Texture evolution of NiO formed during oxidation of polycrystalline single oriented (100) Ni-Cr was investigated. This foil was also termed rolling assisted biaxially textured substrate (RABiTS). X-ray diffractograms of oxidized Ni-Cr RABiTS foil showed the existence of mostly (200) NiO indicating (100)-type NiO formed exclusively on (100) singly oriented Ni-Cr grains. Epitaxial relationship between the two layers is observed. However the dual-in-plane texture was recorded.
The in-plane texture was assessed by conducting phi scan and plotting series of pole figures measured at (111) NiO peak. The mechanism of the oxides formation was proposed to take into account the formation of (100)-type NiO. Cross section morphology of the oxidised foils reveals two oxidation layers; fast growing external layer consisting of the (100)-type NiO and an internal layer consisted of mostly Cr2O3 and maybe NiCr2O4. The thickness of NiO was ~ 10Pm. Cr2O3 formed as needle-like oxides embedded in a matrix of Ni foil. Inward diffusion of oxygen is believed to have caused this to happen. The external NiO layer was consisted of duplex microstructure characterised by columnar layer growing vertical on the surface of the metal and a few micron thick of equiaxed NiO. Delamination of the outer NiO layer often occurred at the columnarequiaxed interface which could be cured by CeO2 deposition on the foil prior to the oxidation process. CeO2 was deposited by conversion immersion using Ce(NO3)3.6H2O solution. (200) NiO formed on this coated sample as well.
Tetragonal Y2O3 stabilized Zirconia (t-Y-ZrO2) powders were doped with Nb2O5 to seek a possibility if electronics doping would enhance the electronics conductivity of the insulating oxide. In this work Y2O3 was added as a stabilizer to produce tetragonal ZrO2 whereas Nb2O5 was added for the electronic doping. Several compositions of powders were prepared by thermal decomposition method and were post annealed at different temperatures. Precursor solutions were prepared from the mixture of zirconyl nitrate, yttrium nitrate and niobium tartarate as well as TEA (triethanolamine). The mixed solution were evaporated, pyrolysed and calcined to produce nanosized powders. The phase formation of the as-made powders was investigated by x-ray diffractometer. The additions of 7% Y2O3 were found to stabilize the tetragonal phase of zirconia.
The addition of Nb2O5 did not alter the stability of the tetragonal phase but it was found that the conductivity of the material has changed. The band gap as measured by the UV-Visible Spectrometer gave a value in the range of 2.97 to 5.01 eV. XRD was also used to deduce the crystallite size (by using Scherer’s equation) and transmission electron microcopy was used to view the particle sizes and shapes. The Nb doped t-Y-ZrO2 prepared in this work was to be nanosized crystal with size ranges from 7 nm to 15 nm.
Tin slag was collected from a slag dump in the Penang Island and was analysed for its elemental composition using microfocus XRF with a 300ȝm x-ray spot diameter. The tin slag sample was analysed direct without any sample treatment and analysis was conduct on four different spots. The result gives different elemental composition on these different spots. Among the elements analysed are Al2O3, SiO2, SnO2, CaO, TiO2, Nd2O3, MnO, Fe2O3, TaO, W2O3, As2O3, ThO2, U3O8, ZrO2 and Nb2O5. Elemental mapping was also done to show the distribution of these elements in the sample.
Dye-sensitized solar cell (DSSC) is the third generation of thin film solar cell. In this work, carrot fruit dye was prepared and used in DSSC as a sensitizer. TiO2–ZrO2 fine binary oxide was mechanochemically prepared and made paste. TiO2–ZrO2 paste (colloidal) was deposited onto FTO/glass in two ways, i.e. as single and double coatings by rolling method. It was immersed in the carrot solution to get dyed cell. The dyed TiO2-ZrO2-FTO/glass cell was offset with the FTO/glass cell coated with adhesive carbon paste. Photovoltaic properties of prepared TiO2–ZrO2 DSSC cell were measured. Results showed that the efficiency of double coating cell was greater than that of the single coating cell. According to the fill factor from the experiments, both the DSSC cells were acceptable for industrial requirement. Hence, it can be concluded that the results obtained were acceptable in the use of cost-effective and eco-favourable dye-sensitized solar cell.
Herein, we report on the optimum condition for TiO2, titania nanotubes formation and the effect of annealing on the formation of anatase and rutile titania. Anodic oxidation was carried out in two electrodes bath consisting of 5wt% NH4F ions. The anode was a 0.1mm thick Ti foil and the cathode was Pt electrode. Anodisation was conducted at 20V. The anodised foils were subjected to morphological and structural characterizations. As-anodised foil was found to be amorphous or weakly crystalline. When the oxide was heat treated, x-ray diffraction analysis revealed the presence of (101) anatase at annealing temperature from 400-500°C. This indicates that the transformation occurs at this range of temperatures. Raman spectroscopy analysis showed the diminishing of anatase peaks for samples annealed at 500°C. At above 600°C, x-ray diffraction pattern shows a peak belonging to the rutile peak. Transformation from anatase to rutile is thought to occur at about 500°C with a more complete transformation at higher temperature. Annealing at higher than 600°C induces thickening of the nanotubes wall and at above 700°C, the nanotubes structure has completely disappeared.
