In this study, the zinc oxide (ZnO) layer was synthesised on the surface of Zn plates by three different techniques, i.e. electrolysis, hydrogen peroxide and heat treatment. The synthesised ZnO layers were characterised using scanning electron microscopy, X-ray diffraction, UV-visible diffuse reflectance and photoluminescence spectroscopy. The photocatalytic activity of the ZnO layer was further assessed against methylene blue (MB) degradation under UV irradiation. The photocatalytic degradation of MB was achieved up to 84%, 79% and 65% within 1 h for ZnO layers synthesised by electrolysis, heat and hydrogen peroxide treatment, respectively. The reusability results show that electrolysis and heat-treated ZnO layers have considerable photocatalytic stability. Furthermore, the results confirmed that the photocatalytic efficiency of ZnO was directly associated with the thickness and enlarged surface area of the layer. Finally, this study proved that the ZnO layers synthesised by electrolysis and heat treatment had shown better operational stability and reusability.
The [Co(naphophen)(PPh3)(OH2)]ClO4 and [Co(naphophen)(PBu3)(OH2)]BF4 (where naphophen=bis(naphthaldehyde)1,2-phenylenediimine) complexes were synthesized and chracterized by FT-IR, UV-Vis, (1)H NMR, (13)C NMR spectroscopy and elemental analysis techniques. The coordination geometry of the synthesized complexes were determined by X-ray crystallography. Cobalt (III) complexes have six-coordinated pseudo-octahedral geometry in which the O(1), O(2), N(1) and N(2) atoms of the Schiff base forms the equatorial plane. These complexes showed a dimeric structure via hydrogen bonding between the phenolate oxygen and the hydrogens of the coordinated H2O molecule. The theoretical calculations were also performed to optimize the structure of the complexes in the gas phase to confirm the structures proposed by X-ray crystallography. In addition, UV-Visible and IR spectra of complexes were calculated and compared with the corresponding experimental spectra to complete the experimental structural identification. The synthesized complexes were incorporated onto the Montmorillonite-K10 nanoclay via simple ion-exchange reaction. The structure and morphology of the obtained nanohybrids were identified by FT-IR, XRD, TGA/DTA, SEM and TEM techniques. Based on the XRD results of the new nanohybrid materials, the Schiff base complexes were intercalated in the interlayer spaces of clay. SEM and TEM micrographs of the clay/complex shows that the resulting hybrid nanomaterials has layer structures.
In the present study, a comparison of central composite design (CCD) and Taguchi method was established for Fenton oxidation. [Dye]ini, Dye:Fe(+2), H2O2:Fe(+2), and pH were identified control variables while COD and decolorization efficiency were selected responses. L 9 orthogonal array and face-centered CCD were used for the experimental design. Maximum 99% decolorization and 80% COD removal efficiency were obtained under optimum conditions. R squared values of 0.97 and 0.95 for CCD and Taguchi method, respectively, indicate that both models are statistically significant and are in well agreement with each other. Furthermore, Prob > F less than 0.0500 and ANOVA results indicate the good fitting of selected model with experimental results. Nevertheless, possibility of ranking of input variables in terms of percent contribution to the response value has made Taguchi method a suitable approach for scrutinizing the operating parameters. For present case, pH with percent contribution of 87.62% and 66.2% was ranked as the most contributing and significant factor. This finding of Taguchi method was also verified by 3D contour plots of CCD. Therefore, from this comparative study, it is concluded that Taguchi method with 9 experimental runs and simple interaction plots is a suitable alternative to CCD for several chemical engineering applications.
The mineralisation kinetics of petroleum refinery effluent (PRE) by Fenton oxidation were evaluated. Within the ambit of the experimental data generated, first-order kinetic model (FKM), generalised lumped kinetic model (GLKM), and generalized kinetic model (GKM) were tested. The obtained apparent kinetic rate constants for the initial oxidation step (k'2), their final oxidation step (k'1), and the direct conversion to endproducts step (k3') were 10.12, 3.78, and 0.24 min(-1) for GKM; 0.98, 0.98, and nil min(-1) for GLKM; and nil, nil, and >0.005 min(-1) for FKM. The findings showed that GKM is superior in estimating the mineralization kinetics.
