Displaying publications 2041 - 2060 of 17217 in total

Abstract:
Sort:
  1. Razak MR, Aris AZ, Zainuddin AH, Yusoff FM, Balia Yusof ZN, Kim SD, et al.
    Chemosphere, 2023 Feb;313:137377.
    PMID: 36457264 DOI: 10.1016/j.chemosphere.2022.137377
    Per- and polyfluoroalkyl substances (PFAS) are gaining worldwide attention because of their toxicity, bioaccumulative and resistance to biological degradation in the environment. PFAS can be categorised into endocrine disrupting chemicals (EDCs) and identified as possible carcinogenic agents for the aquatic ecosystem and humans. Despite this, only a few studies have been conducted on the aquatic toxicity of PFAS, particularly in invertebrate species such as zooplankton. This study evaluated the acute toxicity of two main PFAS, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), by using freshwater cladocerans (Moina micrura) as bioindicators. This study aimed to assess the adverse effects at different levels of organisations such as organ (heart size and heart rate), individual (individual size and mortality) and population (lethal concentration, LC50). PFOA was shown to be more hazardous than PFOS, with the LC50 values (confidence interval) of 474.7 (350.4-644.5) μg L-1 and 549.6 (407.2-743.9) μg L-1, respectively. As the concentrations of PFOS and PFOA increased, there were declines in individual size and heart rate as compared to the control group. The values of PNECs acquired by using the AF method (PNECAF) for PFOA and PFOS were 0.4747 and 0.5496 μg L-1, respectively. Meanwhile, the PNEC values obtained using the SSD method (PNECSSD) were 1077.0 μg L-1 (PFOA) and 172.5 μg L-1 (PFOS). PNECAF is more protective and conservative compared to PNECSSD. The findings of this study have significant implications for PFOS and PFOA risk assessment in aquatic environments. Thus, it will aid freshwater sustainability and safeguard the human dependency on water resources.
    Matched MeSH terms: Animals
  2. Taengphu S, Kayansamruaj P, Kawato Y, Delamare-Deboutteville J, Mohan CV, Dong HT, et al.
    PeerJ, 2022;10:e13157.
    PMID: 35462762 DOI: 10.7717/peerj.13157
    BACKGROUND: Tilapia tilapinevirus, also known as tilapia lake virus (TiLV), is a significant virus that is responsible for the die-off of farmed tilapia across the globe. The detection and quantification of the virus using environmental RNA (eRNA) from pond water samples represents a potentially non-invasive and routine strategy for monitoring pathogens and early disease forecasting in aquaculture systems.

    METHODS: Here, we report a simple iron flocculation method for concentrating viruses in water, together with a newly-developed hydrolysis probe quantitative RT-qPCR method for the detection and quantification of TiLV.

    RESULTS: The RT-qPCR method designed to target a conserved region of the TiLV genome segment 9 has a detection limit of 10 viral copies per µL of template. The method had a 100% analytical specificity and sensitivity for TiLV. The optimized iron flocculation method was able to recover 16.11 ± 3.3% of the virus from water samples spiked with viral cultures. Tilapia and water samples were collected for use in the detection and quantification of TiLV disease during outbreaks in an open-caged river farming system and two earthen fish farms. TiLV was detected from both clinically sick and asymptomatic fish. Most importantly, the virus was successfully detected from water samples collected from different locations in the affected farms (i.e., river water samples from affected cages (8.50 × 103 to 2.79 × 105 copies/L) and fish-rearing water samples, sewage, and reservoir (4.29 × 103 to 3.53 × 104 copies/L)). By contrast, TiLV was not detected in fish or water samples collected from two farms that had previously experienced TiLV outbreaks and from one farm that had never experienced a TiLV outbreak. In summary, this study suggests that the eRNA detection system using iron flocculation, coupled with probe based-RT-qPCR, is feasible for use in the concentration and quantification of TiLV from water. This approach may be useful for the non-invasive monitoring of TiLV in tilapia aquaculture systems and may support evidence-based decisions on biosecurity interventions needed.

