METHODS: This nanocomposite consists of zinc layered hydroxide intercalated with protocatechuate (an anionic form of protocatechuic acid), that has been synthesized using a direct method with zinc oxide and protocatechuic acid as precursors.
RESULTS: The resulting protocatechuic acid nanocomposite (PAN) showed a basal spacing of 12.7 Å, indicating that protocatechuate was intercalated in a monolayer arrangement, with an angle of 54° from the Z-axis between the interlayers of the zinc layered hydroxide, and an estimated drug loading of about 35.7%. PAN exhibited the properties of a mesoporous type material, with greatly enhanced thermal stability of protocatechuate as compared to its free counterpart. The presence of protocatechuate in the interlayers of the zinc layered hydroxide was further supported by Fourier transform infrared spectroscopy. Protocatechuate was released from PAN in a slow and sustained manner. This mechanism of release was well represented by a pseudo-second order kinetics model. PAN has shown increased cytotoxicity compared to the free form of protocatechuic acid in all cancer cell lines tested. Tumor growth suppression was extensive, particularly in HepG2 and HT29 cell lines.
CONCLUSION: PAN is suitable for use as a controlled release formulation, and our in vitro evidence indicates that PAN is an effective anticancer agent. PAN may have potential as a chemotherapeutic drug for human cancer.
Methods: The scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) was used to qualitatively detect the cellular accumulation of ZnO NPs in algal cells, while inductively coupled plasma optical emission spectrometry (ICP OES) was performed to quantify the cell associated-zinc in algal cells. The percentage of cell death, reduction in algal biomass, and loss in photosynthetic pigments were measured to investigate the cytotoxic effects of ZnO NPs on H. pluvialis. Extracellular and intracellular changes in algal cells resulted from the treatment of ZnO NPs were demonstrated through optical, scanning, and transmission electron microscopic studies.
Results: SEM-EDX spectrum evidenced the accumulation of ZnO NPs in algal biomass and ICP OES results reported a significant (p < 0.05) dose- and time-dependent accumulation of zinc in algal cells from 24 h for all the tested concentrations of ZnO NPs (10-200 μg/mL). Further, the study showed a significant (p < 0.05) dose- and time-dependent growth inhibition of H. pluvialis from 72 h at 10-200 μg/mL of ZnO NPs. The morphological examinations revealed substantial surface and intracellular damages in algal cells due to the treatment of ZnO NPs.
Discussion: The present study reported the significant cellular accumulation of ZnO NPs in algal cells and the corresponding cytotoxic effects of ZnO NPs on H. pluvialis through the considerable reduction in algal cell viability, biomass, and photosynthetic pigments together with surface and intracellular damages.
Objectives: The aim of this study is to evaluate the efficacy of dentin bonding agent (DBA) in preventing coronal discoloration caused by four different root canal sealers- MTA Fillapex, Sealapex, Zical and Z. O. B seal at different time intervals by measuring chromatic alterations using digital images analysis method.
Methodology: Ninety mandibular premolars were collected and sectioned at 1 mm below the cementoenamel junction. Standard access cavity preparations of dimensions (depth-3 mm, width-0.8 mm, and length-3 mm) were prepared with a No. 245 bur through the cervical access. Following the standard irrigation protocol, specimens were then randomly divided into nine groups (four groups without DBA [1-4] +4 groups with DBA [5-8] +1 negative control [9]). In Groups 1-4, four different root canal sealers (MTA Fillapex, Sealapex, Zical, and Z.O.B seal) were applied to the walls of the pulp chamber. For Groups 5-8, the samples were etched with 37% phosphoric acid and DBA application was done before the respective root canal sealer application. The cervical access in all specimens was sealed using glass ionomer cement. Digital photographs were taken under standard lighting and environmental conditions at different time intervals: preprocedural, postprocedural, and after 1, 2, 3, and 4 months. These images were analyzed using Adobe Photoshop CS6 from which laboratory values and subsequently Delta E values were obtained.
Results: Statistical analysis performed using repeated measures ANOVA and post hoc Tukey's tests show that the groups with DBA application had significantly lower mean Delta E values (P < 0.05) compared to the groups without DBA application.
Conclusion: DBAs applied to the dentinal walls of the pulp chamber before obturation can effectively reduce the sealer-induced coronal discoloration.