Displaying publications 201 - 220 of 450 in total

Abstract:
Sort:
  1. Shamsul, B.S., Zakirah, M.
    MyJurnal
    The main objective of this study is to determine the association between respirable hexavalent chromium compounds with urinary β2-microglobulin levels among welders in an automotive components manufacturing plant. 49 welders and 39 workers involved in stamping process were selected as the exposed and the comparative group. β2-microglobulin is a protein renal tubular dysfunction marker that can indicate renal dysfunction caused by heavy metal. Air samples of worker’s breathing zone were collected using personal air sampling pump and filter papers. Filter papers were then diluted and analysed with Atomic Absorption Spectrophotometry (AAS). Workers’ urine samples were collected at the end of 8-hour work shift and analysed with β2-microglobulin ELISA Kit (IBL-Hamburg) and a microtiter reader. Meanwhile, creatinine levels were analysed with creatinine test strips and Reflotron®. A mean concentration of respirable hexavalent chromium compounds in air for the exposed group was 0.135 ± 0.043μg/m3 while for the non-exposed group was 0.124 ± 0.029μg/m3. The mean level of urinary β2-microglobulin per creatinine for the exposed group was 84.996 ± 39.246μg/g while that of the comparative group was 61.365 ± 21.609μg/g. The concentrations of respirable hexavalent chromium compounds were higher in the exposed group compared to the comparative group (Z=-2.444, p=0.015). β2-microglobulin level was also higher in the exposed group compared to the non-exposed group (t=3.821, p=
    Matched MeSH terms: Metals, Heavy
  2. Irwandi, J., Farida, O.
    MyJurnal
    A study was conducted to quantitate the concentrations of heavy metals, such as Hg, Pb and Cd in eight species of marine fin fish caught off the coast of Langkawi Island in Malaysia, as well as in its waters. The same fish were also used to determine the content of nutritional minerals, such as copper (Cu), zinc (Zn), calcium (Ca), and manganese (Mn).Fish and water samples were collected from four different areas, namely (1) Main Jetty Pulau Tuba (MJPT), (2) Teluk Cempedak Jetty (TCJ), (3) Simpang Tiga Chian Lian (STCL) and (4) Main Jetty Kuah (MJK) around Langkawi Island. Results showed that for the vital elements, all species had higher concentration of Zn compared to other elements. For the toxic elements, lead (Pb) and mercury (Hg) were found to have lower concentration of the mean values than the permissible limits set by FAO/WHO (1984). However, cadmium (Cd) level was slightly higher than the permissible limit but was still acceptable according to the Malaysian Food Regulation (1985). It can be concluded that all fish species studied are safe to be consumed.
    Matched MeSH terms: Metals, Heavy
  3. Sabullah, M.K., Ahmad, S.A., Shukor, M.Y., Gansau, A.J., Syed, M.A., Sulaiman, M.R., et al.
    MyJurnal
    Due to the latest industrial development, many dangerous chemicals have been released directly or indirectly which resulted in the polluted water bodies. Water rehabilitation is an alternative way to restore the quality of water, followed by the environmental management to control the waste discharge to ensure the balance of the degradation rates or detoxifying by environmental factors. However, this process consumed a lot of time and cost. Besides, most of the metal ions, especially copper which is capable to bioaccumulate in aquatic organism and at the elevated level may cause physiological and biochemical alteration which leads to mortality. Environmental monitoring is the initial step presupposed evaluating the potential toxicity of effluent gushing at its purpose to discharge, avoiding the determining effects of contaminant in water bodies. Due to the high sensitivity of the aquatic life towards dissolving toxicant, the fish has been utilized as the biological measurement (Biomarker) to indicate the existence of toxicant exposure and/or the impact towards the evaluation of molecular, cellular to physiological level. Thus, this paper gives an overview of the manipulation of fish as a biomarker of heavy metals through behavior response, hepatocyte alteration, enzymatic reaction and proteomic studies which have proven to be very useful in the environmental pollution monitoring.
    Matched MeSH terms: Metals, Heavy
  4. Hu J, Yew CT, Chen X, Feng S, Yang Q, Wang S, et al.
    Talanta, 2017 Apr 01;165:419-428.