    Matched MeSH terms: Animals
  3. Syed Abdullah SZ
    PLoS One, 2022;17(12):e0279629.
    PMID: 36574445 DOI: 10.1371/journal.pone.0279629
    Menstruation is arguably the first stage in a woman's reproductive cycle. Among the Temiar, as in many other traditional societies, menstruation represents a time during which a woman is considered to be vulnerable or polluted and there may be food or behavior avoidances and restrictions. The Temiar is one of the eighteen indigenous sub-ethnic groups in Peninsular Malaysia. The objective of this study was to examine the food restrictions and taboos imposed on menstruating Temiar women. A total of 38 participants from four different locations took part in five focus group discussions which represents different lifestyle experiences of the Temiar sub-ethnic group. The findings unfolds many practices: foods to be avoided and spirit in the landscape in order to protect the menstruating woman; isolating the menstruating woman in order to protect the community; consequences of not observing the menstruation food taboos and maintenance of the menstrual taboos. The menstruating women in all locations were prohibited from consuming salt, cooking oils, wild or domesticated animals, and Monosodium glutamate to protect themselves from the excessive flow of menstrual blood and future ill-health. They must eat separately from others because they are deemed polluted and dangerous to the community. The study concludes that the taboos directed towards the menstruating women often do have a caring and protective intention. Menstrual restrictions function not only to protect the menstruating women and the community but also to keep intact the symbolic boundary between human and the non-human world from which disease and weakness comes.
    Matched MeSH terms: Animals
  4. Yang J, Chen S, Duan F, Wang X, Zhang X, Lian B, et al.
    Cells, 2022 Nov 06;11(21).
    PMID: 36359908 DOI: 10.3390/cells11213511
    Mitochondrial cardiomyopathy (MCM) is characterized by abnormal heart-muscle structure and function, caused by mutations in the nuclear genome or mitochondrial DNA. The heterogeneity of gene mutations and various clinical presentations in patients with cardiomyopathy make its diagnosis, molecular mechanism, and therapeutics great challenges. This review describes the molecular epidemiology of MCM and its clinical features, reviews the promising diagnostic tests applied for mitochondrial diseases and cardiomyopathies, and details the animal and cellular models used for modeling cardiomyopathy and to investigate disease pathogenesis in a controlled in vitro environment. It also discusses the emerging therapeutics tested in pre-clinical and clinical studies of cardiac regeneration.
    Matched MeSH terms: Animals
  5. Kumara TK, Disney RH, Abu Hassan A, Flores M, Hwa TS, Mohamed Z, et al.
    J Vector Ecol, 2012 Jun;37(1):62-8.
    PMID: 22548537 DOI: 10.1111/j.1948-7134.2012.00200.x
    Flies attracted to human remains during death investigations were surveyed in north Peninsular Malaysia. Six families, eight genera, and 16 species were identified from human remains, with the greatest fly diversity occurring on remains recovered indoors. The total relative frequency of species was led by Chrysomya megacephala (Fabricius, 1794) (46%), followed by Chrysomya rufifacies (Macquart, 1842) (22%), Sarcophaga (Liopygia) ruficornis (Fabricius, 1974) (5%), Sarcophaga spp. (4%), Synthesiomyia nudiseta Wulp, 1883 (6%), Megaselia spp. (3%), Megaselia scalaris (Loew, 1866), (2%), Megaselia spiracularis Schmitz, 1938 (2%), and Chrysomya villeneuvi Patton, 1922 (2%). Hemipyrellia tagaliana (Bigot, 1877), Desmometopa sp., Megaselia curtineura (Brues, 1909), Hemipyrellia ligurriens Wiedemann 1830, Ophyra sp., Sarcophaga princeps Wiedemann 1830, Piophila casei (Linnaeus, 1758), and unidentified pupae each represented 1%, respectively.