A co-deposition of nickel-phosphorus-alumina (NiPA) composite coatings were obtained from an ordinary sulphate-based plating bath consisting of 5 g/l alumina (Al2O3) particles. The particles were dispersed by using mechanical agitation at 125 rpm. The presence of Ni3P and Al2O3 phases in the coatings was confirmed by XRD analysis. SEM/EDX results indicated that a smooth Ni3P coating was obtained and Al2O3 particles were embedded into the coating. Microscopic observation showed that the bonding between the Ni3P metal matrix and the Al2O3 ceramic particles was compact.
Process equipment and facilities are constantly facing the dilemmas of tear and wear. This manuscript introducing functionalized reduced graphene oxide with triazole moiety via click chemistry as a anti-wear additive. While this has been achieved successfully, full characterization of the new anti-wear additive material revealed it to be promising in ameliorating issues of wears. One of the merits of the synthesized material includes reduction of contact asperity as the lipophilic alkyl chain length increases. It has been tested to be functional when formulated as an additive in group III petroleum base oil. Accordingly, it shows an irregularity in renewable base oil. Following screening evaluations of the lipophilic alkyl chain lengths, the additive with twelve carbon atoms; functionalized reduced graphene oxide, rGO-T-C(12) was confirmed to stand out among others with the good reduction of friction coefficient and the least wear scar diameter of ~539.78 µm, compared to the base oil containing no additive.
Glass-ceramics are a group of materials that takes advantage of the various glass-forming methods before they are subsequently heat-treated in a controlled manner to effect nucleation and crystallization to produce crystalline materials. The production of glassceramic materials is to overcome the low mechanical strength in pure glassy materials. In this work, a study on the crystallisation of a soda-lime-silica glass was undertaken to ascertain how the processing parameters affect the crystallization of such glasses, viz. either via a single or two-step heat-treatment procedure, as well as the effect of soaking duration at the heat-treatment temperature. A soda-lime-silica glass system was chosen because the raw materials for producing such glasses are readily available and can be considered to be the cheapest. The glass produced was examined by thermal analysis to determine the nucleation and crystallization temperatures before they were heat-treated using a single-step and a two-stage heat-treatment procedures. The resultant glassceramics produced were characterized using x-ray diffraction as well as by scanning electron microscopy. The results thus obtained showed that a two-stage heat-treatment procedure is more successful in producing a well-crystallized glass-ceramic product.
Sol-gel barium titanate (BaTiO3) and erbium doped barium titanate (Er-BaTiO3) were deposited on SiO2/Si substrates. The phase and crystallinity of the thin films were identified using x-ray diffractometer (XRD). The effect of Er dopant into BaTiO3 thin film on its grain size and surface roughness was studied using atomic force microscope (AFM) in tapping mode. XRD patterns revealed that the films were crystallized with perovskite structure. At the same time, it was shown that introducing Er dopant into BaTiO3 thin film caused the dominant peak to shift towards higher angle. AFM micrographs indicated that the films had well distributed grains, dense and crack-free surface. In general, substitution of Er dopant into Ba-site reduced the grain sizes and roughness parameter of the BaTiO3 which was attributed to the smaller ionic radius of Er.
Automobile exhaust emission control is one of the trending issues in automobile research field. It caused by high
pollution such as carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC) distributed by automobile
especially form diesel engine. These pollutants give a harmful effect to the environment and human health. Therefore,
this paper proposed in reviewing methods on fabrication of modified catalytic converter. FeCrAl is used as substrate
which treated using ultrasonic bath technique which could improve the exhaust emission control. This metallic catalytic converter used as the replacement of precious metal that have high production cost.