The mineralisation of remazol black B (RBB) was studied at concentrations ranging from 20-1000 mgL(-1). The work was aimed at investigating the Fenton-like peroxidation of RBB at a concentration typically obtained in Batik cottage industries. Other response parameters were degradation and colour removal efficiencies. The parameters that were measured included total organic carbon (TOC), chemical oxygen demand (COD) as well as absorbance for mineralisation, degradation and colour. To optimise the process, the interaction effects of several controlling variables on the treatment process were examined using dispersion matrix-optimal design and response surface analysis. Four specific variables: initial dye concentration (Dye)o; the molar ratio of oxidant to dye organic strength (H2O2):(COD); the mass ratio of the oxidant to the catalyst (H2O2):(Fe3+) and reaction time (t(r)), were observed. Three reduced empirical models, one for each response, were developed for describing the treatment process. For 20, 510 and 1000 mgL(-1), the optimum %TOC reduction and oxidation times were 44% for 95 min, 52% for 52.5 min and 68% for 10 min corresponding to 67, 81 and 75% COD reduction, respectively. The optimum COD reduction and oxidation times were 89% for 95 min, 91% for 10 min and 84% for 95 min for concentrations of 20, 510 and 1000 mg L(-1), respectively. For all concentrations, total colour removal was achieved. A comparison of the results obtained in this study with literature values for traditional Fenton, photo-Fenton and photo-Fenton-like oxidation indicated that the TOC reduction obtained using the Fenton-like process was satisfactory.
The resource availability hypothesis predicts an increase in the allocation to secondary metabolites when carbon gain is improved relative to nutrient availability, which normally occurs during periods of low irradiance. The present work was carried out to confirm this hypothesis by investigating the effects of decreasing irradiance on the production of plant secondary metabolites (flavonoids and phenolics) in the herbal plant Orthosiphon stamineus, and to characterize this production by carbohydrate, H(2)O(2), and malondialdehyde (MDA) levels, net photosynthesis, leaf chlorophyll content and carbon to nitrogen ratio (C/N). Four levels of irradiance (225, 500, 625 and 900 µmol/m(2)/s) were imposed onto two-week old seedlings for 12 weeks in a randomized complete block design experiment. Peak production of total flavonoids, phenolics, soluble sugar, starch and total non-structural carbohydrate ocurred under low irradiance of 225 µmol/m(2)/s, and decreased with increasing irradiance. The up-regulation of secondary metabolites could be explained by the concomitant increases in H(2)O(2) and MDA activities under low irradiance. This condition also resulted in enhanced C/N ratio signifying a reduction in nitrogen levels, which had established significant negative correlations with net photosynthesis, total biomass and total chlorophyll content, indicating the possible existence of a trade-off between growth and secondary metabolism under low irradiance with reduced nitrogen content. The competition between total chlorophyll and secondary metabolites production, as exhibited by the negative correlation coefficient under low irradiance, also suggests a sign of gradual switch of investment from chlorophyll to polyphenols production.
Oxidative stress has been implicated as an important pathogenic factor in the pathophysiology of various life-threatening diseases such as cancer, cardiovascular diseases and diabetes. It occurs when the production of free radicals (generated during aerobic metabolism, inflammation, and infections) overcome the antioxidant defences in the body. Although previous studies have implied that oxidative stress is present in serum of patients with parasitic infection there have been no studies confirming oxidative stress levels in the Malaysian population infected with intestinal parasites. Three biochemical assays namely hydrogen peroxide (H2O2), lipid peroxidation (LP) and advanced oxidative protein product (AOPP) assays were carried out to measure oxidative stress levels in the urine of human subjects whose stools were infected with parasites such as Blastocystis hominis, Ascaris, Trichuris, hookworm and microsporidia. The levels of H2O2, AOPP and LP were significantly higher (P<0.001, P<0.05 and P<0.05 respectively) in the parasite-infected subjects (n=75) compared to the controls (n=95). In conclusion, the study provides evidence that oxidative stress is elevated in humans infected by intestinal parasites. This study may influence future researchers to consider free radical-related pathways to be a target in the interventions of new drugs against parasitic infection and related diseases.
