Displaying publications 181 - 200 of 213 in total

Abstract:
Sort:
  1. Nawawi H, Osman NS, Annuar R, Khalid BA, Yusoff K
    Atherosclerosis, 2003 Aug;169(2):283-91.
    PMID: 12921980
    Adhesion molecules and cytokines are involved in the pathogenesis of intimal injury in atherosclerosis but their relationship with endothelial function remains unclear. The objectives of this study were to examine the effects of atorvastatin on soluble adhesion molecules, interleukin-6 (IL-6) and brachial artery endothelial-dependent flow mediated dilatation (FMD) in patients with familial (FH) and non-familial hypercholesterolaemia (NFH). A total of 74 patients (27 FH and 47 NFH) were recruited. Fasting lipid profiles, soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular-cellular adhesion molecule-1 (sVCAM-1), E-selectin, IL-6 and FMD were measured at baseline, 2 weeks, 3 and 9 months post-atorvastatin treatment (FH--80 mg/day, NFH--10 mg/day). In both groups, compared to baseline, sICAM-1 levels were significantly reduced at 2 weeks, further reduced at 3 months and maintained at 9 months (P<0.0001). The IL-6 levels were significantly reduced at 3 months and 9 months compared to baseline for FH (P<0.005) and NFH (P<0.0001). In both groups, the FMD at 2 weeks was higher than baseline (P<0.005), with progressive improvement up to 9 months. FMD was negatively correlated with sICAM-1 and IL-6. In conclusion, both low and high doses of atorvastatin lead to early progressive improvement in endothelial function in patients with primary hypercholesterolaemia. sICAM-1 and IL-6 levels reflect endothelial dysfunction in these patients.
    Matched MeSH terms: Interleukin-6/blood*
  2. Khan HU, Aamir K, Jusuf PR, Sethi G, Sisinthy SP, Ghildyal R, et al.
    Life Sci, 2021 Jan 15;265:118750.
    PMID: 33188836 DOI: 10.1016/j.lfs.2020.118750
    BACKGROUND: Lipopolysaccharide (LPS) is an endotoxin that leads to inflammation in many organs, including liver. It binds to pattern recognition receptors, that generally recognise pathogen expressed molecules to transduce signals that result in a multifaceted network of intracellular responses ending up in inflammation. Aim In this study, we used lauric acid (LA), a constituent abundantly found in coconut oil to determine its anti-inflammatory role in LPS-induced liver inflammation in Sprague Dawley (SD) rats.

    METHOD: Male SD rats were divided into five groups (n = 8), injected with LPS and thereafter treated with LA (50 and 100 mg/kg) or vehicle orally for 14 days. After fourteen days of LA treatment, all the groups were humanely killed to investigate biochemical parameters followed by pro-inflammatory cytokine markers; tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β. Moreover, liver tissues were harvested for histopathological studies and evaluation of targeted protein expression with western blot and localisation through immunohistochemistry (IHC).

    RESULTS: The study results showed that treatment of LA 50 and 100 mg/kg for 14 days were able to reduce the elevated level of pro-inflammatory cytokines, liver inflammation, and downregulated the expression of TLR4/NF-κB mediating proteins in liver tissues.

    CONCLUSION: These findings suggest that treatment of LA has a protective role against LPS-induced liver inflammation in rats, thus, warrants further in-depth investigation through mechanistic approaches in different study models.

    Matched MeSH terms: Interleukin-6/metabolism
  3. Barber BE, Grigg MJ, Piera KA, William T, Cooper DJ, Plewes K, et al.
    Emerg Microbes Infect, 2018 Jun 06;7(1):106.
    PMID: 29872039 DOI: 10.1038/s41426-018-0105-2
    Plasmodium knowlesi occurs throughout Southeast Asia, and is the most common cause of human malaria in Malaysia. Severe disease in humans is characterised by high parasite biomass, reduced red blood cell deformability, endothelial activation and microvascular dysfunction. However, the roles of intravascular haemolysis and nitric oxide (NO)-dependent endothelial dysfunction, important features of severe falciparum malaria, have not been evaluated, nor their role in acute kidney injury (AKI). In hospitalised Malaysian adults with severe (n = 48) and non-severe (n = 154) knowlesi malaria, and in healthy controls (n = 50), we measured cell-free haemoglobin (CFHb) and assessed associations with the endothelial Weibel-Palade body (WPB) constituents, angiopoietin-2 and osteoprotegerin, endothelial and microvascular function, and other markers of disease severity. CFHb was increased in knowlesi malaria in proportion to disease severity, and to a greater extent than previously reported in severe falciparum malaria patients from the same study cohort. In knowlesi malaria, CFHb was associated with parasitaemia, and independently associated with angiopoietin-2 and osteoprotegerin. As with angiopoietin-2, osteoprotegerin was increased in proportion to disease severity, and independently associated with severity markers including creatinine, lactate, interleukin-6, endothelial cell adhesion molecules ICAM-1 and E-selectin, and impaired microvascular reactivity. Osteoprotegerin was also independently associated with NO-dependent endothelial dysfunction. AKI was found in 88% of those with severe knowlesi malaria. Angiopoietin-2 and osteoprotegerin were both independent risk factors for acute kidney injury. Our findings suggest that haemolysis-mediated endothelial activation and release of WPB constituents is likely a key contributor to end-organ dysfunction, including AKI, in severe knowlesi malaria.
    Matched MeSH terms: Interleukin-6/metabolism
  4. Chua LL, Rajasuriar R, Azanan MS, Abdullah NK, Tang MS, Lee SC, et al.
    Microbiome, 2017 03 20;5(1):35.
    PMID: 28320465 DOI: 10.1186/s40168-017-0250-1
    BACKGROUND: Adult survivors of childhood cancers such as acute lymphoblastic leukemia (ALL) have health problems that persist or develop years after cessation of therapy. These late effects include chronic inflammation-related comorbidities such as obesity and type 2 diabetes, but the underlying cause is poorly understood.