    Matched MeSH terms: Animals
  6. Kua JM, Azizi MMF, Abdul Talib MA, Lau HY
    PMID: 36252206 DOI: 10.1080/19440049.2022.2134591
    Halal authentication has become essential in the food industry to ensure food is free from any prohibited ingredients according to Islamic law. Diversification of food origin and adulteration issues have raised concerns among Muslim consumers. Therefore, verification of food constituents and their quality is paramount. From conventional methods based on physical and chemical properties, various diagnostic methods have emerged relying on protein or DNA measurements. Protein-based methods that have been used in halal detection including electrophoresis, chromatographic-based methods, molecular spectroscopy and immunoassays. Polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) are DNA-based techniques that possess better accuracy and sensitivity. Biosensors are miniatured devices that operate by converting biochemical signals into a measurable quantity. CRISPR-Cas is one of the latest novel emerging nucleic acid detection tools in halal food analysis as well as quantification of stable isotopes method for identification of animal species. Within this context, this review provides an overview of the various techniques in halal detection along with their advantages and limitations. The future trend and growth of detection technologies are also discussed in this review.
    Matched MeSH terms: Animals
  7. Windarsih A, Riswanto FDO, Bakar NKA, Yuliana ND, Dachriyanus, Rohman A
    Molecules, 2022 Nov 29;27(23).
    PMID: 36500423 DOI: 10.3390/molecules27238325
    Adulteration of high-quality meat products using lower-priced meats, such as pork, is a crucial issue that could harm consumers. The consumption of pork is strictly forbidden in certain religions, such as Islam and Judaism. Therefore, the objective of this research was to develop untargeted metabolomics using liquid chromatography-high resolution mass spectrometry (LC-HRMS) combined with chemometrics for analysis of pork in beef meatballs for halal authentication. We investigated the use of non-targeted LC-HRMS as a method to detect such food adulteration. As a proof of concept using six technical replicates of pooled samples from beef and pork meat, we could show that metabolomics using LC-HRMS could be used for high-throughput screening of metabolites in meatballs made from beef and pork. Chemometrics of principal component analysis (PCA) was successfully used to differentiate beef meatballs and pork meatball samples. Partial least square-discriminant analysis (PLS-DA) clearly discriminated between halal and non-halal beef meatball samples with 100% accuracy. Orthogonal projection to latent structures-discriminant analysis (OPLS-DA) perfectly discriminated and classified meatballs made from beef, pork, and a mixture of beef-pork with a good level of fitness (R2X = 0.88, R2Y = 0.71) and good predictivity (Q2 = 0.55). Partial least square (PLS) and orthogonal PLS (OPLS) were successfully applied to predict the concentration of pork present in beef meatballs with high accuracy (R2 = 0.99) and high precision. Thirty-five potential metabolite markers were identified through VIP (variable important for projections) analysis. Metabolites of 1-(1Z-hexadecenyl)-sn-glycero-3-phosphocholine, acetyl-l-carnitine, dl-carnitine, anserine, hypoxanthine, linoleic acid, and prolylleucine had important roles for predicting pork in beef meatballs through S-line plot analysis. It can be concluded that a combination of untargeted metabolomics using LC-HRMS and chemometrics is promising to be developed as a standard analytical method for halal authentication of highly processed meat products.
    Matched MeSH terms: Animals
  8. Tan MK, Japir R, Chung AYC, Wahab RBHA
    Zootaxa, 2021 Oct 07;5048(3):407-421.
    PMID: 34810793 DOI: 10.11646/zootaxa.5048.3.6
    Recent orthopteran surveys in the hyper-diverse Borneo, i.e., Brunei Darussalam and Sandakan in Sabah, allow us to review the scaly crickets from the subfamily Mogoplistinae there. We discover and describe the male, as well as formally naming Cycloptiloides bimaculata Tan, Japir Chung, sp. nov. from Sandakan. This species was previously described as sp. 1 in a comprehensive revision by Ingrisch (2006) but only the females were known. We also describe Ectatoderus nigrofasciatus Tan Wahab, sp. nov. from Brunei Darussalam. New locality records are reported for Apterornebius kinabalu Ingrisch, 2006 in Sandakan (Sabah) and Ornebius pullus Ingrisch, 2006 in Belait District (Brunei).
