
IMPLICATION FOR PRACTICE: The automated equation-based SSDE software (PESSD) seems a promising tool for estimating individualised CT doses during CT scans.
MATERIALS AND METHODS: This was a cross-sectional study, involving a total of 100 cases that comprised of acute subchorionitis (stage I, n=20), acute chorioamnionitis (stage II, n=20), acute necrotising chorioamnionitis (stage III, n=20) and non-chorioamnionitis placenta as control (n=40). All tissue blocks were retrieved from the archived pathology record over a period of 4 years. CD36 and CD47 immunohistochemistry were performed on all cases and their expression in various cell types on the placenta were analysed.
RESULTS: CD36 was expressed only on the foetal vascular endothelial cells. Interestingly, CD47 showed positive staining on the neutrophils and its expression was significantly different between maternal inflammatory response stage II chorioamnionitis (n=13/20, p<0.001) with stage I and stage III chorioamnionitis.
DISCUSSION: Our study showed CD47 was expressed in the neutrophils and it was associated with poorer perinatal outcomes and it may have a role in the pathogenesis of chorioamnionitis.
Objective: In this study, bystander effects in MCF-7 breast cancer cells and hFOB 1.19 normal osteoblast cells irradiated with gamma emitting HDR Brachytherapy Ir-192 source were investigated.
Material and Methods: In this in-vitro study, bystander effect stimulation was conducted using medium transfer technique of irradiated cells to the non-irradiated bystander cells. Cell viability, reactive oxygen species (ROS) generation and colony forming assay was employed to evaluate the effect.
Results: Results indicate that the exposure to the medium irradiated MCF-7 induced significant bystander killing and decreased the survival fraction of bystander MCF-7 and hFOB from 1.19 to 81.70 % and 65.44 %, respectively. A significant decrease in survival fraction was observed for hFOB 1.19 bystander cells (p < 0.05). We found that the rate of hFOB 1.19 cell growth significantly decreases to 85.5% when added with media from irradiated cells. The ROS levels of bystander cells for both cell lines were observed to have an increase even after 4 h of treatment. Our results suggest the presence of bystander effects in unirradiated cells exposed to the irradiated medium.
Conclusion: These data provide evidence that irradiated MCF-7 breast cancer cells can induce bystander death in unirradiated MCF-7 and hFOB 1.19 bystander cells. Increase in cell death could also be mediated by the ROS generation during the irradiation with HDR brachytherapy.
MATERIALS AND METHODS: A literature search was performed across PubMed, EMBASE, Emerald Insight and grey literature sources. The key terms used in the search include 'distribution', 'method', and 'physician', focusing on research articles published in English from 2002 to 2022 that described methods or tools to measure hospital-based physicians' distribution. Relevant articles were selected through a two-level screening process and critically appraised. The primary outcome is the measurement tools used to assess the distribution of hospital-based physicians. Study characteristics, tool advantages and limitations were also extracted. The extracted data were synthesised narratively.
RESULTS: Out of 7,199 identified articles, 13 met the inclusion criteria. Among the selected articles, 12 were from Asia and one from Africa. The review identified eight measurement tools: Gini coefficients and Lorenz curve, Robin Hood index, Theil index, concentration index, Workload Indicator of Staffing Need method, spatial autocorrelation analysis, mixed integer linear programming model and cohortcomponent model. These tools rely on fundamental data concerning population and physician numbers to generate outputs. Additionally, five studies employed a combination of these tools to gain a comprehensive understanding of physician distribution dynamics.
CONCLUSION: Measurement tools can be used to assess physician distribution according to population needs. Nevertheless, each tool has its own merits and limitations, underscoring the importance of employing a combination of tools. The choice of measuring tool should be tailored to the specific context and research objectives.