    RESULTS: We compared the anal microbiota composition of adult survivors of childhood ALL (N = 73) with healthy control subjects (N = 61). We identified an altered community with reduced microbial diversity in cancer survivors, who also exhibit signs of immune dysregulation including increased T cell activation and chronic inflammation. The bacterial community among cancer survivors was enriched for Actinobacteria (e.g. genus Corynebacterium) and depleted of Faecalibacterium, correlating with plasma concentrations of IL-6 and CRP and HLA-DR+CD4+ and HLA-DR+CD8+ T cells, which are established markers of inflammation and immune activation.

    CONCLUSIONS: We demonstrated a relationship between microbial dysbiosis and immune dysregulation in adult ALL survivors. These observations suggest that interventions that could restore microbial diversity may ameliorate chronic inflammation and, consequently, development of late effects of childhood cancer survivors.

    Matched MeSH terms: Interleukin-6/immunology
  5. Voon FL, Sulaiman MR, Akhtar MN, Idris MF, Akira A, Perimal EK, et al.
    Eur J Pharmacol, 2017 Jan 05;794:127-134.
    PMID: 27845065 DOI: 10.1016/j.ejphar.2016.11.009
    Boesenbergia rotunda (L.) Mansf. had been traditionally used as herbs to treat pain and rheumatism. Cardamonin (2',4'-dihydroxy-6'-methoxychalcone) is a compound isolated from Boesenbergia rotunda (L.) Mansf.. Previous study had shown the potential of cardamonin in inhibiting the release of pro-inflammatory cytokines such as tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in vitro. Thus, the possible therapeutic effect of cardamonin in the rheumatoid arthritis (RA) joints is postulated. This study was performed to investigate the anti-arthritic properties of cardamonin in rat model of induced RA, particularly on the inflammatory and pain response of RA. Rheumatoid arthritis paw inflammation was induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA) in Sprague Dawley rats. Using four doses of cardamonin (0.625, 1.25, 2.5, and 5.0mg/kg), anti-arthritic activity was evaluated through the paw edema, mechanical allodynia and thermal hyperalgesia responses. Enzyme-linked immunosorbent assay (ELISA) was carried out to evaluate the plasma level of TNF-α, IL-1β, and IL-6. Histological slides were prepared from the harvested rat paws to observe the arthritic changes in the joints. Behavioral, biochemical, and histological studies showed that cardamonin demonstrated significant inhibition on RA-induced inflammatory and pain responses as well as progression of joint destruction in rats. ELISA results showed that there was significant inhibition in TNF-α, IL-1β, and IL-6 levels in plasma of the cardamonin-treated RA rats. Overall, cardamonin possesses potential anti-arthritic properties in CFA-induced RA rat model.
    Matched MeSH terms: Interleukin-6/blood
  6. Rehman K, Zulfakar MH
    Pharm Res, 2017 01;34(1):36-48.
    PMID: 27620176 DOI: 10.1007/s11095-016-2036-8
    PURPOSE: To characterize bigel system as a topical drug delivery vehicle and to establish the immunomodulatory role of imiquimod-fish oil combination against skin cancer and inflammation resulting from chemical carcinogenesis.

    METHODS: Imiquimod-loaded fish oil bigel colloidal system was prepared using a blend of carbopol hydrogel and fish oil oleogel. Bigels were first characterized for their mechanical properties and compared to conventional gel systems. Ex vivo permeation studies were performed on murine skin to analyze the ability of the bigels to transport drug across skin and to predict the release mechanism via mathematical modelling. Furthermore, to analyze pharmacological effectiveness in skin cancer and controlling imiquimod-induced inflammatory side effects, imiquimod-fish oil combination was tested in vitro on epidermoid carcinoma cells and in vivo in Swiss albino mice cancer model.