    PMID: 28153277 DOI: 10.1016/j.talanta.2016.12.086
    The identification and quantification of chemicals play a vital role in evaluation and surveillance of environmental health and safety. However, current techniques usually depend on costly equipment, professional staff, and/or essential infrastructure, limiting their accessibility. In this work, we develop paper-based capacitive sensors (PCSs) that allow simple, rapid identification and quantification of various chemicals from microliter size samples with the aid of a handheld multimeter. PCSs are low-cost parallel-plate capacitors (~$0.01 per sensor) assembled from layers of aluminum foil and filter paper via double-sided tape. The developed PCSs can identify different kinds of fluids (e.g., organic chemicals) and quantify diverse concentrations of substances (e.g., heavy metal ions) based on differences in dielectric properties, including capacitance, frequency spectrum, and dielectric loss tangent. The PCS-based method enables chemical identification and quantification to take place much cheaply, simply, and quickly at the point-of-care (POC), holding great promise for environmental monitoring in resource-limited settings.
    Matched MeSH terms: Metals, Heavy
  5. Logroño W, Pérez M, Urquizo G, Kadier A, Echeverría M, Recalde C, et al.
    Chemosphere, 2017 Mar 01;176:378-388.
    PMID: 28278426 DOI: 10.1016/j.chemosphere.2017.02.099
    An air exposed single-chamber microbial fuel cell (SCMFC) using microalgal biocathodes was designed. The reactors were tested for the simultaneous biodegradation of real dye textile wastewater (RTW) and the generation of bioelectricity. The results of digital image processing revealed a maximum coverage area on the biocathodes by microalgal cells of 42%. The atmospheric and diffused CO2 could enable good algal growth and its immobilized operation on the cathode electrode. The biocathode-SCMFCs outperformed an open circuit voltage (OCV), which was 18%-43% higher than the control. Furthermore, the maximum volumetric power density achieved was 123.2 ± 27.5 mW m(-3). The system was suitable for the treatment of RTW and the removal/decrease of COD, colour and heavy metals. High removal efficiencies were observed in the SCMFCs for Zn (98%) and COD (92-98%), but the removal efficiencies were considerably lower for Cr (54-80%). We observed that this single chamber MFC simplifies a double chamber system. The bioelectrochemical performance was relatively low, but the treatment capacity of the system seems encouraging in contrast to previous studies. A proof-of-concept experiment demonstrated that the microalgal biocathode could operate in air exposed conditions, seems to be a promising alternative to a Pt cathode and is an efficient and cost-effective approach to improve the performance of single chamber MFCs.
    Matched MeSH terms: Metals, Heavy
  6. Zafira Madzin, Faradiella Mohd Kusin, Mohd Shakirin Md Zahar, Siti Nurjaliah Muhammad
    MyJurnal
    The contamination of water bodies from heavy metals, either from natural sources or
    anthropogenic sources, has become a major concern to the public. Industrial activities with improper
    water treatment, and then leach into the water body, have become contaminated and harmful to
    consume. Passive remediation is one of the treatments introduced to counter this problem as it is a low
    cost but effective technique. After being widely acknowledged and through research conducted, the
    most suitable remediation technique found is the permeable reactive barriers (PRBs). PRB is defined
    as an in situ permeable treatment zone filled with reactive materials, designed to intercept and
    remediate a contaminant plume under natural hydraulic gradients. There have been many findings
    made from PRB which can be used to remove contaminants such as heavy metal, chlorinated solvents,
    carbonates and aromatic hydrocarbons. The most crucial criteria in making a successful PRB is the
    reactive media used to remove contaminants. The current paper presents an overview of the PRB
    selective medias that have been used and also the unresolved issue on the long term performance of
    PRB. The overall methodology for the application of PRB at a given site is also discussed in this
    paper. This inexpensive but effective technique is crucial as a sustainable technology in order to treat
    the drainage before it enters water tables to prevent water pollution and can be used as an alternative
    raw water source.
