AIM OF THE STUDY: To investigate the potential of F3 from S. crispus to prevent metastasis in breast cancer.
MATERIALS AND METHODS: The antimetastatic effects of F3 were first investigated on murine 4T1 and human MDA-MB-231 breast cancer cell (BCC) lines using cell proliferation, wound healing and invasion assays. A 4T1-induced mouse mammary carcinoma model was then used to determine the expression of metastasis tumor markers, epithelial (E)-cadherin, matrix metalloproteinase (MMP)-9, mucin (MUC)-1, nonepithelial (N)-cadherin, Twist, vascular endothelial growth factor (VEGF) and vimentin, using immunohistochemistry, following oral treatment with F3 for 30 days.
RESULTS: Significant growth arrest was observed with F3 IC50 values of 84.27 µg/ml (24 h) and 74.41 µg/ml (48 h) for MDA-MB-231, and 87.35 µg/ml (24 h) and 78.75 µg/ml (48 h) for 4T1 cells. F3 significantly inhibited migration of both BCC lines at 50 μg/ml for 24 h (p = 0.018 and p = 0.015, respectively). Similarly, significant inhibition of invasion was demonstrated in 4T1 (75 µg/ml, p = 0.016) and MDA-MB-231 (50 µg/ml, p = 0.040) cells compared to the untreated cultures. F3 treatment resulted in reduced tumor growth compared to untreated mice (p
METHODS: In this randomised, placebo-controlled, double-blind, phase 3 trial, done in 209 sites in 29 countries, we randomly assigned patients 2:1 with untreated locally recurrent inoperable or metastatic triple-negative breast cancer using a block method (block size of six) and an interactive voice-response system with integrated web-response to pembrolizumab (200 mg) every 3 weeks plus chemotherapy (nab-paclitaxel; paclitaxel; or gemcitabine plus carboplatin) or placebo plus chemotherapy. Randomisation was stratified by type of on-study chemotherapy (taxane or gemcitabine-carboplatin), PD-L1 expression at baseline (combined positive score [CPS] ≥1 or <1), and previous treatment with the same class of chemotherapy in the neoadjuvant or adjuvant setting (yes or no). Eligibility criteria included age at least 18 years, centrally confirmed triple-negative breast cancer; at least one measurable lesion; provision of a newly obtained tumour sample for determination of triple-negative breast cancer status and PD-L1 status by immunohistochemistry at a central laboratory; an Eastern Cooperative Oncology Group performance status score 0 or 1; and adequate organ function. The sponsor, investigators, other study site staff (except for the unmasked pharmacist), and patients were masked to pembrolizumab versus saline placebo administration. In addition, the sponsor, the investigators, other study site staff, and patients were masked to patient-level tumour PD-L1 biomarker results. Dual primary efficacy endpoints were progression-free survival and overall survival assessed in the PD-L1 CPS of 10 or more, CPS of 1 or more, and intention-to-treat populations. The definitive assessment of progression-free survival was done at this interim analysis; follow-up to assess overall survival is continuing. For progression-free survival, a hierarchical testing strategy was used, such that testing was done first in patients with CPS of 10 or more (prespecified statistical criterion was α=0·00411 at this interim analysis), then in patients with CPS of 1 or more (α=0·00111 at this interim analysis, with partial alpha from progression-free survival in patients with CPS of 10 or more passed over), and finally in the intention-to-treat population (α=0·00111 at this interim analysis). This study is registered with ClinicalTrials.gov, NCT02819518, and is ongoing.
FINDINGS: Between Jan 9, 2017, and June 12, 2018, of 1372 patients screened, 847 were randomly assigned to treatment, with 566 patients in the pembrolizumab-chemotherapy group and 281 patients in the placebo-chemotherapy group. At the second interim analysis (data cutoff, Dec 11, 2019), median follow-up was 25·9 months (IQR 22·8-29·9) in the pembrolizumab-chemotherapy group and 26·3 months (22·7-29·7) in the placebo-chemotherapy group. Among patients with CPS of 10 or more, median progression-free survival was 9·7 months with pembrolizumab-chemotherapy and 5·6 months with placebo-chemotherapy (hazard ratio [HR] for progression or death, 0·65, 95% CI 0·49-0·86; one-sided p=0·0012 [primary objective met]). Median progression-free survival was 7·6 and 5·6 months (HR, 0·74, 0·61-0·90; one-sided p=0·0014 [not significant]) among patients with CPS of 1 or more and 7·5 and 5·6 months (HR, 0·82, 0·69-0·97 [not tested]) among the intention-to-treat population. The pembrolizumab treatment effect increased with PD-L1 enrichment. Grade 3-5 treatment-related adverse event rates were 68% in the pembrolizumab-chemotherapy group and 67% in the placebo-chemotherapy group, including death in <1% in the pembrolizumab-chemotherapy group and 0% in the placebo-chemotherapy group.
INTERPRETATION: Pembrolizumab-chemotherapy showed a significant and clinically meaningful improvement in progression-free survival versus placebo-chemotherapy among patients with metastatic triple-negative breast cancer with CPS of 10 or more. These findings suggest a role for the addition of pembrolizumab to standard chemotherapy for the first-line treatment of metastatic triple-negative breast cancer.
FUNDING: Merck Sharp & Dohme Corp, a subsidiary of Merck & Co, Inc.
