Displaying publications 201 - 220 of 262 in total

Abstract:
Sort:
  1. Thayale Purayil F, Rajashekar B, S Kurup S, Cheruth AJ, Subramaniam S, Hassan Tawfik N, et al.
    Genes (Basel), 2020 06 10;11(6).
    PMID: 32531994 DOI: 10.3390/genes11060640
    Haloxylon persicum is an endangered western Asiatic desert plant species, which survives under extreme environmental conditions. In this study, we focused on transcriptome analysis of H. persicum to understand the molecular mechanisms associated with drought tolerance. Two different periods of polyethylene glycol (PEG)-induced drought stress (48 h and 72 h) were imposed on H. persicum under in vitro conditions, which resulted in 18 million reads, subsequently assembled by de novo method with more than 8000 transcripts in each treatment. The N50 values were 1437, 1467, and 1524 for the control sample, 48 h samples, and 72 h samples, respectively. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis resulted in enrichment of mitogen-activated protein kinase (MAPK) and plant hormone signal transduction pathways under PEG-induced drought conditions. The differential gene expression analysis (DGEs) revealed significant changes in the expression pattern between the control and the treated samples. The KEGG analysis resulted in mapping transcripts with 138 different pathways reported in plants. The differential expression of drought-responsive transcription factors depicts the possible signaling cascades involved in drought tolerance. The present study provides greater insight into the fundamental transcriptome reprogramming of desert plants under drought.
    Matched MeSH terms: Transcription Factors/genetics
  2. Ng CK, How KY, Tee KK, Chan KG
    Genes (Basel), 2019 04 08;10(4).
    PMID: 30965610 DOI: 10.3390/genes10040282
    Quorum sensing (QS) is a cell-to-cell communication system that uses autoinducers as signaling molecules to enable inter-species and intra-species interactions in response to external stimuli according to the population density. QS allows bacteria such as Acinetobacter baumannii to react rapidly in response to environmental changes and hence, increase the chances of survival. A. baumannii is one of the causative agents in hospital-acquired infections and the number of cases has increased remarkably in the past decade. In this study, A. baumannii strain 863, a multidrug-resistant pathogen, was found to exhibit QS activity by producing N-acyl homoserine lactone. We identified the autoinducer synthase gene, which we named abaI, by performing whole genome sequencing analysis of A. baumannii strain 863. Using high resolution tandem triple quadrupole mass spectrometry, we reported that abaI of A. baumannii strain 863 produced 3-hydroxy-dodecanoyl-homoserine lactone. A gene deletion mutant was constructed, which confirmed the functionality of abaI. A growth defect was observed in the QS-deficient mutant strain. Transcriptome profiling was performed to determine the possible genes regulated by QS. Four groups of genes that showed differential expression were discovered, namely those involved in carbon source metabolism, energy production, stress response and the translation process.
    Matched MeSH terms: Transcription Factors/genetics*
  3. Chan PL, Rose RJ, Abdul Murad AM, Zainal Z, Ong PW, Ooi LC, et al.
    Plant Cell Rep, 2020 Nov;39(11):1395-1413.
    PMID: 32734510 DOI: 10.1007/s00299-020-02571-7
    KEY MESSAGE: Transcript profiling during the early induction phase of oil palm tissue culture and RNAi studies in a model somatic embryogenesis system showed that EgENOD93 expression is essential for somatic embryogenesis. Micropropagation of oil palm through tissue culture is vital for the generation of superior and uniform elite planting materials. Studies were carried out to identify genes to distinguish between leaf explants with the potential to develop into embryogenic or non-embryogenic callus. Oil palm cDNA microarrays were co-hybridized with cDNA probes of reference tissue, separately with embryo forming (media T527) and non-embryo (media T694) forming leaf explants sampled at Day 7, Day 14 and Day 21. Analysis of the normalized datasets has identified 77, 115 and 127 significantly differentially expressed genes at Day 7, Day 14, and Day 21, respectively. An early nodulin 93 protein gene (ENOD93), was highly expressed at Day 7, Day 14, and Day 21 and in callus (media T527), as assessed by RT-qPCR. Validation of EgENOD93 across tissue culture lines of different genetic background and media composition showed the potential of this gene as an embryogenic marker. In situ RNA hybridization and functional characterization in Medicago truncatula provided additional evidence that ENOD93 is essential for somatic embryogenesis. This study supports the suitability of EgENOD93 as a marker to predict the potential of leaf explants to produce embryogenic callus. Crosstalk among stresses, auxin, and Nod-factor like signalling molecules likely induces the expression of EgENOD93 for embryogenic callus formation.
