Displaying publications 201 - 220 of 456 in total

Abstract:
Sort:
  1. Ibrahim M, Akhtar N, Khan A, Sara, Anwar Y, Wong LS, et al.
    Braz J Biol, 2024;84:e287349.
    PMID: 39775662 DOI: 10.1590/1519-6984.287349
    The wild edible plants offer a valuable resource for food and human nutrition. The current study aimed to analyze the proximate composition and ethno-medicinal profiles of twenty selected wild edible plants from the Malakand District, Pakistan. The proximate composition (moisture, ash, crude protein, crude fat, and dietary fiber) was analyzed following Association of Official Agricultural Chemists (AOAC) protocols. Ethno-medicinal profiles were obtained through semi-structured interviews with local informants. Mineral elements were analyzed using Energy Dispersive X-ray Fluorescence (EDX) Spectroscopy. The normalized variation matrix and centered log ratio (CLR) biplot were used to assess linear associations between nutritional components. The results revealed significant variations in the nutritional components and mineral contents among the studied plant species. Higher crude carbohydrates (64.48%) were scrutinized in Ziziphus jujuba, followed by proteins (19.90%) in leaves of Solanum nigrum, fiber (19.50%) in Caralluma tuberculata and fats (6.12%) in Mentha spicata. A maximum energy value of 332.34 Kcal/100g was calculated for leaves of Solanum nigrum. The concentrations of carbon (C) in Mentha longifolia were (60.20%), followed by oxygen (46.06%) in Ziziphus jujuba, potassium (10.80%) in Rumex dentatusand nitrogen (7.98%) in Nasturtium officinale. The centered log ratio biplot confirms strong relationships between moisture, energy, carbohydrates, fibers, and ash content, while protein and fat concentrations exhibit a separate pattern. The findings provide valuable insights into the compositional data analysis of edible plant species, suggesting interdependencies among carbohydrate, energy, moisture content, and fibers. Additionally, the results of our current study showed that all of these selected wild edible plants have the potential to provide humans with important macronutrients and elements.
  2. Ahmad H, Balachandra D, Arifin N, Nolan TJ, Lok JB, Hayat Khan A, et al.
    Am J Trop Med Hyg, 2020 12;103(6):2288-2293.
    PMID: 32996454 DOI: 10.4269/ajtmh.20-0265
    Strongyloides stercoralis infection is prevalent worldwide and can cause lifelong infection in immunocompetent individuals, and potentially death in immunosuppressed patients. The diagnosis is hindered by the low sensitivity of microscopic examination, thus making serology an important complementary test to improve the detection rate. However, there were reports that some Strongyloides-infected individuals were negative with specific IgG and IgG4 assays, and other helminth infections were positive with commercial Strongyloides IgG-ELISAs. Thus, there is a need to develop better serodiagnostic methods for strongyloidiasis. We investigated the diagnostic potential of IgE-ELISAs using Strongyloides larval lysate. Sera from two groups infected with Strongyloides served as the positive reference, that is, 1) positive by commercial IgG-ELISAs and IgG4 rapid test, and stool samples positive by microscopy and/or PCR (group IA; n = 20); and 2) negative by IgG-ELISAs and IgG4 rapid test, but stool samples were PCR positive (group IB sera; n = 11). Sera from another two groups served as negative reference (controls), that is, 1) infected with other parasites (group II; n = 73) and 2) healthy donors (group III; n = 22). Results showed a 100% diagnostic sensitivity in detecting sera from groups IA and IB. The latter group of individuals probably had early infection because their IgG and IgG4 assays were negative. The optical density values of group IB sera were also significantly lower than those of group IA (P < 0.003). The IgE-ELISA was 100% specific when tested against sera from groups II and III. This study highlights the diagnostic potential of IgE-ELISA using larval lysate to detect strongyloidiasis, especially those with probable early infection.
  3. Sayaf AM, Kousar K, Suleman M, Albekairi NA, Alshammari A, Mohammad A, et al.
    BMC Chem, 2024 Nov 26;18(1):236.