Air pollution can be detected through rainwater composition. In this study, long-term measurements (2000-2014) of wet deposition were made to evaluate the physicochemical interaction and the potential sources of pollution due to changes of land use. The rainwater samples were obtained from an urban site in Kuala Lumpur and a highland-rural site in the middle of Peninsular Malaysia. The compositions of rainwater were obtained from the Malaysian Meteorological Department. The results showed that the urban site experienced more acidity in rainwater (avg=277mm, range of 13.8 to 841mm; pH=4.37) than the rural background site (avg=245mm, range of 2.90 to 598mm; pH=4.97) due to higher anthropogenic input of acid precursors. The enrichment factor (EF) analysis showed that at both sites, SO42-, Ca2+ and K+ were less sensitive to seawater but were greatly influenced by soil dust. NH4+ and Ca2+ can neutralise a larger fraction of the available acid ions in the rainwater at the urban and rural background sites. However, acidifying potential was dominant at urban site compared to rural site. Source-receptor relationship via positive matrix factorisation (PMF 5.0) revealed four similar major sources at both sites with a large variation of the contribution proportions. For urban, the major sources influence on the rainwater chemistry were in the order of secondary nitrates and sulfates>ammonium-rich/agricultural farming>soil components>marine sea salt and biomass burning, while at the background site the order was secondary nitrates and sulfates>marine sea salt and biomass burning=soil components>ammonia-rich/agricultural farming. The long-term trend showed that anthropogenic activities and land use changes have greatly altered the rainwater compositions in the urban environment while the seasonality strongly affected the contribution of sources in the background environment.
In the present study, we attempted revalorization of pear (Pyrus pyrifolia L.) peel residue into high value-added nanomaterials. A green and facile one-pot isolation procedure was designed to simplify the isolation process of nanocellulose directly from pear peel residue. The one-pot approach employed in this work is interesting as the reaction involved less harmful chemicals usage and non-multiple steps. The reaction was carried out by adding hydrogen peroxide as an oxidant and chromium (III) nitrate as catalyst in the acidic medium under mild process conditions. FTIR spectroscopy proved that the pear peel derived nanocellulose was purely cellulose phases without the presence of non-cellulosic layer. XRD study indicated that the isolated nanocellulose possessed of cellulose I polymorph with high crystallinity index of 85.7%. FESEM analysis clearly revealed that the considerable size reduction during one-pot process. Remarkably, TEM analysis revealed that the isolated nanocellulose consisted of network-liked nature and spherical shaped morphologies with high aspect ratio of 24.6. TGA showed nanocellulose has lower thermal stability compared to pear peel residue. This study provided a cost-effective method and straightforward one-pot process for fabrication of nanocellulose from pear peel residue. This is the first investigation on the nanocellulose extraction from pear fruit.
The main objective of this review is to derive the salient features of previously developed ultrasound-assisted methods for hydroxylating graphene and Buckminsterfullerene (C60). The pros and cons associated to ultrasound-assisted synthesis of hydroxy-carbon nanomaterials in designing the strategical methods for the industrial bulk production are also discussed. A guideline on the statistical methods has also been considered to further provide the scopes towards the application of the previously reported methods. Irrespective of many useful methods that have been developed in order to functionalize C60 and graphene by diverse oxygenated functional groups e.g. epoxide, hydroxyl, carboxyl as well as metal/metal oxide via a combination of organic chemistry and sonochemistry, there is no report dealing exclusively on the application of ultrasonic cavitation particularly to synthesising polyhydroxylated carbon nanomaterials. On this context, this review emphasizes in investigating the critical aspects of sono-nanochemistry and the statistical approaches to optimize the variables in the sonochemical process towards a large-scale synthesis of polyhydroxylated graphene and C60.
The tunability of semi-conductivity in SrTiO3 single crystal substrates has been realized by a simple encapsulated annealing method under argon atmosphere. This high temperature annealing-induced property changes are characterized by the transmission spectra, scanning electron microscopy (SEM) and synchrotron-based X-ray absorption (XAS). We find the optical property is strongly influenced by the annealing time (with significant decrease of transmittance). A sub gap absorption at ~427 nm is detected which is attributed to the introduction of oxygen vacancy. Interestingly, in the SEM images, annealing-induced regularly rectangle nano-patterns are directly observed which is contributed to the conducting filaments. The XAS of O K-edge spectra shows the changes of electronic structure by annealing. Very importantly, resistance switching response is displayed in the annealed SrTiO3 single crystal. This suggests a possible simplified route to tune the conductivity of SrTiO3 and further develop novel resistance switching materials.
Atomic force microscopy (AFM) lithography was applied to produce nanoscale pattern for silicon nanowire transistor fabrication. This technique takes advantage of imaging facility of AFM and the ability of probe movement controlling over the sample surface to create nanopatterns. A conductive AFM tip was used to grow the silicon oxide nanopatterns on silicon on insulator (SOI) wafer. The applied tip-sample voltage and writing speed were well controlled in order to form pre-designed silicon oxide nanowire transistor structures. The effect of tetra methyl ammonium hydroxide (TMAH) etching duration on the oxide covered silicon nanowire transistor structure has been investigated. A completed silicon nanowire transistor was obtained by removing the oxide layer via hydrofluoric acid etching process. The fabricated silicon nanowire transistor consists of a silicon nanowire that acts as a channel with source and drain pads. A lateral gate pad with a nanowire head was fabricated very close to the channel in the formation of transistor structures.