    Matched MeSH terms: Animals
  9. Akansha EO, Bui BV, Ganeshrao SB, Bakthavatchalam P, Gopalakrishnan S, Mattam S, et al.
    Int J Environ Res Public Health, 2022 Oct 09;19(19).
    PMID: 36232222 DOI: 10.3390/ijerph191912922
    Evidence suggests that prolonged blue-light exposure can impact vision; however, less is known about its impact on non-visual higher-order functions in the brain, such as learning and memory. Blue-light-blocking lenses (BBLs) claim to reduce these potential impacts. Hence, we assessed structural and functional hippocampal alterations following blue-light exposure and the protective efficacy of BBLs. Male Wistar rats were divided into (n = 6 in each group) normal control (NC), blue-light exposure (LE), and blue-light with BBLs (Crizal Prevencia, CP and DuraVision Blue, DB) groups. After 28 days of light exposure (12:12 light: dark cycle), rats were trained for the Morris water maze memory retention test, and brain tissues were sectioned for hippocampal neuronal analysis using Golgi and Cresyl violet stains. The memory retention test was significantly delayed (p < 0.05) in LE compared with DB groups on day 1 of training. Comparison of Golgi-stained neurons showed significant structural alterations, particularly in the basal dendrites of hippocampal neurons in the LE group, with BBLs significantly mitigating these structural changes (p < 0.05). Comparison of Cresyl-violet-stained neurons revealed significantly (p < 0.001) increased degenerated hippocampal neurons in LE rats, with fewer degenerated neurons in the CP lens group for CA1 neurons (p < 0.05), and for both CP and DB groups (p < 0.05) for CA3 neurons. Thus, in addition to documented effects on visual centers, high-level blue-light exposure also results in degeneration in hippocampal neurons with associated behavioral deficits. These changes can be partially ameliorated with blue-light-blocking lenses.
    Matched MeSH terms: Animals
  10. Sugiarto SR, Natalia D, Mohamad DSA, Rosli N, Davis WA, Baird JK, et al.
    Sci Rep, 2022 Nov 03;12(1):18546.
    PMID: 36329096 DOI: 10.1038/s41598-022-21570-0
    The simian parasite Plasmodium knowlesi is the predominant species causing human malaria infection, including hospitalisations for severe disease and death, in Malaysian Borneo. By contrast, there have been only a few case reports of knowlesi malaria from Indonesian Borneo. This situation seems paradoxical since both regions share the same natural macaque hosts and Anopheles mosquito vectors, and therefore have a similar epidemiologically estimated risk of infection. To determine whether there is a true cross-border disparity in P. knowlesi prevalence, we conducted a community-based malaria screening study using PCR in Kapuas Hulu District, West Kalimantan. Blood samples were taken between April and September 2019 from 1000 people aged 6 months to 85 years attending health care facilities at 27 study sites within or close to jungle areas. There were 16 Plasmodium positive samples by PCR, five human malarias (two Plasmodium vivax, two Plasmodium ovale and one Plasmodium malariae) and 11 in which no species could be definitively identified. These data suggest that, if present, simian malarias including P. knowlesi are rare in the Kapuas Hulu District of West Kalimantan, Indonesian Borneo compared to geographically adjacent areas of Malaysian Borneo. The reason for this discrepancy, if confirmed in other epidemiologically similar regions of Indonesian Borneo, warrants further studies targeting possible cross-border differences in human activities in forested areas, together with more detailed surveys to complement the limited data relating to monkey hosts and Anopheles mosquito vectors in Indonesian Borneo.
    Matched MeSH terms: Animals
  11. Jimoh JO, Rahmah S, Mazelan S, Jalilah M, Olasunkanmi JB, Lim LS, et al.
    Environ Pollut, 2023 Jan 15;317:120769.