    PMID: 39593151 DOI: 10.1186/s13065-024-01347-4
    Hypoxia-inducible factors (HIFs) are transcription factors that regulate erythropoietin (EPO) synthesis and red blood cell (RBC) production. Prolyl-4-hydroxylase domain (PHD) enzymes are key regulators of HIF's stability and activity. Inhibiting PHD enzymes can enhance HIF-mediated responses and have therapeutic potential for diseases such as anemia, cancer, stroke, ischemia, neurodegeneration, and inflammation. In this study, we searched for novel PHD inhibitors from four databases of natural products and synthetic compounds: AfroDb Natural Products, AnalytiCon Discovery Natural Product (NP), HIM-Herbal Ingredients In-Vivo Metabolism, and Herbal Ingredients' Targets, with a total number of 13,597 compounds. We screened the candidate compounds by molecular docking and validated them by molecular dynamics simulations and free energy calculations. We identified four target hits (ZINC36378940, ZINC2005305, ZINC31164438, and ZINC67910437) that showed stronger binding affinity to PHD2 compared to the positive control, Vadadustat (AKB-6548), with docking scores of - 13.34 kcal/mol, - 12.76 kcal/mol, - 11.96 kcal/mol, - 11.41 kcal/mol, and - 9.04 kcal/mol, respectively. The target ligands chelated the active site iron and interacted with key residues (Arg 383, Tyr329, Tyr303) of PHD2, in a similar manner as Vadadustat. Moreover, the dynamic stability-based assessment revealed that they also exhibited stable dynamics and compact trajectories. Then the total binding free energy was calculated for each complex which revealed that the control has a TBE of - 31.26 ± 0.30 kcal/mol, ZINC36378940 reported a TBE of - 38.65 ± 0.51 kcal/mol, for the ZINC31164438 the TBE was - 26.16 ± 0.30 kcal/mol while the ZINC2005305 complex reported electrostatic energy of - 32.75 ± 0.58 kcal/mol. This shows that ZINC36378940 is the best hit than the other and therefore further investigation should be performed for the clinical usage. Our results suggest that these target hits are promising candidates that reserve further in vitro and in vivo validations as potential PHD inhibitors for the treatment of renal anemia, cancer, stroke, ischemia, neurodegeneration, and inflammation.
  4. Khan KM, Rahim F, Wadood A, Kosar N, Taha M, Lalani S, et al.
    Eur J Med Chem, 2014 Jun 23;81:245-52.
    PMID: 24844449 DOI: 10.1016/j.ejmech.2014.05.010
    In our effort directed toward the discovery of new anti-diabetic agent for the treatment of diabetes, a library of biscoumarin derivative 1-18 was synthesized and evaluated for α-glucosidase inhibitory potential. All eighteen (18) compounds displayed assorted α-glucosidase activity with IC50 values 16.5-385.9 μM, if compared with the standard acarbose (IC50 = 906 ± 6.387 μM). In addition, molecular docking studies were carried out to explore the binding interactions of biscoumarin derivatives with the enzyme. This study has identified a new class of potent α-glucosidase inhibitors.
  5. Rathore HA, Munavvar AS, Abdullah NA, Khan AH, Fathihah B, NurJannah MH, et al.
    Auton Autacoid Pharmacol, 2009 Oct;29(4):171-80.
    PMID: 19740088 DOI: 10.1111/j.1474-8665.2009.00445.x
    1 A raised cardiac workload activates neurohormones which will increase muscle mass and shift contractility to the right along the Frank-Starling curve. 2 This study examined the interaction between the SNS and RAS in contributing to vascular responsiveness following the development of cardiac hypertrophy due to aortic banding. 3 Sprague Dawley rats (180-200 g) were assigned to one of six groups; Normal, Sham-operated, Aortic Banded (AB), Aortic Banded treated with losartan (ABLOS), Aortic Banded treated with 6-hydroxydopamine (ABSYMP) and Aortic banded treated with both losartan and 6-hydroxydopamine (ABSYMPLOS). A constricting band was placed around the supra renal aorta on day zero with drug treatment from day 37 to day 44. Vasopressor responses to noradrenaline, phenylephrine, methoxamine and angiotensin II were measured on day 45. 4 The magnitudes of the MAP responses to all vasoactive agents, expressed as percentage changes, were similar in Normal and Sham groups, but reduced in the AB group. ABLOS group showed attenuated response to ANGII whereas all responses were enhanced in the ABSYM group. 5 A positive interaction between the two systems was observed with alpha(1A)-adrenoceptors identified as a major component of SNS and AT(1) receptors of RAS to induce vasopressor effects.