    Matched MeSH terms: Transcription Factors/genetics
  4. Lai MI, Wendy-Yeo WY, Ramasamy R, Nordin N, Rosli R, Veerakumarasivam A, et al.
    J Assist Reprod Genet, 2011 Apr;28(4):291-301.
    PMID: 21384252 DOI: 10.1007/s10815-011-9552-6
    Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells has emerged as an invaluable method for generating patient-specific stem cells of any lineage without the use of embryonic materials. Following the first reported generation of iPS cells from murine fibroblasts using retroviral transduction of a defined set of transcription factors, various new strategies have been developed to improve and refine the reprogramming technology. Recent developments provide optimism that the generation of safe iPS cells without any genomic modification could be derived in the near future for the use in clinical settings. This review summarizes current and evolving strategies in the generation of iPS cells, including types of somatic cells for reprogramming, variations of reprogramming genes, reprogramming methods, and how the advancement iPS cells technology can lead to the future success of reproductive medicine.
    Matched MeSH terms: Transcription Factors/genetics
  5. Kang IN, Musa M, Harun F, Junit SM
    Biochem Genet, 2010 Feb;48(1-2):141-51.
    PMID: 20094846 DOI: 10.1007/s10528-009-9306-7
    The FOXE1 gene was screened for mutations in a cohort of 34 unrelated patients with congenital hypothyroidism, 14 of whom had thyroid dysgenesis and 18 were normal (the thyroid status for 2 patients was unknown). The entire coding region of the FOXE1 gene was PCR-amplified, then analyzed using single-stranded conformational polymorphism, followed by confirmation by direct DNA sequencing. DNA sequencing analysis revealed a heterozygous A>G transition at nucleotide position 394 in one of the patients. The nucleotide transition changed asparagine to aspartate at codon 132 in the highly conserved region of the forkhead DNA binding domain of the FOXE1 gene. This mutation was not detected in a total of 104 normal healthy individuals screened. The binding ability of the mutant FOXE1 protein to the human thyroperoxidase (TPO) promoter was slightly reduced compared with the wild-type FOXE1. The mutation also caused a 5% loss of TPO transcriptional activity.
    Matched MeSH terms: Forkhead Transcription Factors/genetics*
  6. Bitrus AA, Zunita Z, Bejo SK, Othman S, Nadzir NA
    BMC Microbiol, 2017 04 04;17(1):83.
    PMID: 28376716 DOI: 10.1186/s12866-017-0994-6
    BACKGROUND: Staphylococcus aureus more than any other human pathogen is a better model for the study of the adaptive evolution of bacterial resistance to antibiotics, as it has demonstrated a remarkable ability in its response to new antibiotics. This study was designed to investigate the in vitro transfer of mecA gene from methicillin resistant S. aureus to methicillin susceptible S. aureus.

    RESULT: The recipient transconjugants were resistant to erythromycin, cefpodoxime and were mecA positive. PCR amplification of mecA after mix culture plating on Luria Bertani agar containing 100 μg/mL showed that 75% of the donor and 58.3% of the recipient transconjugants were mecA positive. Additionally, 61.5% of both the donor cells and recipient transconjugants were mecA positive, while 46.2% and 41.75% of both donor and recipient transconjugants were mecA positive on LB agar containing 50 μg/mL and 30 μg/mL respectively.

    CONCLUSION: In this study, the direction of transfer of phenotypic resistance as well as mecA was observed to have occurred from the donor to the recipient strains. This study affirmed the importance of horizontal transfer events in the dissemination of antibiotics resistance among different strains of MRSA.

    Matched MeSH terms: Transcription Factors/genetics
  7. Yip WK, Abdullah MA, Yusoff SM, Seow HF
    Clin Exp Immunol, 2009 Mar;155(3):412-22.
    PMID: 19220831 DOI: 10.1111/j.1365-2249.2008.03793.x
    The pathological significance of the mechanisms of tumour immune-evasion and/or immunosuppression, such as loss of T cell signalling and increase in regulatory T cells (T(regs)), has not been well established in the nasopharyngeal carcinoma (NPC) microenvironment. To evaluate the T(reg) immunophenotypes in tumour-infiltrating lymphocytes (TILs), we performed a double-enzymatic immunostaining for detection of forkhead box P3 (FoxP3) and other markers including CD4, CD8, and CD25 on 64 NPC and 36 non-malignant nasopharyngeal (NP) paraffin-embedded tissues. Expression of CD3 zeta and CD3 epsilon was also determined. The prevalence of CD4(+)FoxP3(+) cells in CD4(+) T cells and the ratio of FoxP3(+)/CD8(+) were increased significantly in NPC compared with those in NP tissues (P < 0.001 and P = 0.025 respectively). Moreover, the ratio of FoxP3(+)/CD25(+)FoxP3(-) in NPC was significantly lower than that in NP tissues (P = 0.005), suggesting an imbalance favouring activated phenotype of T cells in NPC. A significant negative correlation between the abundance of FoxP3(+) and CD25(+)FoxP3(-) cells (P < 0.001) was also identified. When histological types of NPC were considered, a lower ratio of FoxP3(+)/CD25(+)FoxP3(-) was found in non-keratinizing and undifferentiated carcinomas. Increased CD4(+)FoxP3(+)/CD4(+) proportion and FoxP3(+)/CD8(+) ratio were associated with keratinizing squamous cell carcinoma. A reduced expression of CD3 zeta in TILs was found in 20.6% of the NPC tissues but none of the NP tissues. These data provide evidence for the imbalances of T(reg) and effector T cell phenotypes and down-regulation of signal-transducing molecules in TILs, supporting their role in suppression of immune response and immune evasion of NPC.