    Matched MeSH terms: Metals, Heavy
  7. Mohamed Hasnain Isa, Shamsul Rahman Mohamed Kutty, Sri Rahayu Mohd Hussin, Nurhidayati Mat Daud, Amirhossein Malakahmad
    MyJurnal
    The presence of heavy metals in aquatic systems has become a serious problem. Heavy metals can haveadverse effects on the environment as well as on human health. As a result, much attention has beengiven to new technologies for removal of heavy metal ions from contaminated waters. In this study,Microwave Incinerated Rice Husk Ash (MIRHA), a locally available agricultural waste, was used for theremoval of Cd (as a representative heavy metal) from synthetic wastewater by batch adsorption process.The effects of pH, initial metal concentration, and contact time on Cd removal efficiency were studied.pH 4 was found to be the optimum. The removal efficiency was found to be correlated with the initialmetal concentration and contact time between adsorbent and adsorbate. Cd adsorption kinetics followedthe pseudo-second-order model and implied chemisorption. The adsorption equilibrium of Cd can bewell described by the Freundlich isotherm model.
    Matched MeSH terms: Metals, Heavy
  8. Mashitah Mat Don, Yus Azila Yahaya, Bhatia, Subhash
    MyJurnal
    The removal of heavy metals like lead, copper and cadmium from wastewater streams is an important environmental issue. The capability of immobilized Pycnoporus sanguineus (P. sanguineus), a white-rot macrofungi to remove heavy metals from aqueous solution in a packed bed column was investigated. Lead (Pb (II)) biosorption by immobilized cells of P. sanguineus was investigated in a packed bed column. The experiments were carried out by considering the effect of bed height (5-13 cm), flow rate (4-12 ml min-1) and initial lead (II) concentration (50-300 mg L-1). The breakthrough profiles showed that the saturation of metal ions was achieved faster for 5 cm bed height and 12 ml min-1 influent flow rate. However, the breakthrough time decreased as the initial metal concentration increased from 50 to 300 mg L-1. The column was regenerated using 0.1M HCl solution and biosorptiondesorption studies were carried out for 2 cycles. The results showed that the breakthrough time decreased as the number of cycle was proceeded.
    Matched MeSH terms: Metals, Heavy
  9. Lee, K.Y., Ho, L.Y., Tan, K.H., Tham, Y.Y., Ling, S.P., Qureshi, A.M., et al.
    MyJurnal
    In the perspective of recent bauxite mining in Malaysia, this review aims to identify the potential
    environmental and health impacts on miners and surrounding communities. The environmental issues of
    bauxite mining include, air, water and soil pollution due to bauxite dust; leaching of bauxite into water
    sources resulting in reduced soil fertility as well as affecting agricultural food products and aquatic life.
    Bauxite occupational exposure affects the health of miners, and has negative consequences on the health of
    surrounding communities, such as increased respiratory symptoms, contamination of drinking water, other
    potential health risks from ingestion of bauxite and heavy metals, including noise-induced hearing loss and
    mental stress. This review discusses the processes of bauxite mining, its constituents and residual trace
    elements, and their impact on the environment and health of exposed workers and communities. It also
    explores the Malaysian legal requirements and standards of occupational exposure to bauxite.
    Matched MeSH terms: Metals, Heavy
  10. Octavianti, F., Jaswir, I.
    MyJurnal
    This paper discusses effects of metal toxicity and environment on health and followed by a study report on mineral and heavy metal contents of fish conducted in Malaysia as an example. Fish, a part of being a good source of digestible protein vitamins, minerals and polyunsaturated fatty acids (PUFAs), are also an important source of heavy metals. Some of the metals found in the fish might be essential as they play important role in biological system of the fish as well as in human being, some of them may also be toxic as might cause a serious damage in human health even in trace amount at a certain limit. A comprehensive study was conducted to fishes collected in Langkawi Island, a popular tourist destination in Malaysia and the overall findings revealed that from the human health point of view, the fin is a type offish found in the coastal areas of the island are safe for the consumption. The mineral and heavy metal contents are within the allowable limit of consumption.