  6. Husain A, Al-Zahrani SA, Al Otaibi A, Khan I, Mujahid Ali Khan M, Alosaimi AM, et al.
    Polymers (Basel), 2021 May 31;13(11).
    PMID: 34073027 DOI: 10.3390/polym13111829
    Polypyrrole (PPy) and polypyrrole/cerium oxide nanocomposite (PPy/CeO2) were prepared by the chemical oxidative method in an aqueous medium using anhydrous ferric chloride (FeCl3) as an oxidant. The successful formulation of materials was confirmed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmittance electron microscopy (TEM). A four-in-line probe device was used for studying DC electrical conductivity and ammonia vapor sensing properties of PPy and PPy/CeO2. The significant improvement in both the conductivity and sensing parameters of PPy/CeO2 compared to pristine PPy reveals some synergistic/electronic interaction between PPy and cerium oxide nanoparticles (CeO2 NPs) working at molecular levels. The initial conductivity (i.e., conductivity at room temperature) was found to be 0.152 Scm-1 and 1.295 Scm-1 for PPy and PPy/CeO2, respectively. Also, PPy/CeO2 showed much better conductivity retention than pristine PPy under both the isothermal and cyclic ageing conditions. Ammonia vapor sensing was carried out at different concentration (0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 vol %). The sensing response of PPy/CeO2 varied with varying concentrations. At 0.5 vol % ammonia concentration, the % sensing response of PPy and PPy/CeO2 sensor was found to be 39.1% and 93.4%, respectively. The sensing efficiency of the PPy/CeO2 sensor was also evaluated at 0.4. 0.3, 0.2, 0.1, 0.05, 0.03, and 0.01 vol % ammonia concentration in terms of % sensing response, response/recovery time, reversibility, selectivity as well as stability at room temperature.
  7. Ahmad P, Khandaker MU, Muhammad N, Rehman F, Ullah Z, Khan G, et al.
    Appl Radiat Isot, 2020 Dec;166:109404.
    PMID: 32956924 DOI: 10.1016/j.apradiso.2020.109404
    The shortcomings in Boron neutron capture therapy (BNCT) and Hyperthermia for killing the tumor cell desired for the synthesis of a new kind of material suitable to be first used in BNCT and later on enable the conditions for Hyperthermia to destroy the tumor cell. The desire led to the synthesis of large band gap semiconductor nano-size Boron-10 enriched crystals of hexagonal boron nitride (10BNNCs). The contents of 10BNNCs are analyzed with the help of x-ray photoelectron spectroscopy (XPS) and counter checked with Raman and XRD. The 10B-contents in 10BNNCs produce 7Li and 4He nuclei. A Part of the 7Li and 4He particles released in the cell is allowed to kill the tumor (via BNCT) whereas the rest produce electron-hole pairs in the semiconductor layer of 10BNNCs suggested to work in Hyperthermia with an externally applied field.
  8. Shah N, Khan A, Ali R, Marimuthu K, Uddin MN, Rizwan M, et al.
    Biomed Res Int, 2020;2020:6185231.
