Displaying publications 181 - 200 of 703 in total

Abstract:
Sort:
  1. Loo JL, Khoramnia A, Lai OM, Long K, Ghazali HM
    Molecules, 2014 Jun 23;19(6):8556-70.
    PMID: 24959682 DOI: 10.3390/molecules19068556
    Mycelium-bound lipase (MBL), from a locally isolated Geotrichum candidum strain, was produced and characterized as a natural immobilized lipase. A time course study of its lipolytic activity in 1 L liquid broth revealed the maximum MBL activity at 4 h for mycelium cells harvested after 54 h. The yield and specific activity of MBL were 3.87 g/L dry weight and 508.33 U/g protein, respectively, while less than 0.2 U/mL lipase activity was detected in the culture supernatant. Prolonged incubation caused release of the bound lipase into the growth medium. The growth pattern of G. candidum, and production and properties of MBL were not affected by the scale. The stability of mycelia harboring lipase (MBL), harvested and lyophilized after 54 h, studied at 4 °C depicted a loss of 4.3% and 30% in MBL activity after 1 and 8 months, while the activity of free lipase was totally lost after 14 days of storage. The MBL from G. candidum displayed high substrate selectivity for unsaturated fatty acids containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.
    Matched MeSH terms: Fatty Acids, Nonesterified/metabolism*; Fatty Acids, Nonesterified/chemistry
  2. Shuib S, Nawi WN, Taha EM, Omar O, Kader AJ, Kalil MS, et al.
    ScientificWorldJournal, 2014;2014:173574.
    PMID: 24991637 DOI: 10.1155/2014/173574
    Strategic feeding of ammonium and metal ions (Mg(2+), Mn(2+), Fe(3+), Cu(2+), Ca(2+), Co(2+), and Zn(2+)) for enhanced GLA-rich lipid accumulation in C. bainieri 2A1 was established. When cultivated in nitrogen-limited medium, the fungus produced up to 30% lipid (g/g biomass) with 12.9% (g/g lipid) GLA. However, the accumulation of lipid stopped at 48 hours of cultivation although glucose was abundant. This event occurred in parallel to the diminishing activity of malic enzyme (ME), fatty acid synthase (FAS), and ATP citrate lyase (ACL) as well as the depletion of metal ions in the medium. Reinstatement of the enzymes activities was achieved by feeding of ammonium tartrate, but no increment in the lipid content was observed. However, increment in lipid content from 32% to 50% (g/g biomass) with 13.2% GLA was achieved when simultaneous feeding of ammonium, glucose, and metal ions was carried out. This showed that the cessation of lipid accumulation was caused by diminishing activities of the enzymes as well as depletion of the metal ions in the medium. Therefore, strategic feeding of ammonium and metal ions successfully reinstated enzymes activities and enhanced GLA-rich lipid accumulation in C. bainieri 2A1.
    Matched MeSH terms: Fatty Acids, Unsaturated/analysis; Fatty Acids, Unsaturated/metabolism*
  3. Samaram S, Mirhosseini H, Tan CP, Ghazali HM
    Molecules, 2013 Oct 10;18(10):12474-87.
    PMID: 24152670 DOI: 10.3390/molecules181012474
    The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.
    Matched MeSH terms: Fatty Acids/isolation & purification*; Fatty Acids/chemistry
  4. Haron J, Jahangirian H, Silong S, Yusof NA, Kassim A, Moghaddam RR, et al.
    J Oleo Sci, 2012;61(4):189-95.