Many techniques have been applied to fabricate nanostructures via top-down approach such as electron beam lithography. However, most of the techniques are very complicated and involves many process steps, high cost operation as well as the use of hazardous chemicals. Meanwhile, atomic force microscopy (AFM) lithography is a simple technique which is considered maskless and involves only an average cost and less complexity. In AFM lithography, the movement of a probe tip can be controlled to create nanoscale patterns on sample surface. For silicon nanowire (SiNW) fabrication, a conductive tip was operated in non-contact AFM mode to grow nanoscale oxide patterns on silicon-on-insulator (SOI) wafer surface based on local anodic oxidation (LAO) mechanism. The patterned structure was etched through two steps of wet etching processes. First, the TMAH was used as the etchant solution for Si removing. In the second step, diluted HF was used to remove oxide mask in order to produce a completed SiNW based devices. A SiNW based device which is formed by a nanowire channel, source and drain pads with lateral gate structures can be fabricated by well controlling the lithography process (applied tip voltage and writing speed) as well as the etching processes.
Phytochemical studies were conducted on the stem bark, stem, root and fruit of Goniothalamus ridleyi (Annonaceae)
collected at Post Brooke, Gua Musang, Kelantan, Malaysia. Extraction using organic solvent followed by extensive
purification using standard procedure afforded an epoxystyryllactone, 5-acetoxyisogoniothalamin oxide (1) from the
stem bark and fruit; a styryllactone, 5-acetoxygoniothalamin (2) and a styrylpyrone, dehydrogoniothalamin (3) from
the stem and root; a styryllactone, 5-hydroxygoniothalamin (4) from the root and styrylpyrone as well as goniothalamin
(5) from the fruit. These compounds were characterized using spectroscopic techniques.
Acid sulfate soils are generally not suitable for the crop production unless they are efficiently improved. A study was conducted to improve the productivity of acid sulfate soils for rice cultivation using ground magnesium limestone (GML), basalt and organic fertilizer. The study was conducted on rice in laboratory, glasshouse and field. The pH of acid sulfate soils was low and exchangeable Al was very high which affected rice growth. The application of GML and basalt increased soil pH and reduced Al toxicity. GML required to ameliorate the soils for rice cultivation was 4 t ha-1. Basalt in combination with organic fertilizer was a good soil amendment, but required to be applied a few months ahead of rice cultivation. Due to GML or basalt application, rice plants grew well even though water pH was below 5. The highest rice yield obtained was 4.0 t ha-1 season-1 for Sulfaquepts and it was 7.5 t ha-1 season-1 for Sulfosaprists. In general, the application of GML or basalt in combination with organic fertilizer improved the productivity of acid sulfate soils and consequently enhanced rice yield.
The aim of this study was to determine the surface chemistry during biocorrosion process on growth and on the production of exopolymeric substances (EPS) in batch cultures of mix-strains of marine sulphate-reducing bacteria (SRB) isolated from Malaysian Shipyard and Engineering Harbours, Pasir Gudang. The EPS and precipitates were analyzed by x-ray photoelectron spectroscopy (XPS). The XPS results indicate that Fe(2p3/2) spectrum for iron sulphide can be fitted with Fe(II) and Fe(III) components, both corresponding to Fe-S bond types. The absence of oxide oxygen in the O(1s) spectrum and Fe(III)-O bond types in the Fe(2p3/2) spectrum supports the conclusion that iron sulphides are composed of both ferric and ferrous iron coordinated with monosulphide and disulphide.
Nitridation behaviour of Al-Mg-Si alloys was studied as a function of temperature by means of thermogravimetry method. A reactive gas, N2-4%H2 at a rate of 10 ml/min was purged into the thermogravimetry analyser chamber. The Al alloys were heated from 25oC to 625oC at the heating rate of 15oC/min and then reduced to 3oC/min until it reached 1500oC. It was found that by varying the amount of Mg and Si in Al-Mg-Si alloys significantly influenced the growth of the composites. A differential thermogravimetric curve shows the Mg containing alloys experienced many steps of chemical reactions. This indicates that besides AlN presence as a major phase, other compounds also exist in the final product. The X-ray diffraction results confirmed the existence of oxide phases such as a-Al2O3, MgAl2O4 and MgO in addition to residual Si and Al metal. The presence of oxide compounds is believed to be due to the reaction between the alloying elements and residual oxygen gas left in the reaction atmosphere. It was also found that Si could play a role in promoting the weight gain of the composite produced. The heating rate has also a profound effect on the weight gain, whereby higher heating rate resulted in low yielded of AlN during the nitridation reaction of the Al-Mg-Si alloys.