    PMID: 32382561 DOI: 10.1155/2020/6185231
    Health and environmental problems arising from metals present in the aquatic ecosystem are very well known. The present study investigated toxicological effects of LC15 of metals such as copper, chromium, and lead for 24, 48, 72, and 96 h on hematological indices, RBC nucleus and cell morphology, and gill and muscle tissues of grass carp (Ctenopharyngodon idella). Experimental dose concentrations of copper were 1.5, 1.4, 1.2, and 1 mgL-1. Similarly, dose concentrations of chromium were 25.5, 22.5, 20, and 18 mgL-1 while those of lead were 250, 235, 225, and 216 mgL-1, respectively. Maximum decrease in the concentration of Hb, RBCs, and monocytes was observed against chromium, while maximum increase in the concentration of lymphocytes was reported against lead. Abnormalities such as single and double micronuclei, deformed nucleus, nuclear shift, irregular nucleus, deformed cells, microcyte cells, and vacuolated and swollen cells were observed. Gill tissues absorbed maximum concentration of lead followed by chromium and copper. Muscle tissues also absorbed maximum concentration of lead followed by chromium and copper, respectively. Histological alterations such as epithelial lifting, interlamellar spaces, club gill filaments, gill bridging, curling filaments, swelling and fusion of cells, irregular cells, destruction of epithelial cells, cellular necrosis, and inflammatory cells were observed in gill tissues while inflammation and necrosis of muscle fibers, degeneration of muscle fibers, edema of muscle bundles, zig-zag of muscle fibers, and lesions were observed in muscle tissues of fish exposed with different doses of these heavy metals, indicating the toxicity of metals to aquatic fauna as well as to human being via food chain.
  9. Ahmad P, Khandaker MU, Khan A, Rehman F, Din SU, Ali H, et al.
    Biomed Res Int, 2022;2022:3605054.
    PMID: 36420094 DOI: 10.1155/2022/3605054
    A simple process based on the dual roles of both magnesium oxide (MgO) and iron oxide (FeO) with boron (B) as precursors and catalysts has been developed for the synthesis of borate composites of magnesium and iron (Mg2B2O5-Fe3BO6) at 1200°C. The as-synthesized composites can be a single material with the improved and collective properties of both iron borates (Fe3BO6) and magnesium borates (Mg2B2O5). At higher temperatures, the synthesized Mg2B2O5-Fe3BO6 composite is found thermally more stable than the single borates of both magnesium and iron. Similarly, the synthesized composites are found to prevent the growth of both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) pathogenic bacteria on all the tested concentrations. Moreover, the inhibitory effect of the synthesized composite increases with an increase in concentration and is more pronounced against S. aureus as compared to E. coli.
  10. Khan FU, Khan A, Shah S, Hayat K, Usman A, Khan FU, et al.
    Front Pharmacol, 2021;12:754000.
    PMID: 34819859 DOI: 10.3389/fphar.2021.754000
    Background: Antibiotic resistance (ABR) is one of the major issues around the globe. Timely education and awareness of pharmacy students regarding the appropriate use of antibiotics, ABR, and antimicrobial stewardships are required. Methods: The present study was first conducted in 12 (public and private sector) universities among undergraduate pharmacy students (UGPS) (n = 414) irrespective of their study year through a validated questionnaire, and the insights of pharmacy teachers were taken through in-depth semi-structured interviews in the second phase. For the quantitative data, different statistical methods were used, and data were presented in tabulated form, whereas inductive thematic interpretation was used to categorize themes and derive conclusions from qualitative evidence. Results: The majority of the students were males (n = 223, 54%) with the mean age group 19-23 years, and 20 faculty members were interviewed with a mean duration of 15 min. Students have good knowledge about antibiotics use and the majority purchased antibiotics through prescription (n = 277, 66.9%) during the last month and strongly agreed to stop unnecessary household storage (n = 183 44.2%). Most of the students have heard the terminologies related to antimicrobial resistance through social media while unaware (n = 104, 25.1%) of a Pakistan national action plan against AMR (antimicrobial resistance). Overall, respondents have a somewhat good understanding of the ABR. Regular use of antibiotics without consultation of a physician can lead to ABR and some wrong answers were observed (162, 39.1%; p > 0.05). The majority of the students (n = 198, 47.8%) and teachers believe that the current pharmacy syllabus must be swiftly updated with the new subjects related to ABR and AMS (antimicrobial stewardship) in Pakistan. The UGPS have emphasized (n = 220, 53.1%; Median = 1, IQR = 2) establishing a link between academia and hospitals. The ABR issue has been highlighted by pharmacy faculty members, who have urged students to take practical efforts toward ABR and AMS knowledge. Conclusion: The UGPS knowledge related to ABR and AMS must be updated. Students at the undergraduate level must get training in order to encourage the sensible use of antibiotics. Courses on ABR and AMS should be included in present pharmacy curricula.
