APPROACH: This study was carried out to evaluate the cytotoxicity of triphenyltin(lV) methylisopropyldithiocarbamate (compound 1) and triphenyltin(IV) ethylisopropyldithiocarbamate (compound (2) on chronic myelogenus leukemia cells. The determination of their cytotoxicity (IC50) at different time of exposure and concentration was carried out through the employment of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay.
RESULTS: The IC50 values obtained for compound 1 and 2 following treatment at 24, 48 and 72 h were 0.660, 0.223, 0.370 microM and 0.677, 0.306, 0.360 microM, respectively. Cell morphological changes such as apoptotic and necrotic features were also been observed.
CONCLUSION: The compounds tested were found to give cytotoxic effect against chronic myelogenus leukemia (K-562) cell at a micromolar dose. Thus, further study on their specific mechanism of actions in the human cells should be carried out to elucidate their potential as an anticancer agent.
MATERIALS AND METHODS: In the present study, the anticancer effects and the mechanisms of action of 17βH-neriifolin (cardiac glycoside) were evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and a proteomic approach in treated and non-treated SKOV-3 ovarian cancer cells.
RESULTS: 17βH-neriifolin was found to be active with IC50 values of 0.01 ± 0.001 in SKOV-3 ovarian cancer cell line, as evaluated by the sulforhodamine B (SRB) assay. RESULTS from TUNEL assay indicated that 17βH-neriifolin caused apoptosis in SKOV-3 cells in a dose-dependent manner. Based on differential analysis of treated and non-treated SKOV-3 two-dimensional electrophoresis (2-DE) profiles, four proteins, namely vimentin (VIM), pyruvate kinase, muscle (PKM), heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) and transgelin (TAGLN1) were identified to be involved in apoptosis. Other proteins including piggybac transposable element derived 5 (PGBD5), DENN/MADD domain containing 2D (DENND2D) and formin-like 1(FMNL) have also been identified to be associated in SKOV-3 cell death induced by 17βH-neriifolin.
CONCLUSION: These findings may provide new insights on the potential of 17βH-neriifolin's mechanism of action in killing ovarian cancer cells.