    PMID: 22450120
    Fatty hydroxamic acids derivatives based on palm kernel oil which are phenyl fatty hydroxamic acids (PFHAs), methyl fatty hydroxamic acids (MFHAs), isopropyl fatty hydroxamic acids (IPFHAs) and benzyl fatty hydroxamic acids (BFHAs) were applied as chelating agent for copper liquid-liquid extraction. The extraction of copper from aqueous solution by MFHAs, PFHAs, BFHAs or IPFHAs were carried out in hexane as an organic phase through the formation of copper methyl fatty hydroxamate (Cu-MFHs), copper phenyl fatty hydroxamate (Cu-PFHs), copper benzyl fatty hydroxamate (Cu-BFHs) and copper isopropyl fatty hydroxamate (Cu-IPFHs). The results showed that the fatty hydroxamic acid derivatives could extract copper at pH 6.2 effectively with high percentage of extraction (the percentages of copper extraction by MFHAs, PFHAs, IPFHs and BFHAs were found to be 99.3, 87.5, 82.3 and 90.2%, respectively). The extracted copper could be quantitatively stripped back into sulphuric acid (3M) aqueous solution. The obtained results showed that the copper recovery percentages from Cu-MFHs, Cu-PFHs, Cu-BFHs and Cu-IPFHs are 99.1, 99.4, 99.6 and 99.9 respectively. The copper extraction was not affected by the presence of a large amount of Mg (II), Ni (II), Al (III), Mn (II) and Co (II) ions in the aqueous solution.
    Matched MeSH terms: Fatty Acids/chemical synthesis; Fatty Acids/chemistry*
  5. Ebrahimi M, Rajion MA, Goh YM, Sazili AQ
    J Anim Physiol Anim Nutr (Berl), 2012 Dec;96(6):962-9.
    PMID: 21848848 DOI: 10.1111/j.1439-0396.2011.01206.x
    The effects of different inclusion levels of oil palm fronds (OPF) on the fatty acid profile of the longissimus dorsi (LD), biceps femoris (BF) and infraspinatus (IS) muscle of goats fed for 100 days are described. Twenty-four individually housed Kacang crossbred male goats (averaged 21.7 ± 0.97 kg BW) were allocated to three groups receiving either a 100% concentrate control diet (CON), diet with 25% inclusion level of OPF (HAF) or a diet with 50% inclusion of OPF. The diets were adjusted to be isocaloric and isonitrogenous and fed at 3.0% of BW daily. Samples of LD, BF and IS muscles were taken at slaughter for the determination of fatty acid profiles. The total saturated fatty acids (SFA) in the LD and BF muscles of the OPF group were significantly (p 
    Matched MeSH terms: Fatty Acids/metabolism; Fatty Acids/chemistry*
  6. Boukraâ L, Sulaiman SA
    Recent Pat Antiinfect Drug Discov, 2009 Nov;4(3):206-13.
    PMID: 19673699
    Honey and other bee products were subjected to laboratory and clinical investigations during the past few decades and the most remarkable discovery was their antibacterial activity. Honey has been used since ancient times for the treatment of some diseases and for the healing of wounds but its use as an anti-infective agent was superseded by modern dressings and antibiotic therapy. However, the emergence of antibiotic resistant strains of bacteria has confounded the current use of antibiotic therapy leading to the re-examination of former remedies. Honey, propolis, royal jelly and bee venom have a strong antibacterial activity. Even antibiotic-resistant strains such as epidemic strains of methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycine resistant Enterococcus (VRE) have been found to be as sensitive to honey as the antibiotic-sensitive strains of the same species. Sensitivity of bacteria to bee products varies considerably within the product and the varieties of the same product. Botanical origin plays a major role in its antibacterial activity. Propolis has been found to have the strongest action against bacteria. This is probably due to its richness in flavonoids. The most challenging problems of using hive products for medical purposes are dosage and safety. Honey and royal jelly produced as a food often are not well filtered, and may contain various particles. Processed for use in wound care, they are passed through fine filters which remove most of the pollen and other impurities to prevent allergies. Also, although honey does not allow vegetative bacteria to survive, it does contain viable spores, including clostridia. With the increased availability of licensed medical stuffs containing bee products, clinical use is expected to increase and further evidence will become available. Their use in professional care centres should be limited to those which are safe and with certified antibacterial activities. The present article is a short review of recent patents on antibiotics of hives.
    Matched MeSH terms: Fatty Acids/pharmacology; Fatty Acids/chemistry
  7. Al-Mulla EA, Yunus WM, Ibrahim NA, Rahman MZ
    J Oleo Sci, 2009;58(9):467-71.