    RESULTS: Imiquimod-loaded fish oil bigels exhibited higher drug availability inside the skin as compared to individual imiquimod hydrogel and oleogel controls through quasi-Fickian diffusion mechanism. Imiquimod-fish oil combination in bigel enhanced the antitumor effects and significantly reduced serum pro-inflammatory cytokine levels such as tumor necrosis factor-alpha and interleukin-6, and reducing tumor progression via inhibition of vascular endothelial growth factor. Imiquimod-fish oil combination also resulted in increased expression of interleukin-10, an anti-inflammatory cytokine, which could also aid anti-tumor activity against skin cancer.

    CONCLUSION: Imiquimod administration through a bigel vehicle along with fish oil could be beneficial for controlling imiquimod-induced inflammatory side effects and in the treatment of skin cancer.

    Matched MeSH terms: Interleukin-6/metabolism
  7. Wu YS, Chung I, Wong WF, Masamune A, Sim MS, Looi CY
    Biochim Biophys Acta Gen Subj, 2017 Feb;1861(2):296-306.
    PMID: 27750041 DOI: 10.1016/j.bbagen.2016.10.006
    BACKGROUND: We previously showed that pancreatic stellate cells (PSC) secreted interleukin (IL)-6 and promoted pancreatic ductal adenocarcinoma (PDAC) cell proliferation via nuclear factor erythroid 2 (Nrf2)-mediated metabolic reprogramming. Epithelial-mesenchymal transition (EMT) is a key process for the metastatic cascade. To study the mechanism of PDAC progression to metastasis, we investigated the role of PSC-secreted IL-6 in activating EMT and the involvement of Nrf2 in this process.

    METHODS: Gene expression of IL-6 and IL-6Rα in PSC and PDAC cells was measured with qRT-PCR. The role of PSC-secreted IL-6, JAK/Stat3 signaling, and Nrf2 mediation on EMT-related genes expression was also examined with qRT-PCR. EMT phenotypes were assessed with morphological change, wound healing, migration, and invasion.

    RESULTS: PSC expressed higher mRNA levels of IL-6 but lower IL-6Rα compared to PDAC cells. Neutralizing IL-6 in PSC secretion reduced mesenchymal-like morphology, migration and invasion capacity, and mesenchymal-like gene expression of N-cadherin, vimentin, fibronectin, collagen I, Sip1, Snail, Slug, and Twist2. Inhibition of JAK/Stat3 signaling induced by IL-6 repressed EMT and Nrf2 gene expression. Induction of Nrf2 activity by tert-butylhydroquinone (tBHQ) increased both EMT phenotypes and gene expression (N-cadherin, fibronectin, Twist2, Snail, and Slug) repressed by IL-6 neutralizing antibody. Simultaneous inhibition of Nrf2 expression with siRNA and Stat3 signaling further repressed EMT gene expression, indicating that Stat3/Nrf2 pathway mediates EMT induced by IL-6.

    CONCLUSIONS: IL-6 from PSC promotes EMT in PDAC cells via Stat3/Nrf2 pathway.

    GENERAL SIGNIFICANCE: Targeting Stat3/Nrf2 pathway activated by PSC-secreted IL-6 may provide a novel therapeutic option to improve the prognosis of PDAC.

    Matched MeSH terms: Interleukin-6/metabolism*
  8. Mahmood ND, Mamat SS, Kamisan FH, Yahya F, Kamarolzaman MF, Nasir N, et al.
    Biomed Res Int, 2014;2014:695678.
    PMID: 24868543 DOI: 10.1155/2014/695678
    Muntingia calabura L. is a tropical plant species that belongs to the Elaeocarpaceae family. The present study is aimed at determining the hepatoprotective activity of methanol extract of M. calabura leaves (MEMC) using two models of liver injury in rats. Rats were divided into five groups (n=6) and received 10% DMSO (negative control), 50 mg/kg N-acetylcysteine (NAC; positive control), or MEMC (50, 250, and 500 mg/kg) orally once daily for 7 days and on the 8th day were subjected to the hepatotoxic induction using paracetamol (PCM). The blood and liver tissues were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2,2-diphenyl-1-picrylhydrazyl-(DPPH) and superoxide anion-radical scavenging assays. At the same time, oxygen radical antioxidant capacity (ORAC) and total phenolic content were also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control), whereas maintenance of hepatic structure was observed in group pretreated with N-acetylcysteine and MEMC. Hepatotoxic rats pretreated with NAC or MEMC exhibited significant decrease (P<0.05) in ALT and AST enzymes level. Moreover, the extract also exhibited good antioxidant activity. In conclusion, MEMC exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and, thus warrants further investigations.
    Matched MeSH terms: Interleukin-6/metabolism
  9. Sucedaram Y, Johns EJ, Husain R, Abdul Sattar M, H Abdulla M, Nelli G, et al.
    J Inflamm Res, 2021;14:689-710.
    PMID: 33716510 DOI: 10.2147/JIR.S299083
    Purpose: We hypothesized that low estrogen levels aggravate obesity-related complications. Diet-induced obesity can cause distinct pathologies, including impaired glucose tolerance, inflammation, and organ injury that leads to fatty liver and chronic kidney diseases. To test this hypothesis, ovariectomized (OVX) rats were fed a high-fat style diet (HFSD), and we examined structural changes and inflammatory response in the kidney and liver.