  11. Naheed N, Maher S, Saleem F, Khan A, Wadood A, Rasheed S, et al.
    Drug Dev Res, 2021 12;82(8):1169-1181.
    PMID: 33983647 DOI: 10.1002/ddr.21831
    Urease plays a significant role in the pathogenesis of urolithiasis pyelonephritis, urinary catheter encrustation, hepatic coma, hepatic encephalopathy, and peptic acid duodenal ulcers. Salvinia molesta was explored to identify new bioactive compounds with particular emphasis on urease inhibitors. The aqueous methanol extract was fractionated using solvents of increasing polarity. A series of column chromatography and later HPLC were performed on butanol extract. The structures of the resulting pure compounds were resolved using NMR (1D and 2D), infrared, and mass spectroscopy. The novel isolate was evaluated for antioxidant activity (using DPPH, superoxide anion radical scavenging, oxidative burst, and Fe+2 chelation assays), anti-glycation behavior, anticancer activity, carbonic anhydrase inhibition, phosphodiesterase inhibition, and urease inhibition. One new glucopyranose derivative 6'-O-(3,4-dihydroxybenzoyl)-4'-O-(4-hydroxybenzoyl)-α/β-D-glucopyranoside (1) and four known glycosides were identified. Glycoside 1 demonstrated promising antioxidant potential with IC50 values of 48.2 ± 0.3, 60.3 ± 0.6, and 42.1 ± 1.8 μM against DPPH, superoxide radical, and oxidative burst, respectively. Its IC50 in the Jack bean urease inhibition assay was 99.1 ± 0.8 μM. The mechanism-based kinetic studies presented that compound 1 is a mixed-type inhibitor of urease with a Ki value of 91.8 ± 0.1 μM. Finally, molecular dynamic simulations exploring the binding mode of compound 1 with urease provided quantitative agreement between estimated binding free energies and the experimental results. The studies corroborate the use of compound 1 as a lead for QSAR studies as an antioxidant and urease inhibitor. Moreover, it needs to be further evaluated through the animal model, that is, in vivo or tissue culture-based ex-vivo studies, to establish their therapeutic potential against oxidative stress phosphodiesterase-II and urease-induced pathologies.
  12. Lee KS, Shahidullah A, Zaidi STR, Patel RP, Ming LC, Tariq MH, et al.
    Front Pharmacol, 2017;8:504.
    PMID: 28824429 DOI: 10.3389/fphar.2017.00504
  13. Javaid A, Hasan R, Zafar A, Chaudry MA, Qayyum S, Qadeer E, et al.
    Int J Tuberc Lung Dis, 2017 03 01;21(3):303-308.
    PMID: 28225340 DOI: 10.5588/ijtld.16.0444
    BACKGROUND: Drug resistance in general, and multidrug-resistant tuberculosis (MDR-TB) in particular, threatens global tuberculosis (TB) control efforts. Population-based estimates of drug resistance are needed to develop strategies for controlling drug-resistant TB in Pakistan.

    OBJECTIVE: To obtain population-based data on Mycobacterium tuberculosis drug resistance in Pakistan.

    METHODS: To obtain drug resistance data, we conducted a population-based study of TB cases in all provinces of Pakistan. We performed culture and drug susceptibility testing on M. tuberculosis isolates from patients with a prior history of anti-tuberculosis treatment (retreatment cases) from all over the country.

    RESULTS: Of 544 isolates from previously treated cases, 289 (53.1%) were susceptible to all first-line drugs, 255 (46.9%) were resistant to at least one anti-tuberculosis drug and 132 (24.3%) were MDR-TB. Among MDR-TB isolates, 47.0% were ofloxacin (OFX) resistant. Extensively drug-resistant TB was found in two (0.4%) isolates.