    PMID: 19654456
    N,N'-Carbonyl difatty amides (CDFAs) have been synthesized from palm oil using sodium ethoxide as catalyst. Ethyl fatty esters (EFEs) were produced as a by-product as well as glycerol. The synthesis was carried out by reflux palm oil and urea in presence of ethanol. In this process, palm oil gave 79% pure CDFAs after 8 hours and molar ratio of urea to palm oil was 6.2: 1 at 78 degrees C. Both CDFAs and EFEs have been characterized using elemental analysis, Fourier transform infrared (FTIR) spectroscopy and (1)H nuclear magnetic resonance (NMR) technique.
    Matched MeSH terms: Fatty Acids/chemical synthesis*; Fatty Acids/chemistry*
  8. Ramli MR, Siew WL, Cheah KY
    J Food Sci, 2008 Apr;73(3):C140-5.
    PMID: 18387090 DOI: 10.1111/j.1750-3841.2007.00657.x
    High-oleic palm oil (HOPO) with an oleic acid content of 59.0% and an iodine value (IV) of 78.2 was crystallized in a 200-kg De Smet crystallizer with a predetermined cooling program and appropriate agitation. The slurry was then fractionated by means of dry fractionation at 4, 8, 10, 12, and 15 degrees C. The oil and the fractionated products were subjected to physical and chemical analyses, including fatty acid composition, triacylglycerol and diacylglycerol composition, solid fat content, cloud point, slip melting point, and cold stability test. Fractionation at 15 degrees C resulted in the highest olein yield but with minimal oleic acid content. Due to the enhanced unsaturation of the oil, fractionation at relatively lower crystallization temperature showed a considerable effect on fatty acid composition as well as triacylglycerol and diacylglycerol composition of liquid fractions compared to higher crystallization temperature. The olein and stearin fractionated at 4 degrees C had the best cold stability at 0 degrees C and sharper melting profile, respectively.
    Matched MeSH terms: Fatty Acids/analysis*; Fatty Acids/chemistry
  9. Chong FC, Tey BT, Dom ZM, Ibrahim N, Rahman RA, Ling TC
    ScientificWorldJournal, 2006 Sep 07;6:1124-31.
    PMID: 16964369
    An intensified esterification process was operated by circulating 10 l of reaction mixtures, consisting of palm oil fatty acid distillate (PFAD) and glycerol in hexane, through a packed-bed reactor (PBR) filled with 10 kg of delipidated rice bran lipase (RBL). The influence of the process parameters, such as reaction temperature and type of water-removal agent, on the performance of this intensified esterification process were investigated. The highest degree of esterification (61%) was achieved at a reaction temperature of 65 masculineC, using silica gels as the water-removal agent. Thin-layer chromatography (TLC) analysis showed that the major composition of the esterified product was diacylglycerol.
    Matched MeSH terms: Fatty Acids/metabolism*; Fatty Acids/chemistry*
  10. Talebi AF, Tohidfar M, Mousavi Derazmahalleh SM, Sulaiman A, Baharuddin AS, Tabatabaei M
    Biomed Res Int, 2015;2015:597198.
    PMID: 26146623 DOI: 10.1155/2015/597198
    Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain of Dunaliella sp. showed that the mean lipid content in cultures enriched by 200 mg L(-1) myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200 mg L(-1) myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance of AccD gene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that "there is a there there" for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality.
    Matched MeSH terms: Fatty Acids/metabolism; Fatty Acids/chemistry
  11. Yaakub Z, Kamaruddin K, Singh R, Mustafa S, Marjuni M, Ting NC, et al.
    BMC Plant Biol, 2020 Jul 29;20(1):356.
    PMID: 32727448 DOI: 10.1186/s12870-020-02563-5
    BACKGROUND: Molecular breeding has opened new avenues for crop improvement with the potential for faster progress. As oil palm is the major producer of vegetable oil in the world, its improvement, such as developing compact planting materials and altering its oils' fatty acid composition for wider application, is important.