    Methods: Sprague-Dawley female rats were ovariectomized or sham-operated and divided into four groups: sham-operated rats fed a normal diet (ND); ovariectomized rats fed a normal diet (OVX-ND); sham-operated rats fed a HFSD; ovariectomized rats fed a high-fat style diet (OVX-HFSD). Mean blood pressure and fasting blood glucose were measured on weeks 0 and 10. The rats were sacrificed 10 weeks after initiation of ND or HFSD, the kidney and liver were harvested for histological, immunohistochemical and immunofluorescence studies.

    Results: HFSD-fed rats presented a significantly greater adiposity index compared to their ND counterparts. Liver index, fasting blood glucose and mean blood pressure was increased in OVX-HFSD rats compared to HFSD rats at study terminal. Histological and morphometric studies showed focal interstitial mononuclear cell infiltration in the kidney of HFSD rats with mesangial expansion being greater in the OVX-HFSD rats. Both HFSD fed groups showed increased expressions of renal inflammatory markers, namely TNF-alpha, IL-6 and MCP-1, and infiltrating M1 macrophages with some influence of ovarian hormonal status. HFSD-feeding also caused hepatocellular steatosis which was aggravated in ovariectomized rats fed the same diet. Furthermore, hepatocellular ballooning was observed only in the OVX-HFSD rats. Similarly, HFSD-fed rats showed increased expressions of the inflammatory markers and M1 macrophage infiltration in the liver; however, only IL-6 expression was magnified in the OVX-HFSD.

    Conclusion: Our data suggest that some of the structural changes and inflammatory response in the kidney and liver of rats fed a HFSD are exacerbated by ovariectomy.