    PMID: 36455766 DOI: 10.1016/j.envpol.2022.120769
    Microplastic pollution in our environment, especially water bodies is an emerging threat to food security and human health. Inevitably, the outbreak of Covid-19 has necessitated the constant use of face masks made from polymers such as polypropylene, polyurethane, polyacrylonitrile, polystyrene, polycarbonate, polyethylene, or polyester which eventually will disintegrate into microplastic particles. They can be broken down into microplastics by the weathering action of UV radiation from the sun, heat, or ocean wave-current and precipitate in natural environments. The global adoption of face masks as a preventive measure to curb the spread of Covid-19 has made the safe management of wastes from it cumbersome. Microplastics gain access into aquaculture facilities through water sources and food including planktons. The negative impacts of microplastics on aquaculture cannot be overemphasized. The impacts includes low growth rates of animals, hindered reproductive functions, neurotoxicity, low feeding habit, oxidative stress, reduced metabolic rate, and increased mortality rate among aquatic organisms. With these, there is every tendency of microplastic pollution to negatively impact fish production through aquaculture if the menace is not curbed. It is therefore recommended that biodegradable materials rather than plastics to be considered in the production of face mask while recycle of already produced ones should be encouraged to reduce waste.
    Matched MeSH terms: Animals
  12. Goldsworthy NC, Srinivasan M, Smallhorn-West P, Cheah LC, Munday PL, Jones GP
    J Fish Biol, 2022 Oct;101(4):996-1007.
    PMID: 35818109 DOI: 10.1111/jfb.15161
    Body size influences many life-history traits, with small-bodied animals tending to have short life spans, high mortality and greater reproductive effort early in life. In this study, the authors investigated the life-history traits and reproductive strategies of three small-bodied coral reef gobies of the genus Trimma: Trimma benjamini, Trimma capostriatum and Trimma yanoi. The authors found all Trimma species studied attained a small body size of <25 mm, had a short life span of <140 days and experienced high estimated daily mortality of 3.0%-6.7%. Furthermore, the pelagic larval phase accounted for 25.3%-28.5% of the maximum life span, and maturation occurred between 74.1 and 82.1 days at 15.2-15.8 mm, leaving only 35%-43% of the total life span as a reproductively viable adult. All mature individuals had gonad structures consistent with bidirectional sex change, with bisexual gonads including both ovarian and testicular portions separated by a thin wall of connective tissue. In the female and male phases, only ovaries or testes were mature, whereas gonadal tissue of the non-active sex remained. One T. benjamini individual and one T. yanoi individual had ovarian and testicular tissue active simultaneously. The results of this study highlight the life-history challenges small CRFs face on their path to reproduction and reproductive strategies that could be beneficial in fishes with high and unpredictable mortality and short reproductive life spans.
    Matched MeSH terms: Animals
  13. Apanaskevich DA
    Syst Parasitol, 2023 Feb;100(1):85-104.
    PMID: 36371487 DOI: 10.1007/s11230-022-10072-2
    Haemaphysalis (Rhipistoma) dentipalpis Warburton & Nuttall, 1909 (Acari: Ixodidae) is reinstated here as a valid species and the male is redescribed whereas the female is described for the first time. The adults of H. dentipalpis that we studied were collected from various felid and viverrid carnivorans (Carnivora: Felidae, Viverridae) in Indonesia and Malaysia. For comparative purposes, the male and female of H. (R.) asiatica (Supino, 1897) are redescribed. The adults of H. asiatica that we studied were from various felid and viverrid carnivorans (Carnivora: Felidae, Viverridae) as well as a treeshrew (Scandentia: Tupaiidae) in Thailand and Vietnam. The males and females of both H. dentipalpis and H. asiatica can be differentiated by the pattern of punctations on the conscutum and scutum and the shape and size of the posterodorsal and posteroventral spurs on palpal segment II.
    Matched MeSH terms: Animals
  14. Soo CL, Nyanti L, Idris NE, Ling TY, Sim SF, Grinang J, et al.
    Sci Rep, 2021 Aug 19;11(1):16922.