    RESULTS: This study sought to identify the QTLs associated with fatty acid composition and vegetative traits for compactness in the crop. It integrated two interspecific backcross two (BC2) mapping populations to improve the genetic resolution and evaluate the consistency of the QTLs identified. A total 1963 markers (1814 SNPs and 149 SSRs) spanning a total map length of 1793 cM were integrated into a consensus map. For the first time, some QTLs associated with vegetative parameters and carotene content were identified in interspecific hybrids, apart from those associated with fatty acid composition. The analysis identified 8, 3 and 8 genomic loci significantly associated with fatty acids, carotene content and compactness, respectively.

    CONCLUSIONS: Major genomic region influencing the traits for compactness and fatty acid composition was identified in the same chromosomal region in the two populations using two methods for QTL detection. Several significant loci influencing compactness, carotene content and FAC were common to both populations, while others were specific to particular genetic backgrounds. It is hoped that the QTLs identified will be useful tools for marker-assisted selection and accelerate the identification of desirable genotypes for breeding.

    Matched MeSH terms: Fatty Acids/analysis; Fatty Acids/genetics*
  12. Meimandipour A, Shuhaimi M, Hair-Bejo M, Azhar K, Kabeir BM, Rasti B, et al.
    Lett Appl Microbiol, 2009 Oct;49(4):415-20.
    PMID: 19725887 DOI: 10.1111/j.1472-765X.2009.02674.x
    To assess the probiotic effects of Lactobacillus agilis JCM 1048 and L. salivarius ssp. salicinius JCM 1230 and the pH on the cecal microflora of chicken and metabolic end products.
    Matched MeSH terms: Fatty Acids/metabolism; Fatty Acids/chemistry
  13. PUTERI AFIQAH ABDUL WAHAB, AZIZ AHMAD
    MyJurnal
    Salinity is one of the major constraintsin the rice production worldwide. Rice plants have moderate tolerance towardssalinity. Salinitychangescell membrane permeability and fatty acid compositionsby releasing the free fatty acids. Nonetheless, the effect of exogenous fatty acid such as arachidonic acid (AA) on rice grown on saline soil is yetunknown. Theobjective of the current study isto determine the effectofAA onthe morphological traits and freefatty acidsofrice plantgrown under saline conditions.Rice plants grown on saline soil (EC=12 ds/m)were treated with 50 μMAAon day 45 after transplant. Leaves and panicleswere sampledafter two weeks of treatment and analysed for fatty acid profile using GC-MS. Themorphological traits were observedat the maturity stage. Results showed that AA treatment improved the grain fill-in of the saline stress riceand reduced the accumulation of free fatty acids in the cell. The AAtreatment also increased the linoleic acid (18:2), linolenic acid (18:3) in paniclesand, dihomo-γ-linolenic acid(20:3) and nervonic acid (24:1) in leaves. The finding suggests that exogenous AAregulates salinity stress in rice by reducing the accumulation offree fatty acids.
    Matched MeSH terms: Fatty Acids; Fatty Acids, Monounsaturated; Fatty Acids, Nonesterified
  14. Taufik M, Shahrul I, Mohd Nordin AR, Ikhwanuddin M, Abol-Munafi AB
    Trop Life Sci Res, 2020 Jul;31(2):79-105.