    Matched MeSH terms: Interleukin-6
  10. Ezzat MI, Hassan M, Abdelhalim MA, El-Desoky AM, Mohamed SO, Ezzat SM
    Food Funct, 2021 Mar 18.
    PMID: 33734250 DOI: 10.1039/d0fo03402a
    Morinda citrifolia L. is a plant of the family Rubiaceae and is known as Indian mulberry or Noni in India. It is a perennial herb native to Southeast Asia and has been used over the years as a food supplement and medicinal plant. Noni fruits are reported to possess anticancer, fungicidal, antiviral and antiarthritic effects. The objective of our study is the screening of the immunomodulatory activity of the total extract, fractions, and isolated compounds of Noni fruits to identify their bioactive compounds. To achieve our goal, an ethanol extract (EE) was prepared from Noni fruits. Fractionation and purification of the EE were accomplished. The cell-mediated immune (CMI) response in prednisolone-induced immunosuppression rats was evaluated. The toxicity of the EE, fractions and isolated compounds on the differentiated THP-1 macrophage was assessed using the MTT viability assay. Moreover, the inflammation-related immune responses in lipopolysaccharide (LPS)-induced THP-1 macrophage activation were evaluated. Fractionation of the EE gave three fractions, dichloromethane (DCMF), water (WF) and methanol (MF). Purification of DCMF yielded stigmast-7-ene-3-ol (M1), 28-hydroxy-3β-acetoxy-9-dehydrogramisterol (M2), 3β-acetoxy-taraxast-20(30)-ene-21-ol (M3), 22-dehydroclerosterol (M4) and 22-dehydroclerosterol-3-O-β-d-glucopyranoside (M5), while purification of MF yielded quercetin (M6), hesperidin (M7), naringin (M9) and gallic acid (M8). The results revealed that DCMF elicited an increase in paw edema to the extent of 35.8%. All the tested samples had no cytotoxic effect on THP-1 macrophages. Co-treatment of the LPS-induced macrophages with DCMF, M2, M3, and M6 decreased the production of TNF-α, IL-1β, and IL-6/IL-10. The expression of iNOS, COX-2, and NF-κB decreased to 0.14 ± 0.02, 0.15 ± 0.02, and 0.17 ± 0.03, respectively, after co-treatment with LPS and DCMF. M2 attenuated the expression of iNOS and NF-κB to 0.18 ± 0.03 and 0.17 ± 0.03, respectively. Additionally, M3 attenuated the expression of iNOS to 0.18 ± 0.03, and after co-treatment with M6 and LPS, the expression of COX-2 and NF-κB was down-regulated to 0.2 ± 0.03. Our study proves the immunomodulatory effect of Noni fruits and specifies for the first time the compounds responsible for their activity.
    Matched MeSH terms: Interleukin-6
  11. Ali SS, Mohamed SFA, Rozalei NH, Boon YW, Zainalabidin S
    Cardiovasc Toxicol, 2019 02;19(1):72-81.
    PMID: 30128816 DOI: 10.1007/s12012-018-9478-7
    Heart failure-associated morbidity and mortality is largely attributable to extensive and unregulated cardiac remodelling. Roselle (Hibiscus sabdariffa) calyces are enriched with natural polyphenols known for antioxidant and anti-hypertensive effects, yet its effects on early cardiac remodelling in post myocardial infarction (MI) setting are still unclear. Thus, the aim of this study was to investigate the actions of roselle extract on cardiac remodelling in rat model of MI. Male Wistar rats (200-300 g) were randomly allotted into three groups: Control, MI, and MI + Roselle. MI was induced with isoprenaline (ISO) (85 mg/kg, s.c) for two consecutive days followed by roselle treatment (100 mg/kg, orally) for 7 days. Isoprenaline administration showed changes in heart weight to body weight (HW/BW) ratio. MI was especially evident by the elevated cardiac injury marker, troponin-T, and histological observation. Upregulation of plasma levels and cardiac gene expression levels of inflammatory cytokines such as interleukin (IL)-6 and IL-10 was seen in MI rats. A relatively high percentage of fibrosis was observed in rat heart tissues with over-expression of collagen (Col)-1 and Col-3 genes following isoprenaline-induced MI. On top of that, cardiomyocyte areas were larger in heart tissues of MI rats with upregulation of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression, indicating cardiac hypertrophy. Interestingly, roselle supplementation attenuated elevation of plasma troponin-T, IL-6, IL10, and gene expression level of IL-10. Furthermore, reduction of cardiac fibrosis and hypertrophy were observed. In conclusion, roselle treatment was able to limit early cardiac remodelling in MI rat model by alleviating inflammation, fibrosis, and hypertrophy; hence, the potential application of roselle in early adjunctive treatment to prevent heart failure.
    Matched MeSH terms: Interleukin-6
  12. Kandasamy M, Mak KK, Devadoss T, Thanikachalam PV, Sakirolla R, Choudhury H, et al.
    BMC Chem, 2019 Dec;13(1):117.
    PMID: 31572984 DOI: 10.1186/s13065-019-0633-4
    Background: The transcription factor Nuclear factor erythroid-2-related factor 2 (NRF2) and its principal repressive regulator, Kelch-like ECH-associated protein 1 (KEAP1), are perilous in the regulation of inflammation, as well as maintenance of homeostasis. Thus, NRF2 activation is involved in cytoprotection against many inflammatory disorders. N'-Nicotinoylquinoxaline-2-carbohdyrazide (NQC) was structurally designed by the combination of important pharmacophoric features of bioactive compounds reported in the literature.

    Methods: NQC was synthesised and characterised using spectroscopic techniques. The compound was tested for its anti-inflammatory effect using Lipopolysaccharide from Escherichia coli (LPSEc) induced inflammation in mouse macrophages (RAW 264.7 cells). The effect of NQC on inflammatory cytokines was measured using enzyme-linked immune sorbent assay (ELISA). The Nrf2 activity of the compound NQC was determined using 'Keap1:Nrf2 Inhibitor Screening Assay Kit'. To obtain the insights on NQC's activity on Nrf2, molecular docking studies were performed using Schrödinger suite. The metabolic stability of NQC was determined using mouse, rat and human microsomes.

    Results: NQC was found to be non-toxic at the dose of 50 µM on RAW 264.7 cells. NQC showed potent anti-inflammatory effect in an in vitro model of LPSEc stimulated murine macrophages (RAW 264.7 cells) with an IC50 value 26.13 ± 1.17 µM. NQC dose-dependently down-regulated the pro-inflammatory cytokines [interleukin (IL)-1β (13.27 ± 2.37 μM), IL-6 (10.13 ± 0.58 μM) and tumor necrosis factor (TNF)-α] (14.41 ± 1.83 μM); and inflammatory mediator, prostaglandin E2 (PGE2) with IC50 values, 15.23 ± 0.91 µM. Molecular docking studies confirmed the favourable binding of NQC at Kelch domain of Keap-1. It disrupts the Nrf2 interaction with kelch domain of keap 1 and its IC50 value was 4.21 ± 0.89 µM. The metabolic stability studies of NQC in human, rat and mouse liver microsomes revealed that it is quite stable with half-life values; 63.30 ± 1.73, 52.23 ± 0.81, 24.55 ± 1.13 min; microsomal intrinsic clearance values; 1.14 ± 0.31, 1.39 ± 0.87 and 2.96 ± 0.34 µL/min/g liver; respectively. It is observed that rat has comparable metabolic profile with human, thus, rat could be used as an in vivo model for prediction of pharmacokinetics and metabolism profiles of NQC in human.