    Matched MeSH terms: Metals, Heavy
  11. Moradihamedani P, Abdullah AH
    Water Sci Technol, 2017 May;75(10):2422-2433.
    PMID: 28541950 DOI: 10.2166/wst.2017.122
    Neat cellulose acetate (CA) and CA/polysulfone (PSf) blend ultrafiltration membranes in the presence of polyvinylpyrrolidone as a pore former were prepared via a phase inversion technique. The prepared membranes were characterized by Fourier transform infrared, scanning electron microscopy, mechanical strength, water content, porosity, permeate flux and heavy metals (Pb2+, Cd2+, Zn2+ and Ni2+) rejection to comprehend the impact of polymer blend composition and additive on the properties of the modified membranes. The water flux expanded by increasing of PSf content in the polymer composition. CA/PSf (60/40) had the highest flux among prepared membranes. Prepared blend membranes were able to remove heavy metals from water in the following order: Pb2+ > Cd2+ > Zn2+ > Ni2+. The CA/PSf (80/20) blend membrane had great performance among prepared membranes due to the high heavy metals removal and permeate flux.
    Matched MeSH terms: Metals, Heavy
  12. Ashraf A, Saion E, Gharibshahi E, Kamari HM, Yap CK, Hamzah MS, et al.
    Appl Radiat Isot, 2017 Apr;122:96-105.
    PMID: 28129589 DOI: 10.1016/j.apradiso.2017.01.006
    A study was carried out on the distribution and enrichment of trace elements in the core marine sediments of East Malaysia from three stations at South China Sea and one station each at Sulu Sea and Sulawesi Sea. Five stations of sediment cores were recovered and the vertical concentration profiles of six elements namely Br, Cs, Hf, Rb, Ta, and V were determined using the instrumental neutron activation analysis. The enrichment factor, geoaccumulation index and the modified degree of contamination were used to calculate the anthropogenic and pollution status of the elements in the samples. Except for Cs and Hf, which by the enrichment factor are categorized from minimum enrichment to moderate enrichment in all stations and for V and Rb in Sulu Sea and Sulawesi Sea, which are categorized minimum enrichment, other elements are found to be no enrichment at all stations. The geoaccumulation index of Hf in one station shows moderately polluted and for other elements are unpolluted. However, the modified degree values of all samples are less than 1, suggesting very low contamination of elements found in all the stations.
    Matched MeSH terms: Metals, Heavy
  13. Elias MS, Ibrahim S, Samuding K, Rahman SA, Wo YM
    MethodsX, 2018;5:454-465.
    PMID: 30090704 DOI: 10.1016/j.mex.2018.05.001
    Fourteen sediment samples were collected along Linggi River, Malaysia. Neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS) techniques were used in the determination of toxic element contents. The results showed that As, Cd and Sb concentrations were higher at all sampling stations, with enrichment factor values ranging from 17.7 to 75.0, 2.1 to 19.5 and 6.6 to 28.4, respectively. Elements of Pb and Zn) were also enriched at most of the sampling stations whilst Cu, Cr and Ni were shown as background levels. The sediment of Linggi River can be categorised as low (<8.0) to very high degree of contamination (>32.0). The mean concentrations of elements viz. Cd, Cr, Ni, Pb, Sb and Zn were lower than the threshold effect level (TEL) of FSQGs values except for As. The concentration of As (arsenic) was higher than PEL and PEC of FSQGs values.
    Matched MeSH terms: Metals, Heavy
  14. Halmi, M.I.E., Khayat, M.E., Rahman, M.F.A., Gunasekaran, B., Masdor, N.A.
    MyJurnal
    In this work, a temporal monitoring work for heavy metals from an effluent discharge point in
    the Juru Industrial Estate was carried out using the protease extracted from garlic (Allium
    sativum) as the principal bioassay system. casein-Coomassie-dye binding assay method has
    utilized this purpose. The periodic sampling results for one day of a location in the Juru
    Industrial Estate showed temporal variation of copper concentration coinciding with garlic
    protease inhibition with the highest concentrations of copper occurring between 12.00 and 16.00
    hours of between 3 and 3.5 mg/L copper. The crude proteases extracted from Allium sativum
    successfully detect temporal variation of copper form this location. In conclusion, this assay
    method has the potential to be a rapid, sensitive, and economic inhibitive assay for the largescale
    biomonitoring works for the heavy metal copper from this area.