    PMID: 32922670 DOI: 10.21315/tlsr2020.31.2.5
    Nutritional quality of the hepatopancreas and gonads of orange portunid mud crab, Scylla olivacea was evaluated for each gender under four treatment of different water velocities (0, 20, 40 and 60 cm s-1), in terms of nutrient reserve and nutrient for reproduction. About 56 crabs were used in this study in which fatty acids composition was analysed using gas chromatography mass-spectrometry (GC-MS). For hepatopancreas analysis, monounsaturated fatty acids (MUFAs) were present in the highest fatty acids concentration, followed by polyunsaturated fatty acids (PUFAs) and, saturated fatty acids (SFAs). However, long-chain polyunsaturated fatty acids (LC-PUFAs) were displayed in low concentration in the hepatopancreas. Total fatty acid (TFAs) composition was significantly higher at moderate velocity of 20 cm s-1 compared to other water velocity treatments. For gonad analysis, 20 cm s-1 showed the highest TFA concentration of 93.34 mg g-1 while, the lowest concentration of 3.90 mg g-1 occurred at 0 cm s-1. There were significant differences in male and female crab's fatty acids contents of gonads at all flow velocities challenged (p < 0.05). PUFAs and MUFAs were dominant while, SFAs were observed at low concentration. This study revealed that, concentration of PUFAs increased as gonad maturation increased. The decreasing concentration of hepatopancreas fatty acids over the culture period indicated that nutrient was shifted from the hepatopancreas, to be used as energy reserved to gonads for further growth of eggs and offspring. The linkages between water flow strength, hepatopancreas, and gonad fatty acids concentrations, is fundamental knowledge useful in establishing efficient habitat velocities selection which will improve aquaculture production of mud crabs with high quality broodstock.
    Matched MeSH terms: Fatty Acids; Fatty Acids, Monounsaturated; Fatty Acids, Unsaturated
  15. Tony, Kock Wai Ng, Siew, Rong Wong, Sim, Ling Chee, Augustine, Cheryl Andrea, Nalliah, Sivalingam, Azlinda Hamid
    MyJurnal
    This paper reviews available reports on the omega-6 (linoleic acid, LA) and omega-3 fatty acid
    [alpha-linolenic acid (ALA) + eicosapentaenoic acid (EPA) + docosahexaenoic acid) intakes amongst Malaysians against Malaysian Recommended Nutrient Intakes (RNI), focussing particularly on pregnant and lactating women because of the availability of data for these latter vulnerable groups. Overall, the omega-6 and omega-3 fatty acid nutrition amongst Malaysians are poor and far from desirable. The nutritional situation regarding these long-chain polyunsaturated fatty acids
    (LCPUFA) amongst Malaysian pregnant and lactating women is alarming and warrants urgent attention in nutrition promotion activities/counselling. Daily consumption of LA by these women and other Malaysians studied ranged from 3.69 - 5.61 % kcal with 38-60% of individuals not meeting their RNIs. Daily intakes of omega-3 fatty acids faired worse, averaging 0.21- 0.33 % kcal with as high as 92% of subjects in one study not meeting their RNIs. The omega-6 to omega-3 fatty acid
    ratios obtained in the studies reviewed are about 20:1, which is way above the World Health Organisationrecommended ratio of 5-10:1. Dietary sources of these omega- fatty acids in the subjects studied are chicken, fish and milk. Since local foods are not particularly rich in LCPUFA such as EPA and DHA, the options to improve EPA/DHA nutrition amongst Malaysians are
    the greater consumption of omega-3 enriched foods and in the case of pregnant and lactating women, LCPUFA supplementation may warrant serious consideration.
    Matched MeSH terms: Fatty Acids; Fatty Acids, Unsaturated; Fatty Acids, Omega-3
  16. Ali, M.A., Daud, A.S.M., Latip, R.A., Othman, N.H., Islam, M.A.
    MyJurnal
    The aim of the present study was to evaluate the effect of chicken nuggets addition on the degradation of canola oil during frying compared to the changes occurring when the same frying medium was simply heated at frying temperature as control. Heating or frying test was carried out at 185±5oC using electric fryer for 8 h/day for 3 consecutive days and the oil sample was collected every 4 h. The changes in fatty acids composition and physicochemical properties of the oil samples during frying and controlled heating experiments were monitored. In this study, refractive index, free fatty acid content, peroxide value, p-anisidine value, polar compounds and viscosity of the oils all increased, whereas iodine value and C18:2/C16:0 ratio decreased as heating or frying progressed. The percentage of linoleic acid tended to decrease, whereas the percentages of palmitic acid increased. Gas chromatography analysis revealed that adding chicken nuggets to heated canola oil led to higher decrease in the ratio of C18.2/C16:0 compared to what was measured when the fat alone was heated at frying temperature. The presence of chicken nuggets accelerates the formation of polymerization products and polar compounds in canola oil during frying.