    CONCLUSION: Prevalence of drug resistance in retreatment isolates was high. The alarmingly high prevalence of OFX resistance among MDR-TB isolates may threaten the success of efforts to control and treat MDR-TB.

  14. Bhupatiraju L, Bethala K, Wen Goh K, Singh Dhaliwal J, Ching Siang T, Menon S, et al.
    J Med Life, 2023 Feb;16(2):307-316.
    PMID: 36937470 DOI: 10.25122/jml-2022-0151
    Food supplements are used to improve cognitive functions in age-related dementia. This study was designed to determine the Murraya koenigii leaves' effect on Alloxan-induced cognitive impairment in diabetic rats and the contents of oxidative stress biomarkers, catalase, reduced glutathione, and glutathione reductase in brain tissue homogenates. Wistar rats were divided into seven groups (six rats per group). Group I received saline water (1 ml, p.o.), Diabetes was induced in Groups II-VII with Alloxan (120 mg/kg/p.o). Group III was provided with Donepezil HCl (2.5 mg/kg/p.o.), Group IV, V, VI, and VII with Murraya koenigii ethanol extract (200 and 400 mg/kg/p.o.) and aqueous extract (200 and 400 mg/kg/p.o.), respectively, for 30 days. Behavior, acetylcholinesterase (AChE) activity, oxidative stress status, and histopathological features were determined in the hippocampus and cerebral cortex. Administration of Murraya koenigii ethanolic and aqueous extracts significantly (P<0.05, P<0.001) increased the number of holes crossed by rats from one chamber to another. There was an increase in the (1) latency to reach the solid platform, (2) number of squares traveled by rats on the 30th day, and (3) percentage of spontaneous alternation behavior compared to the control group. Administration for successive days markedly decreased AChE activity (P<0.05), decreased TBARS level, and increased catalase, GSH, and GR levels. Murayya koenigii could be a promising food supplement for people with dementia. However, more research into sub-chronic toxicity and pharmacokinetic and pharmacodynamics interactions is essential.
  15. Dudwal R, Jakhar BL, Khan Pathan AR, Kataria A, Dhaka SR, Jan I, et al.
    Heliyon, 2024 May 15;10(9):e30065.
    PMID: 38726197 DOI: 10.1016/j.heliyon.2024.e30065
    Chilli is an indispensable food item in the daily life of humans but it is affected by many insects, so various pesticides, including spiromesifen, are applied to chilli crops to protect this crop from insect infestation. However, the use of pesticides poses environmental and health issues. These issues have raised the demand for pesticide-free chillies among consumers. The primary aim of this study was to assess the efficacy of various decontamination methods in removing spiromesifen residues from chilli fruits. A randomized block design was employed to conduct a supervised field experiment at the Rajasthan Agricultural Research Institute in Durgapura, Jaipur, India. The samples of chillies treated with pesticides are subjected to seven different homemade techniques. The samples were extracted using the QuEChERS method, known for its efficiency, affordability, simplicity, robustness, and safety. The analysis of spiromesifen residues was conducted using gas chromatography (GC) equipped with an electron capture detector (ECD), and the results were verified using gas chromatography-mass spectrometry (GC-MS). Out of several decontamination methods, the lukewarm water treatment was more effective than any other decontamination method, which led to the highest elimination of spiromesifen residue, whereas rinsing with tap water eliminates the least amount of spiromesifen residue. So, the lukewarm water treatment is a safe, cost-effective, and eco-friendly approach to remove spiromesifen residues from Chilli.
  16. Khan A, Ul-Haq Z, Fatima S, Ahmed J, Alobaid HM, Fazid S, et al.
    Nutrients, 2023 Mar 30;15(7).