    Conclusion: NQC is a new class of NRF2 activator with potent in vitro anti-inflammatory activity and good metabolic stability.

    Matched MeSH terms: Interleukin-6
  13. Pandurangan AK, Mohebali N, Mohd Esa N, Looi CY, Ismail S, Saadatdoust Z
    Int Immunopharmacol, 2015 Oct;28(2):1034-43.
    PMID: 26319951 DOI: 10.1016/j.intimp.2015.08.019
    Inflammatory bowel diseases (IBD) encompass at least two forms of intestinal inflammation: Crohn's disease and ulcerative colitis (UC). Both conditions are chronic and inflammatory disorders in the gastrointestinal tract, with an increasing prevalence being associated with the industrialization of nations and in developing countries. Patients with these disorders are 10 to 20 times more likely to develop cancer of the colon. The aim of this study was to characterize the effects of a naturally occurring polyphenol, gallic acid (GA), in an experimental murine model of UC. A significant blunting of weight loss and clinical symptoms was observed in dextran sodium sulfate (DSS)-exposed, GA-treated mice compared with control mice. This effect was associated with a remarkable amelioration of the disruption of the colonic architecture, a significant reduction in colonic myeloperoxidase (MPO) activity, and a decrease in the expression of inflammatory mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and pro-inflammatory cytokines. In addition, GA reduced the activation and nuclear accumulation of p-STAT3(Y705), preventing the degradation of the inhibitory protein IκB and inhibiting of the nuclear translocation of p65-NF-κB in colonic mucosa. These findings suggest that GA exerts potentially clinically useful anti-inflammatory effects mediated through the suppression of p65-NF-κB and IL-6/p-STAT3(Y705) activation.
    Matched MeSH terms: Interleukin-6
  14. Kharaeva ZF, Zhanimova LR, Mustafaev MSh, De Luca C, Mayer W, Chung Sheun Thai J, et al.
    Mediators Inflamm, 2016;2016:9379840.
    PMID: 26977121 DOI: 10.1155/2016/9379840
    The clinical efficacy of topical administration of standardised fermented papaya gel (SFPG), known to have antioxidant and anti-inflammatory properties, versus conventional therapy was evaluated in a group of 84 patients with moderate-to-severe periodontitis, randomly assigned to control group (n = 45) undergoing traditional pharmacologic/surgical protocols or to experimental group (n = 39), additionally treated with intragingival pocket SFPG (7 g) applications (15 min daily for 10 days). Patients undergoing SFPG treatment showed significant (P < 0.05), durable improvement of three major clinical indices of disease severity: reduced bleeding (day 7), plaque and gingival conditions (day 14), and consistent gingival pocket depth reduction (day 45). Proinflammatory nitric oxide metabolites reached normal values in plasma (day 14) and gingival crevicular fluid (GCF) at day 45 with SFPG applications compared to controls that did not reach normalisation. Levels of highly increased proinflammatory (IL-1B, IL-6) and suppressed anti-inflammatory (IL-10) cytokines normalised in the SFPG group by days 14 (plasma) and 45 (GCF), but never in the control group. Although not acting directly as antibiotic, SFPG acted in synergy with human granulocytes blocking adaptive catalase induction in S. aureus in response to granulocyte-derived oxidative stress, thus enhancing intracellular bacterial killing.
    Matched MeSH terms: Interleukin-6
  15. Attiq A, Jalil J, Husain K, Mohamad HF, Ahmad A
    J Ethnopharmacol, 2021 Jul 15;275:114120.
    PMID: 33857595 DOI: 10.1016/j.jep.2021.114120
    ETHNOPHARMACOLOGICAL RELEVANCE: Numerous Alphonsea species including Alphonsea elliptica (mempisang) leaves and fruits are indigenously used in inflammatory conditions such as postpartum swelling and rheumatism in southeast Asian countries. In our previous in-vitro findings, A. elliptica methanol extract exhibited platelet-activating factor inhibition, suggesting the presence of phyto-constituents with anti-inflammatory potential.