    Matched MeSH terms: Fatty Acids; Fatty Acids, Monounsaturated; Fatty Acids, Nonesterified
  17. Tan JC, Chuah CH, Cheng SF
    J Sci Food Agric, 2017 Apr;97(6):1784-1789.
    PMID: 27470073 DOI: 10.1002/jsfa.7975
    BACKGROUND: Conventional palm oil milling involves multiple stages after fruit collection; in particular, oil clarification introduces water into the pressed oil, which results in a large quantity of wastewater.

    RESULTS: A combined process of microwave pretreatment and solvent extraction to mill crude palm oil, without introducing water or steam, is described. An excellent yield (up to 30%) of oil was obtained with pretreatment in a 42 L, 1000 W and 2450 MHz microwave oven followed by hexane extraction. The optimum conditions (10 min microwave pretreatment and 12 h solvent extraction) yielded an oil with a low free fatty acid content (<1.0%) and an acceptable anisidine value (<3.0 meq kg(-1) ). The oil had a fatty acid composition not resembling those of conventional crude palm oil and crude palm kernel oil. In the pretreatment, the leached oil had 6.3% lauric acid whereas the solvent extracted oil had only 1.5% lauric acid. Among the factors affecting the oil quality, microwave pretreatment affected the oil quality significantly; however, an optimised duration that would ensure high efficiency in solvent extraction also resulted in ruptured fruitlets, although not to the extent of causing excessive oxidation. In fact, microwave pretreatment should exceed 12 min; after only 15 min, the oil had 1-methylcyclopentanol (12.96%), 1-tetradecanol (9.44%), 1-nonadecene (7.22%), nonanal (7.13%) and 1-tridecene (5.09%), which probably arose from the degradation of fibres.

    CONCLUSION: Microwave pretreatment represents an alternative milling process for crude palm oil compared with conventional processes in the omission of wet treatment with steam. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Fatty Acids/isolation & purification; Fatty Acids/chemistry
  18. Sin Teh S, Ong ASH, Choo YM, Mah SH
    J Oleo Sci, 2018;67(6):697-706.
    PMID: 29863090 DOI: 10.5650/jos.ess18009
    Saturated fats are commonly claimed to raise human blood cholesterols and contribute to cardiovascular disease. Previous literature data were highlighted that although palm oil is 50% saturated, it does not behave like a saturated fat. Human trials were conducted to compare the effects on serum cholesterol levels given by palm olein and monounsaturated oils. It was postulated that saturation/unsaturation of the fatty acids situated at sn-2 positions of triglycerides in the fat molecules determine the induced blood lipid levels but not the overall saturation of oils. The results showed that the lipid parameters (LDL and HDL) effects induced by these oils are similar with no significant differences. This study provides concrete evidence that the unsaturation levels of these oils at sn-2 position of TG are similar (90-100%) which are claimed to be responsible for the lipid parameters. In conclusion, the public negative perception on believing that the overall saturation of oils is detrimental to health should be corrected because in fact the unsaturation at sn-2 positions of the saturated vegetable fat such as palm olein and cocoa butter make them behave like mono-unsaturated oils, unlike saturated animal fats that possess a high content of saturated fatty acids at sn-2 position.