    PMID: 37049531 DOI: 10.3390/nu15071690
    Cost-effective interventions are needed to address undernutrition, particularly micronutrient deficiencies, which are common in children under the age of five in low- and middle-income countries. A community-based, non-randomized clinical trial was undertaken in the Kurram district of Khyber Pakhtunkhwa from January 2018 to June 2019, to evaluate the effect of locally produced micronutrient powder (local name: Vita-Mixe) on plasma micronutrient status, hemoglobin level, and anthropometric outcomes. Children aged 24-48 months old were recruited and allocated to the intervention and control arm of the study. The enrolled children in the intervention arm received one micronutrient powder (MNP) sachet for consumption on alternate days for 12 months. To assess the impact of the intervention on plasma levels of zinc, vitamin D, vitamin A, and hemoglobin level, blood samples were taken at baseline and after one year following the intervention. The analysis was conducted using Enzyme-Linked Immunosorbent Assay (ELISA), atomic absorption spectrometry, and an automated hematology analyzer. For the impact on growth parameters, the anthropometric assessment was performed using WHO standard guidelines. A 24 h dietary recall interview was used to assess the nutrient intake adequacy. Results showed that in the intervention arm, children had on average a 7.52 ng/mL (95% CI 5.11-9.92, p-value < 0.001) increase in the plasma level of vitamin A, 4.80 ng/mL (95% CI 1.63-7.95, p-value < 0.002) increase in vitamin D levels and 33.85 µg/dL (95% CI 24.40-43.30, p-value < 0.001) increase in the plasma zinc level, as well as a 2.0g/dL (95% CI 1.64-2.40, p-value < 0.001) increase in hemoglobin level. Statistically significant improvement was observed in the weight-for-height z-score (WHZ) (from -1.0 ± 0.88 to -0.40 ± 1.01, p < 0.001) and weight-for-age z-score (WAZ) (from -1.40 ± 0.50 to -1.05 ± 0.49, p < 0.001) in the intervention group compared to the control group. No statistically significant change was observed in the height-for-age z-score (HAZ) in the intervention group (p = 0.93). In conclusion, micronutrient powder supplementation is a cost-effective intervention to improve the micronutrient status, hemoglobin level, and growth parameters in under-five children, which can be scaled up in the existing health system to address the alarming rates of undernutrition in Pakistan and other developing countries.
  17. Talab F, Alam A, Zainab, Ullah S, Elhenawy AA, Shah SAA, et al.
    J Biomol Struct Dyn, 2024 Feb 22.
    PMID: 38385366 DOI: 10.1080/07391102.2024.2319677
    This research work reports the synthesis of new derivatives of the hydrazone Schiff bases (1-17) based on polyhydroquinoline nucleus through multistep reactions. HR-ESIMS,1H- and 13C-NMR spectroscopy were used to structurally infer all of the synthesized compounds and lastly evaluated for prolyl oligopeptidase inhibitory activity. All the prepared products displayed good to excellent inhibitory activity when compared with standard z-prolyl-prolinal. Three derivatives 3, 15 and 14 showed excellent inhibition with IC50 values 3.21 ± 0.15 to 5.67 ± 0.18 µM, while the remaining 12 compounds showed significant activity. Docking studies indicated a good correlation with the biochemical potency of compounds estimated in the in-vitro test and showed the potency of compounds 3, 15 and 14. The MD simulation results confirmed the stability of the most potent inhibitors 3, 15 and 14 at 250 ns using the parameters RMSD, RMSF, Rg and number of hydrogen bonds. The RMSD values indicate the stability of the protein backbone in complex with the inhibitors over the simulation time. The RMSF values of the binding site residues indicate that the potent inhibitors contributed to stabilizing these regions of the protein, through formed stable interactions with the protein. The Rg. analysis assesses the overall size and compactness of the complexes. The maintenance of stable hydrogen bonds suggests the existence of favorable binding interactions. SASA analysis suggests that they maintained stable conformations without large-scale exposure to the solvent. These results indicate that the ligand-protein interactions are stable and could be exploited to design new drugs for disease treatment.Communicated by Ramaswamy H. Sarma.
  18. Khalid A, Ahmad P, Alharthi AI, Muhammad S, Khandaker MU, Faruque MRI, et al.
    Materials (Basel), 2021 Jun 11;14(12).