    Matched MeSH terms: Metals, Heavy
  15. Abo-Shakeer, L.K.A., Yakasai, M.H., Rahman, M.F., Syed, M.A., Bakar, N.A., Othman, A.R.
    MyJurnal
    Molybdenum is an emerging pollutant. Bioremediation of this heavy metal is possible by the
    mediation of Mo-reducing bacteria. These bacteria contain the Mo-reducing enzymes that can
    conver toxic soluble molybdenum into molybdenum blue; a less soluble and less toxic form of the
    metal. To date only the enzyme has been purified from only one bacterium. The aim of this study is
    to purify the Mo-reducing enzyme from a previously isolated Mo-reducing bacterium Bacillus
    pumilus strain Lbna using ammonium sulphate fractionation followed by ion exchange and then
    gel filtration. Two clear bands were obtained after the gel filtration step with molecular weights
    of 70 and 100 kDa. This indicates that further additional purification methods need to be used
    to get a purified fraction. Hence, additional steps of chromatography such as hydroxyapatite or
    chromatofocusing techniques can be applied in the future.
    Matched MeSH terms: Metals, Heavy
  16. Zulkifli, A.F., Tham, L.G., Perumal, N., Azzeme, A., Shukor, M.Y., Shaharuddin, N.A., et al.
    MyJurnal
    Acetylcholinesterase (AChE) is usually used as an inhibitive assay for insecticides. A lesser
    known property of AChE is its inhibition by heavy metals. In this work we evaluate an AChE
    from brains of striped snakehead (Channa striatus) wastes from aquaculture industry as an
    inhibitive assay for heavy metals. We discovered that the AChE was inhibited almost completely
    by Hg2+, Ag2+ and Cu2+ during an initial screening. When tested at various concentrations, the
    heavy metals exhibited exponential decay type inhibition curves. The calculated IC50 for the
    heavy metals Hg2+, Ag2+, Pb2+, Cu2+ and Cr6+ were 0.08432, 0.1008, 0.1255, 0.0871, and 0.1771,
    respectively. The IC50 for these heavy metals are comparable and some are lower than the IC50
    values from the cholinesterases from previously studied fish. The assay can be carried out in less
    than 30 minutes at ambient temperature.
    Matched MeSH terms: Metals, Heavy
  17. Aisami Abubakar, Mohd Yunus Shukor
    MyJurnal
    Environmental pollution is one of the major concerns in the 21st century; where billions of tonnes
    of harmful chemicals are produced by industries such as petroleum, paints, food, rubber, and
    plastic. Phenol and its derivatives infiltrate the ecosystems and have become one of the top major
    pollutants worldwide. This review covers the major aspects of immobilization of phenoldegrading
    bacteria as a method to improve phenol bioremediation. The use of various forms of
    immobilization matrices is discussed along with the advantages and disadvantages of each of the
    immobilization matrices especially when environmental usage is warranted. To be used as a
    bioremediation tool, the immobilized system must not only be effective, but the matrices must be
    non-toxic, non-polluting and if possible non-biodegradable. The mechanical, biological and
    chemical stability of the system is paramount for long-term activity as well as price is an
    important factor when the very large scale is a concern. The system must also be able to tolerate
    high concentration of other toxicants especially heavy metals that form as co-contaminants, and
    most immobilized systems are geared towards this last aspect as immobilization provides
    protection from other contaminants.