OBJECTIVE: Quercetin-decorated liposomes of curcumin (QCunp) are perceived to be able to overcome these biopharmaceutical drawbacks.
METHODS: Curcumin liposomes with/without quercetin were prepared by lipid hydration technique. The liposomes were characterized for their particle size, zeta potential, surface morphology, drug loading and release characteristics. The toxicity of the liposomes were evaluated in-vitro and their invivo efficacy were tested against Dalton's ascites lymphoma in mice.
RESULTS: Liposomes designed showed particle size of 261.8 ± 2.1 nm with a negative zeta potential of -22.6±1.6 mV. Quercetin decorated liposomes were more effective in increasing the life span and body weight of lymphoma inflicted mice compared to those without quercetin. Similarly, the presence of quercetin also contributed to enhanced cytotoxicity of the liposomal formulation towards HT-29 cells and HCT-15 cells.
CONCLUSION: Newer liposomal design exhibited promising potential to emerge as alternative anticancer therapeutics.
METHODS: This is a retrospective study, which included 93 CML patients and 98 controls. The polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method was used to genotype the FAS and FASL polymorphisms. Data nanlysis was done using SPSS Version 22. The associations of the genotypes with susceptibility risk and IM response in CML patients were assessed by means of logistic regression analysis and deriving odds ratio with 95% CI.
RESULTS: We observed a significant association between FASL-844T>C polymorphism and CML susceptibility risk and IM response. Variant C allele and FASL-844 CC variant genotype carriers had significantly higher risk for CML susceptibility (OR 1.756, CI 1.163-2.652, p=0.007 and OR 2.261, CI 1.013-5.047, p=0.047 respectively). Conversely, the heterozygous genotype FASL-844 TC conferred lower risk for CML susceptibility (OR 0.379, CI 0.176-0.816, p=0.013). The heterozygous and homozygous variant genotypes and variant C alleles were found to confer a lower risk for the development of IM resistance with OR 0.129 (95% CI: 0.034-0.489 p=0.003), OR 0.257 (95% CI: 0.081-0.818, p=0.021), and OR 0.486 (95% CI: 0.262-0.899, p=0.021) respectively. We also found that FAS-670 A>G polymorphism was not associated with CML susceptibility risk or IM response.
CONCLUSION: The genetic polymorphism FASL-844 T>C may contribute to the CML susceptibility risk and also IM treatment response in CML patients. Accodringly, it may be useful as a biomarker for predicting CML susceptibility risk and IM resistance.
METHODS: PARACHUTE is a phase IV, prospective, non-interventional, observational study. Primary endpoint was the proportion of patients remaining progression free at 12 months. Secondary endpoints were ORR, PFS, safety and tolerability, and relative dose intensity (RDI).
RESULTS: Overall, 190 patients with a median age of 61 years (range: 22.0-96.0) were included. Most patients were Asian (70%), clear-cell type RCC was the most common (81%), with a favourable (9%), intermediate (47%), poor (10%), and unknown (34%) MSKCC risk score. At the end of the observational period, 78 patients completed the observational period and 112 discontinued the study; 60% of patients had the starting dose at 800 mg. Median RDI was 82%, with 52% of patients receiving 10%) TEAEs related to pazopanib included diarrhoea (30%), palmar-plantar erythrodysesthesia syndrome (15%), and hypertension (14%).
CONCLUSIONS: Results of the PARACHUTE study support the use of pazopanib in patients with advanced or mRCC who are naive to VEGF-TKI therapy. The safety profile is consistent with that previously reported by pivotal and real-world evidence studies.
METHODS: In this double-blind, phase 3 trial, we randomly assigned 556 patients with previously untreated, EGFR mutation-positive (exon 19 deletion or L858R) advanced NSCLC in a 1:1 ratio to receive either osimertinib (at a dose of 80 mg once daily) or a standard EGFR-TKI (gefitinib at a dose of 250 mg once daily or erlotinib at a dose of 150 mg once daily). The primary end point was investigator-assessed progression-free survival.
RESULTS: The median progression-free survival was significantly longer with osimertinib than with standard EGFR-TKIs (18.9 months vs. 10.2 months; hazard ratio for disease progression or death, 0.46; 95% confidence interval [CI], 0.37 to 0.57; P<0.001). The objective response rate was similar in the two groups: 80% with osimertinib and 76% with standard EGFR-TKIs (odds ratio, 1.27; 95% CI, 0.85 to 1.90; P=0.24). The median duration of response was 17.2 months (95% CI, 13.8 to 22.0) with osimertinib versus 8.5 months (95% CI, 7.3 to 9.8) with standard EGFR-TKIs. Data on overall survival were immature at the interim analysis (25% maturity). The survival rate at 18 months was 83% (95% CI, 78 to 87) with osimertinib and 71% (95% CI, 65 to 76) with standard EGFR-TKIs (hazard ratio for death, 0.63; 95% CI, 0.45 to 0.88; P=0.007 [nonsignificant in the interim analysis]). Adverse events of grade 3 or higher were less frequent with osimertinib than with standard EGFR-TKIs (34% vs. 45%).
CONCLUSIONS: Osimertinib showed efficacy superior to that of standard EGFR-TKIs in the first-line treatment of EGFR mutation-positive advanced NSCLC, with a similar safety profile and lower rates of serious adverse events. (Funded by AstraZeneca; FLAURA ClinicalTrials.gov number, NCT02296125 .).