In this study, advanced oxidation process utilizing Fenton's reagent was investigated for degradation of malachite green (MG). The effects of different reaction parameters such as the initial MG concentration, initial pH, the initial hydrogen peroxide concentration, the initial ferrous concentration and the reaction temperature on the oxidative degradation of MG have been investigated. The optimal reacting conditions were experimentally found to be pH 3.40, initial hydrogen peroxide concentration=0.50mM and initial ferrous concentration=0.10mM for initial MG concentration of 20mg/L at 30 degrees C. Under optimal conditions, 99.25% degradation efficiency of dye in aqueous solution was achieved after 60 min of reaction.
A series of compounds consisting of 25 novel oxadiazole-benzohydrazone hybrids (6-30) were synthesized through a five-step reaction sequence and evaluated for their β-glucuronidase inhibitory potential. The IC50 values of compounds 6-30 were found to be in the range of 7.14-44.16μM. Compounds 6, 7, 8, 9, 11, 13, 18, and 25 were found to be more potent than d-saccharic acid 1,4-lactone (48.4±1.25μM). These compounds were further subjected for molecular docking studies to confirm the binding mode towards human β-d-glucuronidase active site. Docking study for compound 13 (IC50=7.14±0.30μM) revealed that it adopts a binding mode that fits within the entire pocket of the binding site of β-d-glucuronidase. Compound 13 has the maximum number of hydrogens bonded to the residues of the active site as compared to the other compounds, that is, the ortho-hydroxyl group forms hydrogen bond with carboxyl side chain of Asp207 (2.1Å) and with hydroxyl group of Tyr508 (2.6Å). The other hydroxyl group forms hydrogen bond with His385 side chain (2.8Å), side chain carboxyl oxygen of Glu540 (2.2Å) and Asn450 side-chain's carboxamide NH (2.1Å).
Methane hydrates (MHs) are present in large amounts in the ocean floor and permafrost regions. Methane and hydrogen hydrates are being studied as future energy resources and energy storage media. To develop a method for gas production from natural MH-bearing sediments and hydrate-based technologies, it is imperative to understand the thermal properties of gas hydrates. The thermal properties' measurements of samples comprising sand, water, methane, and MH are difficult because the melting heat of MH may affect the measurements. To solve this problem, we performed thermal properties' measurements at supercooled conditions during MH formation. The measurement protocol, calculation method of the saturation change, and tips for thermal constants' analysis of the sample using transient plane source techniques are described here. The effect of the formation heat of MH on measurement is very small because the gas hydrate formation rate is very slow. This measurement method can be applied to the thermal properties of the gas hydrate-water-guest gas system, which contains hydrogen, CO2, and ozone hydrates, because the characteristic low formation rate of gas hydrate is not unique to MH. The key point of this method is the low rate of phase transition of the target material. Hence, this method may be applied to other materials having low phase-transition rates.
Deep eutectic solvents (DESs) are novel solvent media that are currently under investigation as an alternative to ionic liquids and conventional solvents. The physical properties of DESs as well as their mild environmental footprint and potentially critical industrial application necessitate understanding the interaction of functional groups on both the salt and hydrogen bond donor (HBD). In this study, four DESs were prepared by mixing triethylenglycol, diethylenglycol, ethylenglycol, and glycerol as HBDs with methyltriphenylphosphonium bromide as a salt at a molar ratio of 1:4. Fourier transform infrared spectroscopy was conducted to highlight the chemical structure and mechanism of the combination of the four DESs. New spectra illustrating the combination of the functional groups of the HBDs and salt were observed and interpreted. This study is the first to investigate the properties of neoteric phosphonium-based DESs.
New derivatives of 7-hydroxy-4-methylcoumarin were synthesized using a chemical method and a microwave-assisted method to compare the feasibility, reaction times, and yields of the product. The newly synthesized coumarins were characterized by different spectroscopic techniques (FT-IR and NMR) and micro-elemental analysis (CHNS). In vitro antioxidant activities of these compounds were evaluated against hydrogen peroxide and were compared with standard natural antioxidant, vitamin C. Our results reveal that these compounds exhibit excellent radical scavenging activities.