    Matched MeSH terms: Metals, Heavy
  18. Abubakar M. Umar, Tham, Lik Gin, Natarajan Perumal, Nur Adeela Yasid, Hassan Mohd Daud, Mohd Yunus Shukor
    MyJurnal
    Acetylcholinesterase (AChE) is usually used as an inhibitive assay for insecticides. A lesserknown
    property of AChE is its inhibition by heavy metals. In this work, we evaluate an AChE
    from brains of Clarias batrachus (catfish) exposed to wastes from aquaculture industry as an
    inhibitive assay for heavy metals. We discovered that the AChE was inhibited completely by
    Hg2+, Ag2+, Pb2+, Cu2+, Cd2+, Cr6+ and Zn2+ during initial screening. When tested at various
    concentrations, the heavy metals exhibited exponential decay type inhibition curves. The
    calculated IC50 (mg/L) for the heavy metals Ag2+, Cu2+, Hg2+, Cr6+ and Cd2+ were 0.088, 0.078,
    0.071, 0.87 and 0.913, respectively. The IC50 for these heavy metals are comparable, and some
    are lower than the IC50 values from the cholinesterases from previously studied fish. The assay
    can be carried out in less than 30 minutes at ambient temperature.
    Matched MeSH terms: Metals, Heavy
  19. Jumat Salimon, Maimunah Sulaiman
    Sains Malaysiana, 1997;26(1):61-68.
    A study of the heavy metal bio-accumulation by fresh water fish, Tilapia nilotica around Lohan Dam was carried out in aquarium system. The study showed that the fish tissues cultured in contaminated water samples, (location S3 and 54) contain higher heavy metals concentration compared with the fish cultured in uncontaminated water samples (S1 and S2). The concentrations of Fe, Zn, Mn, Cu, Ni and Cr in fish tissues are higher compared with those of Co, Cd and Pb. The bio-accumulation rates of Zn, Mn, Cu, Ni and Co are 25 times higher than those of the base levels and 10 times higher than those of the controls. The heavy metal bio-accumulation order in T. nilotica is as follows: Mn> Cu> Cr> Ni> Co> Zn> Pb> Cd> Fe. The heavy metal intakes by fish during the experimental period did not exceed the level concentration levels.
    Kajian bioakumulasi logam berat oleh ikan air tawar, Tilapia nilotica di perairan sekitar Empangan Lohan dilakukan dengan kaedah ternakan akuarium. Hasil kajian menunjukkan tisu ikan yang diternak dalam sampel air tercemar (lokasi S3 dan S4) mengandungi logam berat yang lebih tinggi dari tisu ikan yang diternak dalam sampel air tidak tercemar (lokasi S1 dan S2). Kepekatan logam berat seperti Fe, Zn, Mn, Cu, Ni dan Cr didapati tinggi dalam tisu ikan berbanding dengan kepekatan Co, Cd dan Pb. Kadar bioakumulasi logam berat daIam ikan didapati tinggi bagi Zn, Mn, Cu, Ni dan Co yang masing-masing melebihi 25 kali ganda dari paras asal dan lebih 10 kali ganda dari paras kawalan. Siri bioakumulasi logam berat yang dikaji dalam ikan T. nilotica menurut urutan; Mn> Cu> Cr> Ni> Co> Zn> Pb> Cd> Fe. Kepekatan logam berat yang dapat diambil oleh ikan dalam masa kajian tidak mencapai nilai yang dapat menyebabkan kematian kepada ikan.
    Matched MeSH terms: Metals, Heavy
  20. Yap C
    Sains Malaysiana, 2012;41:389-394.
    In this study, heavy metal data (including four geochemical fractions) from offshore and intertidal sediments collected off the west coast of Peninsular Malaysia were analyzed using factor analysis. A similarity was found when comparing between offshore and intertidal sediments, where out of the 20 variables, five factors (resistant Cu, total Cu, resistant Pb, total Pb and total Zn) could be clearly selected on the basis of their high loadings as derived by factor analysis in both sediment sampling areas. However, the statistical outputs based on the present study using factor analysis cannot be practically acceptable mainly because the resistant fractions are not of anthropogenic origins and ecotoxicologists are more concern on the anthropogenic ones. Only a modification using a specific normalizing agent such as the nonresistant fraction, should be tested to show feasibility of the contribution of anthropogenic sources in the two sampling areas. However, a more comprehensive metal monitoring data should be compiled to complement the results obtainable from factor analysis, before a valid Malaysian Marine Sediment Pollution Index or Sediment Quality Guidelines, can be proposed to be established.
    Matched MeSH terms: Metals, Heavy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links