    PMID: 34413385 DOI: 10.1038/s41598-021-96253-3
    Knowledge of the fundamental aspects of ecology such as the patterns of fish species distribution and biodiversity in the forest streams is the first and basic step to develop effective conservation strategies. Yet, studies on altitudinal changes of fish composition and assemblages in Bornean forest streams are scarce despite being one of the hotspots of biodiversity conservation. Hence, surveys on freshwater fish composition along the altitudinal gradients of the Baleh River Basin in Sarawak, Borneo were conducted from April 2014 to August 2015. The Baleh River Basin was divided into seven altitudinal groups with a total of 72 stations. Group elevation ranged from 53 to 269 m above sea level. The fish samples and environmental parameters were taken concurrently during samplings. A total of 3565 specimens belonging to six orders, 14 families, and 76 species were found in the present study. The most dominant family in the Baleh River Basin was Cyprinidae (74.4%), followed by Gastromyzontidae (16.2%) while the most dominant species was Tor tambra (12.9%), followed by Lobocheilos ovalis (12.3%). Fish abundance significantly higher at high altitude sites than those at low altitude sites except for Mengiong River which has the lowest fish abundance despite with high elevation. Species richness was found significantly lower in midstream segment. Noticeable altitudinal gradient of fish assemblages was observed along the Baleh River except a discontinuity at the midstream segment which is attributable to the poorer quality inflow from the Mengiong River coupled with the meandering feature of the segment. Fish abundance was significantly and positively correlated with elevation, water pH and conductivity while negatively correlated with turbidity. Anthropogenic activities in the Baleh River Basin had altered the environmental variables thus disrupted the altitudinal gradient of fish assemblages. This phenomenon is apparent when the Canonical Correspondence Analysis (CCA) revealed that the first axis (CCA1) explained 42.5% of the variation and has positive loading on dissolved oxygen (DO) and negative loading on water conductivity; whereas CCA2 explained 37.5% of the variation and positively loaded on elevation, water pH, and DO. The results demonstrated that Gastromyzon fasciatus preferred more oxygenated water than Protomyzon sp., G. sp 1, and G. punctulatus although they are all from Gastromyzontidae family that inhabiting high altitude sites. Barbonymus schwanenfeldii was also found most abundant with elevated dissolved oxygen value. On the other hand, Rasbora volzii and R. hosii inhabiting lower altitude sites with less oxygenated and more acidic water.
    Matched MeSH terms: Animals
  15. Hays GC, Laloë JO, Lee PLM, Schofield G
    Curr Biol, 2023 Jan 09;33(1):R14-R15.
    PMID: 36626854 DOI: 10.1016/j.cub.2022.11.035
    Climate change is a clear and present threat to species survival. For species with temperature-dependent sex determination, including all sea turtles, it has been hypothesised that climate change may drive the creation of sex-ratio biases leading to population extinctions1. Through a global analysis across multiple species, we present the first direct empirical evidence for a demographic consequence of male scarcity in sea turtle populations, with a lower incidence of multiple paternity being found in populations with more extreme female-biased hatchling sex-ratio skews. For green turtles, when the female bias in hatchling sex ratio was >90%, the incidence of multiple paternity was low compared to other nesting sites, being 24.5% in the eastern Mediterranean (Cyprus), 36.4% on Redang Island (Malaysia) and 15.4% on the southern Great Barrier Reef (Heron Island, Australia) compared to higher values (range 61.1-91.7%) at other sites globally. These results suggest that a low incidence of multiple paternity may serve as a harbinger of future problems with egg fertility if males become even scarcer. Assessments of the incidence of multiple paternity at sites where adult males are expected to become scarce, such as Raine Island on the northern Great Barrier Reef in Australia, may help to identify when a lack of males raises the threat of local extinctions. In such cases, intervention to increase the production of male hatchlings may be needed.
    Matched MeSH terms: Animals
  16. Higuchi A, Ling QD, Kumar SS, Munusamy MA, Alarfaj AA, Chang Y, et al.
    Lab Invest, 2015 Jan;95(1):26-42.