The stimulant and toxicity effects of reported organic (acetic acid, propionic acid, butyric acid, formic acid, oil & grease) and inorganic (copper) by-products presented in palm oil mill effluent on anaerobic bacterial population were examined in this paper. The toxicity test had shown that acetic, propionic and butyric acids tend to stimulate the bacterial density level (survival rate more than 50%), while formic acid, copper, oil and grease were shown to have suppressed the density level (survival rate less than 50%). The highest biomass recorded was 1.66 mg/L for the concentration of acetic acid at 216 mg/L and lowest biomass concentration, 0.90 mg/L for copper at 1.40 mg/L. Biohydrogen-producing bacteria have a favourable growth rate around pH 5.5. The comparison of half maximal effective concentration (EC50) values between two test duration on the effects of organic and inorganic by-products postulate that bacteria had a higher tolerance towards volatile fatty acids. While acetic, butyric and propionic acids had exhibited higher tolerance EC50 values for bacteria, but the opposite trend was observed for formic acid, copper and oil & grease.
There is emerging evidence that hydrogen-rich water (H2-water) has beneficial effects on the physiological responses to exercise. However, few studies investigate its ergogenic potential. This randomized controlled trial examined the effects of H2-water ingestion on physiological responses and exercise performance during incremental treadmill running. In a double-blind crossover design, 14 endurance-trained male runners (age, 34 ± 4 years; body mass, 63.1 ± 7.2 kg; height, 1.72 ± 0.05 m) were randomly assigned to ingest 2 doses of 290-mL H2-water or placebo on each occasion. The first bolus was given before six 4-min submaximal running bouts, and the second bolus was consumed before the maximal incremental running test. Expired gas, heart rate (HR), and ratings of perceived exertion (RPE) were recorded; blood samples were collected at the end of each submaximal stage and post maximal running test. Cardiorespiratory responses, RPE, and blood gas indices were not significantly different at each submaximal running intensity (range: 34%-91% maximal oxygen uptake) between H2-water and placebo trials. No statistical difference was observed in running time to exhaustion (618 ± 126 vs. 619 ± 113 s), maximal oxygen uptake (56.9 ± 4.4 vs. 57.1 ± 4.7 mL·kg-1·min-1), maximal HR (184 ± 7 vs. 184 ± 7 beat·min-1), and RPE (19 ± 1 vs. 19 ± 1) in the runners between the trials. The results suggest that the ingestion of 290 mL of H2-water before submaximal treadmill running and an additional dose before the subsequent incremental running to exhaustion were not sufficiently ergogenic in endurance-trained athletes. Novelty Acute ingestion of H2-water does not seem to be ergogenic for endurance performance. A small dose of H2-water does not modulate buffering capacity during intense endurance exercise in athletes.
We report the self-assembly of an extensive inter-ligand hydrogen-bonding network of octylphosphonates on the surface of cesium lead bromide nanocrystals (CsPbBr3 NCs). The post-synthetic addition of octylphosphonic acid to oleic acid/oleylamine-capped CsPbBr3 NCs promoted the attachment of octylphosphonate to the NC surface, while the remaining oleylammonium ligands maintained the high dispersability of the NCs in non-polar solvent. Through powerful 2D solid-state 31P-1H NMR, we demonstrated that an ethyl acetate/acetonitrile purification regime was crucial for initiating the self-assembly of extensive octylphosphonate chains. Octylphosphonate ligands were found to preferentially bind in a monodentate mode through P-O-, leaving polar P[double bond, length as m-dash]O and P-OH groups free to form inter-ligand hydrogen bonds. The octylphosphonate ligand network strongly passivated the nanocrystal surface, yielding a fully-purified CsPbBr3 NC ink with PLQY of 62%, over 3 times higher than untreated NCs. We translated this to LED devices, achieving maximum external quantum efficiency and luminance of 7.74% and 1022 cd m-2 with OPA treatment, as opposed to 3.59% and 229 cd m-2 for untreated CsPbBr3 NCs. This represents one of the highest efficiency LEDs obtained for all-inorganic CsPbBr3 NCs, accomplished through simple, effective passivation and purification processes. The robust binding of octylphosphonates to the perovskite lattice, and specifically their ability to interlink through hydrogen bonding, offers a promising passivation approach which could potentially be beneficial across a breadth of halide perovskite optoelectronic applications.