    PMID: 34207950 DOI: 10.3390/ma14123223
    Cobalt (Co) doped zinc oxide (ZnO) microcrystals (MCs) are prepared by using the hydrothermal method from the precursor's mixture of zinc chloride (ZnCl2), cobalt-II chloride hexahydrate (CoCl2·6H2O), and potassium hydroxide (KOH). The smooth round cylindrical morphologies of the synthesized microcrystals of Co-doped ZnO show an increase in absorption with the cobalt doping. The antibacterial activity of the as-obtained Co-doped ZnO-MCs was tested against the bacterial strains of gram-negative (Escherichia coli, Klebsiella pneumonia) and gram-positive bacteria (Staphylococcus aureus, Streptococcus pyogenes) via the agar well diffusion method. The zones of inhibition (ZOI) for Co-doped ZnO-MCs against E. coli and K. pneumoniae were found to be 17 and 19 mm, and 15 and 16 mm against S. Aureus and S. pyogenes, respectively. The prepared Co-doped ZnO-MCs were thus established as a probable antibacterial agent against gram-negative bacterial strains.
  19. Rahim MA, Jan N, Khan S, Shah H, Madni A, Khan A, et al.
    Cancers (Basel), 2021 Feb 07;13(4).
    PMID: 33562376 DOI: 10.3390/cancers13040670
    The tumor-specific targeting of chemotherapeutic agents for specific necrosis of cancer cells without affecting the normal cells poses a great challenge for researchers and scientists. Though extensive research has been carried out to investigate chemotherapy-based targeted drug delivery, the identification of the most promising strategy capable of bypassing non-specific cytotoxicity is still a major concern. Recent advancements in the arena of onco-targeted therapies have enabled safe and effective tumor-specific localization through stimuli-responsive drug delivery systems. Owing to their promising characteristic features, stimuli-responsive drug delivery platforms have revolutionized the chemotherapy-based treatments with added benefits of enhanced bioavailability and selective cytotoxicity of cancer cells compared to the conventional modalities. The insensitivity of stimuli-responsive drug delivery platforms when exposed to normal cells prevents the release of cytotoxic drugs into the normal cells and therefore alleviates the off-target events associated with chemotherapy. Contrastingly, they showed amplified sensitivity and triggered release of chemotherapeutic payload when internalized into the tumor microenvironment causing maximum cytotoxic responses and the induction of cancer cell necrosis. This review focuses on the physical stimuli-responsive drug delivery systems and chemical stimuli-responsive drug delivery systems for triggered cancer chemotherapy through active and/or passive targeting. Moreover, the review also provided a brief insight into the molecular dynamic simulations associated with stimuli-based tumor targeting.
  20. Chahban M, Akodad M, Skalli A, Gueddari H, El Yousfi Y, Ait Hmeid H, et al.
    Environ Res, 2024 Mar 01;244:117939.
    PMID: 38128604 DOI: 10.1016/j.envres.2023.117939
    The Guerouaou aquifer investigation spanning 280 km2 in Ain Zohra yields promising outcomes, instilling optimism for regional water quality. These analyses were applied to 45 sampling instances from 43 wells, enabling a comprehensive water quality assessment. Groundwater conductivity ranged from medium to high, peaking at 18360 ms/cm2. The conductivity reveals insights about the groundwater's mineralization. Key physiochemical parameters fell within desirable thresholds, bolstering the positive perspective. HCO3- levels spanned 82-420 mg/L, while chloride content ranged from 38 to 5316 mg/L, benefiting water quality. NO3- ions, vital for gauging pollution, ranged from 0 to 260 mg/L, indicating favorable results. Cation concentrations exhibited encouraging variations: Ca2+- 24 to 647 mg/L, Mg2+- 12 to 440 mg/L, Na+- 18 to 2722 mg/L, K+- 1.75 to 28.65 mg/L. These collectively favor water quality. Halite breakdown dominated mineralization, as evidenced by the prevalence of Na-Cl-Na-SO4 facies. Water resource management and local communities need effective management and mitigation strategies to prevent saltwater intrusion.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links