    PMID: 25365202 DOI: 10.1038/labinvest.2014.132
    Induced pluripotent stem cells (iPSCs) provide a platform to obtain patient-specific cells for use as a cell source in regenerative medicine. Although iPSCs do not have the ethical concerns of embryonic stem cells, iPSCs have not been widely used in clinical applications, as they are generated by gene transduction. Recently, iPSCs have been generated without the use of genetic material. For example, protein-induced PSCs and chemically induced PSCs have been generated by the use of small and large (protein) molecules. Several epigenetic characteristics are important for cell differentiation; therefore, several small-molecule inhibitors of epigenetic-modifying enzymes, such as DNA methyltransferases, histone deacetylases, histone methyltransferases, and histone demethylases, are potential candidates for the reprogramming of somatic cells into iPSCs. In this review, we discuss what types of small chemical or large (protein) molecules could be used to replace the viral transduction of genes and/or genetic reprogramming to obtain human iPSCs.
    Matched MeSH terms: Animals
  17. Eff ARY, Huri HZ, Radji M, Mun'im A, Suyatna FD, Eden Y
    BMC Complement Med Ther, 2023 Feb 20;23(1):56.
    PMID: 36803524 DOI: 10.1186/s12906-023-03889-x
    BACKGROUND: Mahkota Dewa [Phaleria macrocarpa (Scheff) Boerl.] fruit in vitro and in- vivo can decrease and prevent elevation of the blood pressure, lower plasma glucose levels, possess an antioxidant effect, and recover liver and kidney damage in rats. This study aimed to determine the structure and inhibitory activity of angiotensin-converting enzyme inhibitors (ACE) from the Mahkota Dewa fruit.

    METHODS: The fruit powder was macerated using methanol and then partitioned by hexane, ethyl acetate, n-butanol, and water. The fractions were chromatographed on the column chromatography and incorporated with TLC and recrystallization to give pure compounds. The structures of isolated compounds were determined by UV-Visible, FT-IR, MS, proton (1H-NMR), carbon (13C-NMR), and 2D-NMR techniques encompassing HMQC and HMBC spectra. The compounds were evaluated for their ACE inhibitory activity, and the strongest compound was determined by the kinetics enzyme inhibition.

    RESULTS: Based on the spectral data, the isolated compounds were determined as 6,4-dihydroxy-4-methoxybenzophenone-2-O-β-D-glucopyranoside (1), 4,4'-dihydroxy-6-methoxybenzophenone-2-O-β-D-glucopyranoside (2) and mangiferin (3). IC50 values of the isolated compounds 1, 2 and 3 were 0.055, 0.07, and 0.025 mM, respectively.

    CONCLUSION: The three compounds have ACE inhibitor and mangiferin demonstrated the best ACE inhibitory activity with competitive inhibition on ACE with the type of inhibition kinetics is competitive inhibition.

    Matched MeSH terms: Animals
  18. Yakubu Y, Ahmad MT, Chong CM, Ismail IS, Shaari K
    J Fish Biol, 2023 Feb;102(2):358-372.
    PMID: 36333916 DOI: 10.1111/jfb.15266
    Despite the use of Terminalia catappa (TC) leaf by traditional fish farmers around the world to improve the health status of cultured fish, there is a paucity of information on comprehensive metabolite profile and the maximum safe dose of the plant. This study aims at profiling the methanol leaf extract of T. catappa, quantifying total phenolic content (TPC) as well as the total flavonoid content (TFC) and evaluating its acute toxicity on blood, plasma biochemical parameters and histopathology of some vital organs in red hybrid tilapia (Oreochromis sp.). The experimental fish were acclimatised for 2 weeks and divided into six groups. Group (1) served as a control group and was administered 0.2 ml,g-1 of phosphate buffer saline (PBS). Groups 2-6 were orally administered T. catappa leaf extracts (0.2 ml.50 g-1 ) in the following sequence; 31.25, 62.5, 125, 250 and 500 mg.kg-1 body weight. The metabolites identified in T. catappa using liquid chromatography-tandem mass electrospray ionisation spectrometry (LC-ESI-MS/MS) revealed the presence of organic acids, hydrolysable tannins, phenolic acids and flavonoids. Phenolic quantification revealed reasonable quantity of phenolic compounds (217.48 μg GAEmg-1 for TPC and 91.90 μg. QCEmg-1 for TFC). Furthermore, there was no significant difference in all the tested doses in terms of blood parameters and plasma biochemical analysis except for the packed cell volume (PCV) at 500 mg.kg-1 when compared to the control. Significant histopathological changes were observed in groups administered with the extract at 125, 250 and 500 mg.kg-1 doses. To a very large extent it is therefore safe to administer the extract at 31.25 and 62.5 mg.kg-1 in tilapia.