    AIM OF THE STUDY: However, so far there is no literature available on the anti-inflammatory activity of this species. Henceforth, based on the above background and our previous laboratory findings, we hypothesize that phytoconstituents of A. elliptica could possess anti-inflammatory potential against inflammatory mediators including prostaglandin-E2 (PGE2), cyclooxegenase-2 (COX-2) and cytokines (IL-1β and IL-6).

    MATERIALS AND METHODS: Vacuum and column chromatography techniques were employed for the isolation of phytoconstituents. The structure elucidation was carried out using HRESI-MS, 1H and 13C-NMR analysis and compared with the published literature. For cytotoxicity analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed on peripheral blood mononuclear cells. In-vitro anti-inflammatory activities were evaluated against the levels of PGE2, COX-2, IL-1β and IL-6 in lipopolysaccharide (LPS)-induced human plasma using enzyme-linked immunosorbent assay and radioimmunoassay.

    RESULTS: Unprecedentedly, chromatographic purification of methanolic leaves extract afforded five flavones namely vitexin, isovitexin, orientin, isoorientin, schaftoside with three flavanols; kaempferol, myricetin and rutin from A elliptica. In cell viability analysis, isolates did not present cytotoxicity up to 50 μM. In anti-inflammatory evaluation, orientin and isoorientin exhibited strong (≥70%), while isovitexin and vitexin produced strong to moderate (50-69%) PGE2, COX-2, IL-1β and IL-6 inhibition at 25 and 50 μM. Isoorientin, orientin, isovitexin, and vitexin showed significant (p 6: 4.01, 5.90, 11.51 and 14.88 as compared to dexamethasone: 5.29, 2.93, 3.72, respectively (p 

    Matched MeSH terms: Interleukin-6
  16. Vijakumaran U, Yazid MD, Hj Idrus RB, Abdul Rahman MR, Sulaiman N
    Front Pharmacol, 2021;12:663266.
    PMID: 34093194 DOI: 10.3389/fphar.2021.663266
    Objective: Hydroxytyrosol (HT), a polyphenol of olive plant is well known for its antioxidant, anti-inflammatory and anti-atherogenic properties. The aim of this systematic search is to highlight the scientific evidence evaluating molecular efficiency of HT in halting the progression of intimal hyperplasia (IH), which is a clinical condition arises from endothelial inflammation. Methods: A systematic search was performed through PubMed, Web of Science and Scopus, based on pre-set keywords which are Hydroxytyrosol OR 3,4-dihydroxyphenylethanol, AND Intimal hyperplasia OR Neointimal hyperplasia OR Endothelial OR Smooth muscles. Eighteen in vitro and three in vitro and in vivo studies were selected based on a pre-set inclusion and exclusion criteria. Results: Based on evidence gathered, HT was found to upregulate PI3K/AKT/mTOR pathways and supresses inflammatory factors and mediators such as IL-1β, IL-6, E-selectin, P-selectin, VCAM-1, and ICAM-1 in endothelial vascularization and functioning. Two studies revealed HT disrupted vascular smooth muscle cells (SMC) cell cycle by dephosphorylating ERK1/2 and AKT pathways. Therefore, HT was proven to promote endothelization and inhibit vascular SMCs migration thus hampering IH development. However, none of these studies described the effect of HT collectively in both vascular endothelial cells (EC) and SMCs in IH ex vivo model. Conclusions: Evidence from this concise review provides an insight on HT regulation of molecular pathways in reendothelization and inhibition of VSMCs migration. Henceforth, we propose effect of HT on IH prevention could be further elucidated through in vivo and ex vivo model.
    Matched MeSH terms: Interleukin-6
  17. Nurul, A.A., Tan, S.J., Asiah, A.B., Norliana, G., Nor Shamsuria, O., Nurul, A.S.
    MyJurnal
    Introduction: Stem cells from human exfoliated deciduous teeth (SHED) are highly proliferative, clonogenic cells capable of differentiating into osteoblasts and inducing bone formation. It is a potential alternative for stem cell bone regeneration therapy. However, stem cell therapy carries the risk of immune rejection mediated by inflammatory cytokines of the human defense system. Objective: This preliminary research studies the interaction between SHED and the immune system by determining the inflammatory cytokines profile and osteogenic potential of SHED. Methods: Human fetal osteoblasts (hFOb) cell line and isolated SHED were cultured and total RNA was extracted, followed by reverse transcription cDNA synthesis. Semi-quantitative reverse transcription PCR and Multiplex PCR were performed to detect the expression levels of OPG/RANKL and TNF-α, IL-1β, IL-6, IL-8 and TGF-β in both cell types. Results: Analysis showed that SHED expressed significantly lower amounts of IL-1β, IL-6, and IL-8 compared to hFOB. IL-1β is a potent bone-resorbing factor, while IL-6 and IL-8 induce osteoclastogenesis and osteolysis respectively. SHED did not express TNF-α which stimulates osteoclastic activity. SHED demonstrated high OPG/RANKL ratio, in contrast with that of marrow stem cells described in previous studies. Our findings suggest that SHED may have improved immunomodulatory profile in terms of promoting relatively lower inflammatory reaction during transplant and enhancing bone regeneration. Conclusion: SHED has a potential to be a good source of osteoblasts for bone regeneration therapy. Further studies on the immunomodulatory properties of SHED-derived osteoblasts are necessary to enable stem cell therapy in immunocompetent hosts.
    Matched MeSH terms: Interleukin-6
  18. Chang, S.H., Tan, S.Y.
    JUMMEC, 2006;9(1):2-6.
    MyJurnal
    Steroids remain an important component of maintenance immunosuppression after renal transplantation. Their anti-inflammatory action is partly due to the sequestration of CD4+ lymphocytes in the reticuloendothelial system. Steroids bind to intracellular receptors and the resulting steroid-receptor complex alters the transcription of cytokines by binding to glucocorticoid response elements on DNA. Transcription factors whose actions are altered by glucocorticoids include activating protein-1 (AP-1) and nuclear factor-B (NF-B). The main cytokines whose production by antigen-presenting cells is inhibited by steroids are interleukin-1 (IL-1), required for helper T-cell activation, and IL-6, required for B-cell activation. Other pro-inflammatory cytokines such as interferon gamma and tumour necrosis factor are also inhibited. This multiplicity of immunosuppressive actions is not fully replicated by other immunosuppressants. However, there are concerns about the long-term side effects of steroids. This review will examine the attempts at steroid withdrawal or steroid avoidance in renal transplant patients.
    Matched MeSH terms: Interleukin-6
  19. Al-Obeed O, Vaali-Mohammed MA, Eldehna WM, Al-Khayal K, Mahmood A, Abdel-Aziz HA, et al.
    Onco Targets Ther, 2018;11:3313-3322.
    PMID: 29892198 DOI: 10.2147/OTT.S148108
    Introduction: Colorectal cancer (CRC) is a major worldwide health problem owing to its high prevalence and mortality rate. Developments in screening, prevention, biomarker, personalized therapies and chemotherapy have improved detection and treatment. However, despite these advances, many patients with advanced metastatic tumors still succumb to the disease. New anticancer agents are needed for treating advanced stage CRC as most of the deaths occur due to cancer metastasis. A recently developed novel sulfonamide derivative 4-((2-(4-(dimethylamino) phenyl)quinazolin-4-yl)amino)benzenesulfonamide (3D) has shown potent antitumor effect; however, the mechanism underlying the antitumor effect remains unknown.