Aptamer has been long studied as a substitute of antibodies for many purposes. However, due to the exceeded length of the aptamers obtained in vitro, difficulties arise in its manipulation during its molecular conjugation on the matrix surfaces. Current study focuses on computational improvement for aptamers screening of hepatitis B surface antigen (HBsAg) through optimization of the length sequences obtained from SELEX. Three original aptamers with affinity against HBsAg were truncated into five short hairpin structured aptamers and their affinity against HBsAg was thoroughly studied by molecular docking, molecular dynamics (MD) simulation, and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) method. The result shows that truncated aptamers binding on HBsAg "a" determinant region are stabilized by the dynamic H-bond formation between the active binding residues and nucleotides. Amino acids residues with the highest hydrogen bonds hydrogen bond interactions with all five aptamers were determined as the active binding residues and further characterized. The computational prediction of complexes binding will include validations through experimental assays in future studies. Current study will improve the current in vitro aptamers by minimizing the aptamer length for its easy manipulation.
DNA polymerase β is a 39kDa enzyme that is a major component of Base Excision Repair in human cells. The enzyme comprises two major domains, a 31kDa domain responsible for the polymerase activity and an 8kDa domain, which bind ssDNA and has a deoxyribose phosphate (dRP) lyase activity. DNA polymerase β was shown to be phosphorylated in vitro with protein kinase C (PKC) at serines 44 and 55 (S44 and S55), resulting in loss of its polymerase enzymic activity, but not its ability to bind ssDNA. In this study, we investigate the potential phosphorylation-induced structural changes for DNA polymerase β using molecular dynamics. The simulations show drastic conformational changes of the polymerase structure as a result of S44 phosphorylation. Phosphorylation-induced conformational changes transform the closed (active) enzyme structure into an open one. Further analysis of the results points to a key hydrogen bond and newly formed salt bridges as potential drivers of these structural fluctuations. The changes observed with S44/55 and S55 phosphorylation were less dramatic than S44 and the integrity of the H-bond was not compromised. Thus the phosphorylation of S44 is likely the major contributor to structural fluctuations that lead to loss of enzymatic activity.
Increasing environmental concerns have led to greater attention to the development of biodegradable materials. The aim of this paper is to investigate the effect of banana leaf fibre (BLF) on the thermal and mechanical properties of thermoplastic cassava starch (TPCS). The biocomposites were prepared by incorporating 10 to 50 wt.% BLF into the TPCS matrix. The samples were characterised for their thermal and mechanical properties. The results showed that there were significant increments in the tensile and flexural properties of the materials, with the highest strength and modulus values obtained at 40 wt.% BLF content. Thermogravimetric analysis showed that the addition of BLF had increased the thermal stability of the material, indicated by higher-onset decomposition temperature and ash content. Morphological studies through scanning electron microscopy (SEM) exhibited a homogenous distribution of fibres and matrix with good adhesion, which is crucial in improving the mechanical properties of biocomposites. This was also attributed to the strong interaction of intermolecular hydrogen bonds between TPCS and fibre, proven by the FT-IR test that observed the presence of O-H bonding in the biocomposite.
Using solar-powered water electrolysis systems for hydrogen generation is a key decision for the development of a sustainable hydrogen economy. A facile approach is presented in the present investigation to improve the solar-powered photoelectrochemical performance of water electrolysis systems by synthesising well-aligned and highly ordered TiO₂ nanotube films without bundling through the electrochemical anodisation technique. Herein, geometrical calculations were conducted for all synthesised TiO₂ nanotubes, and determination of the aspect ratio (AR) and geometric surface area factor (G) was achieved. On the basis of the collected data, well-aligned TiO₂ nanotubes with an AR of approximately 60 and G of approximately 400 m² ·g-1 were successfully formed in an electrolyte mixture of ethylene glycol with 0.3 wt% NH4F and 5 wt% H₂O₂ at 40 V for 60 min. The nanotubes were subsequently annealed at 400 °C to form anatase-phase TiO₂ nanotube films. The resultant well-aligned and highly ordered TiO₂ nanotube films exhibited a photocurrent density of 1.5 mA · cm-2 due to a large number of photo-induced electrons moving along the tube axis and perpendicular to the Ti substrate, which greatly reduces interfacial recombination losses.