    Matched MeSH terms: Animals
  19. Munawaroh HSH, Pratiwi RN, Gumilar GG, Aisyah S, Rohilah S, Nurjanah A, et al.
    Int J Biol Macromol, 2023 Mar 15;231:123248.
    PMID: 36642356 DOI: 10.1016/j.ijbiomac.2023.123248
    Gelatin hydrogel is widely employed in various fields, however, commercially available gelatin hydrogels are mostly derived from mammalian which has many disadvantages due to the supply and ethical issues. In this study, the properties of hydrogels from fish-derived collagen fabricated with varying Glutaraldehyde (GA) determined. The antidiabetic properties of salmon gelatin (SG) and tilapia gelatin (TG) was also evaluated against α-glucosidase. Glutaraldehyde-crosslinked salmon gelatin and tilapia gelatin were used, and compared with different concentrations of GA by 0.05 %, 0.1 %, and 0.15 %. Water absorbency, swelling, porosity, pore size and water retention of the hydrogels were dependent on the degree of crosslinking. The synthesis of hydrogels was confirmed by FTIR study. Scanning electron microscope (SEM) observation showed that all hydrogels have a porous structure with irregular shapes and heterogeneous morphology. Performance tests showed that gelatin-GA 0.05 % mixture had the best performance. Antidiabetic bioactivity in vitro and in silico tests showed that the active peptides of SG and TG showed a high binding affinity to α-glucosidase enzyme. In conclusion, SG and TG cross-linked GA 0.05 % have the potential as an antidiabetic agent and as a useful option over mammalian-derived gelatin.
    Matched MeSH terms: Animals
  20. Sarwar B, Khan AU, Aslam M, Bokhari A, Mubashir M, Alothman AA, et al.
    Environ Res, 2023 Mar 01;220:115168.
    PMID: 36584838 DOI: 10.1016/j.envres.2022.115168
    The inherent toxicity, mutagenicity and carcinogenicity of dyes that are discharged into aquatic ecosystems, harming the health of humans and animals. ZIF-8 based composites are regarded as good adsorbents for the breakdown of dyes in order to remove or degrade them. In the course of this research, metal-organic framework materials known as ZIF-8 and its two stable composites, ZIF-8/BiCoO3 (MZBC) and ZIF-8/BiYO3 (MZBY), were produced via a hydrothermal process and solvothermal process, respectively, for the dangerous Congo red (CR) dye removal from the solution in water using adsorption method. According to the findings, the most significant amount of CR dye that could be adsorbed is onto MZBC, followed by MZBY and ZIF-8. The pseudo-second-order kinetic model was used effectively to match the data for adsorption behavior and was confirmed using the Langmuir isotherm equation. There is a possibility that the pH and amount of adsorbent might influence the adsorption behavior of the adsorbents. According to the experiment results, the technique featured an endothermic adsorption reaction that spontaneously occurred. The higher adsorption capability of MZBC is because of the large surface area. This results in strong interactions between the functional groups on the surface of MZBC and CR dye molecules. In addition to the electrostatic connection between functional group Zn-O-H on the surface of ZIF-8 in MZBC and the -NH2 or SO3 functional group areas in CR molecules, it also includes the strong π-π interaction of biphenyl rings.
    Matched MeSH terms: Animals
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links