    Matched MeSH terms: Fatty Acids/adverse effects; Fatty Acids, Unsaturated
  19. Tevan, R., Jayakumar, Saravanan, Mohd Hasbi Ab. Rahim, Maniam, Gaaty Pragas, Govindan, Natanamurugaraj
    MyJurnal
    The world is facing a problem regarding the use of petroleum fuels that has led to a search for a suitable alternative fuel source. Researchers have come up with the idea of producing biofuel to overcome this problem. In this study, microalgae were explored as a high potential feedstock to produce biofuel. In order to produce a large quantity of biofuel with low cost at a short time, the manipulation of nutrients is a factor in microalgae cultivation. In this study, Iron (II) Chloride (FeCl2) was added to the nutrients to initiate a stressful condition during growth which contributes to the produce of lipid. Isolated microalgae species were identified as Scenedesmus sp. During mass cultivation, the microalgae cultures were scaled up to 2 L of culture. Three flasks of microalgae culture were labelled with S1, S2, and S3. Flask S1 acts as a control without the addition of FeCl2, while another two flasks acted as experimental flasks. Flask S2 was supplemented with 0.5 mg FeCl2 while Flask S3 was supplemented with 1.0 mg of FeCl2. With the addition of Iron (II) Chloride, microalgae entered a stationary phase at day 9 and day 10 as compared to the control flask which enters the stationary phase at day 7. This also affects the dry weight. Flask 3 produces 0.8658 g of microalgae powder compared to Flask 1 and 2 which produced 0.4649 g and 0.5357 g respectively. Lipid analysis was done by using GCMS and GCFID. Flask 3 produced various types of fatty acids which can be used for biodiesel production compared to other cultivates. In Flask 1, docosanoic acid which is a saturated fatty acid was detected. While in Flask 2 (S2), with the addition of 0.5 mg of FeCl2, docosapentaenoic acid was produced. In the last flask which involved the addition of 1.0 mg of FeCl2, more fatty acid was detected. In GC-FID data, 6 types of fatty acids were detected. Linolein acid, linolenic acid, stearidonic acid, docosapentaenoic acid, docosahexaenoic acid and docosanoic acid were produced at different retention times. Most of the fatty acids produced are polyunsaturated fatty acid (PUFA). In transesterification, the fatty acid reacts with methanol and acid catalyst. The reaction produces fatty acid methyl ester. In Flask 1, the control flask, without the addition of FeCl2, no fatty acid methyl esters (FAME) was produced. However, in Flask 2 and 3 which were added 0.5 mg FeCl2 and 1.0 mg FeCl2, n-hexadecanoic acid methyl ester which is also known as palmitic acid was produced. Palmitic fatty acid can be used for biodiesel production.
    Matched MeSH terms: Fatty Acids; Fatty Acids, Unsaturated; Fatty Acids, Omega-3
  20. Khoo HE, Azlan A, Abd Kadir NAA
    Front Chem, 2019;7:5.
    PMID: 30766864 DOI: 10.3389/fchem.2019.00005
    This study aims to identify potential phenolic compounds, terpenoids, and other phytochemicals, as well as fatty acid profile and peptides in Canarium odontophyllum (CO) oil and oleoresin, extracted using supercritical carbon dioxide. LC-ESI-MS was applied in separation and tentative identification of phytochemicals in CO oil and oleoresin. Based on the results, 11 common fatty acids and their isomers, monoglycerides, diglycerides, as well as other types of lipid, were tentatively identified in the CO oil and oleoresin. The identified fatty acids consisted of saturated fatty acids (C8-C16), monounsaturated fatty acids (C16:1 and C18:1), polyunsaturated fatty acids (C18:2, C18:3, C18:4, and C20:3), and other unclassified fatty acids. The tentatively identified phenolic compounds were phenolic acids, flavonoids, lignans, and a phenolic monoester. Triterpenes, sesquiterpenes, and apocarotenoids were the terpenoids found in CO oil and oleoresin. Besides these typical bioactives, some volatiles, aromatic compounds, peptides, and other known and unknown phytochemicals were also tentatively identified in the oil and oleoresin of CO. Some of these compounds are new compounds identified in CO oil and oleoresin, which are not found in many other fruit oils. Although CO oil and oleoresin contain a small number of phytochemicals, their contribution as antioxidants may prevent several diseases. In this study, we hypothesized that CO oleoresin contains certain types of fatty acids that render its semi-solid together with other chemical components which are not found in CO oil. This is the first study that tentatively identified fatty acids, peptides, and potential phytochemicals in CO oil and oleoresin using LC-ESI-MS.
    Matched MeSH terms: Fatty Acids; Fatty Acids, Monounsaturated; Fatty Acids, Unsaturated
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links