    Materials and methods: 3D-mediated inhibition on cell viability was evaluated by MTT and real-time cell proliferation was measured by xCelligence RTDP instrument. Western blotting was used to measure pro-apoptotic, anti-apoptotic proteins and JAK2-STAT3 phosphorylation. Flow cytometry was used to measure ROS production and apoptosis.

    Results: Our study revealed that 3D treatment significantly reduced the viability of human CRC cells HT-29 and SW620. Furthermore, 3D treatment induced the generation of reactive oxygen species (ROS) in human CRC cells. Confirming our observation, N-acetylcysteine significantly inhibited apoptosis. This is further evidenced by the induction of p53 and Bax; release of cytochrome c; activation of caspase-9, caspase-7 and caspase-3; and cleavage of PARP in 3D-treated cells. This compound was found to have a significant effect on the inhibition of antiapoptotic proteins Bcl2 and BclxL. The results further demonstrate that 3D inhibits JAK2-STAT3 pathway by decreasing the constitutive and IL-6-induced phosphorylation of STAT3. 3D also decreases STAT3 target genes such as cyclin D1 and survivin. Furthermore, a combination study of 3D with doxorubicin (Dox) also showed more potent effects than single treatment of Dox in the inhibition of cell viability.

    Conclusion: Taken together, these findings indicate that 3D induces ROS-mediated apoptosis and inhibits JAK2-STAT3 signaling in CRC.

    Matched MeSH terms: Interleukin-6
  20. Shu MH, Appleton D, Zandi K, AbuBakar S
    PMID: 23497105 DOI: 10.1186/1472-6882-13-61
    Gracilaria changii (Xia et Abbott) Abbott, Zhang et Xia, a red algae commonly found in the coastal areas of Malaysia is traditionally used for foods and for the treatment of various ailments including inflammation and gastric ailments. The aim of the study was to investigate anti-inflammatory, gastroprotective and anti-ulcerogenic activities of a mass spectrometry standardized methanolic extract of Gracilaria changii.
    Matched MeSH terms: Interleukin-6/genetics; Interleukin-6/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links