    Matched MeSH terms: Forkhead Transcription Factors/analysis
  8. Che Mat MF, Mohamad Hanif EA, Abdul Murad NA, Ibrahim K, Harun R, Jamal R
    Mol Biol Rep, 2021 Feb;48(2):1493-1503.
    PMID: 33590411 DOI: 10.1007/s11033-021-06144-z
    Despite the advancements in primary brain tumour diagnoses and treatments, the mortality rate remains high, particularly in glioblastoma (GBM). Chemoresistance, predominantly in recurrent cases, results in decreased mean survival of patients with GBM. We aimed to determine the chemosensitisation and oncogenic characteristics of zinc finger protein 36-like 2 (ZFP36L2) in LN18 GBM cells via RNA interference (RNAi) delivery. We conducted a meta-analysis of microarray datasets and RNAi screening using pooled small interference RNA (siRNA) to identify the druggable genes responsive to GBM chemosensitivity. Temozolomide-resistant LN18 cells were used to evaluate the effects of gene silencing on chemosensitisation to the sub-lethal dose (1/10 of the median inhibitory concentration [IC50]) of temozolomide. ZFP36L2 protein expression was detected by western blotting. Cell viability, proliferation, cell cycle and apoptosis assays were carried out using commercial kits. A human apoptosis array kit was used to determine the apoptosis pathway underlying chemosensitisation by siRNA against ZFP36L2 (siZFP36L2). Statistical analyses were performed using one-way analysis of variance; p > 0.05 was considered significant. The meta-analysis and RNAi screening identified ZFP36L2 as a potential marker of GBM. ZFP36L2 knockdown significantly induced apoptosis (p 
    Matched MeSH terms: Transcription Factors/genetics*
  9. Wang Y, Cheng C, Zhang Z, Wang J, Wang Y, Li X, et al.
    Am J Med Genet B Neuropsychiatr Genet, 2018 12;177(8):709-716.
    PMID: 30350918 DOI: 10.1002/ajmg.b.32675
    No biologically based diagnostic criteria are in clinical use today for obsessive-compulsive disorder (OCD), schizophrenia, and major depressive disorder (MDD), which are defined with reference to Diagnostic and Statistical Manual clinical symptoms alone. However, these disorders cannot always be well distinguished on clinical grounds and may also be comorbid. A biological blood-based dynamic genomic signature that can differentiate among OCD, MDD, and schizophrenia would therefore be of great utility. This study enrolled 77 patients with OCD, 67 controls with no psychiatric illness, 39 patients with MDD, and 40 with schizophrenia. An OCD-specific gene signature was identified using blood gene expression analysis to construct a predictive model of OCD that can differentiate this disorder from healthy controls, MDD, and schizophrenia using a logistic regression algorithm. To verify that the genes selected were not derived as a result of chance, the algorithm was tested twice. First, the algorithm was used to predict the cohort with true disease/control status and second, the algorithm predicted the cohort with disease/control status randomly reassigned (null set). A six-gene panel (COPS7A, FKBP1A, FIBP, TP73-AS1, SDF4, and GOLGA8A) discriminated patients with OCD from healthy controls, MDD, and schizophrenia in the training set (with an area under the receiver-operating-characteristic curve of 0.938; accuracy, 86%; sensitivity, 88%; and specificity, 85%). Our findings indicate that a blood transcriptomic signature can distinguish OCD from healthy controls, MDD, and schizophrenia. This finding further confirms the feasibility of using dynamic blood-based genomic signatures in psychiatric disorders and may provide a useful tool for clinical staff engaged in OCD diagnosis and decision making.
    Matched MeSH terms: Transcription Factors/genetics
  10. Ma RC, Hu C, Tam CH, Zhang R, Kwan P, Leung TF, et al.
    Diabetologia, 2013 Jun;56(6):1291-305.
    PMID: 23532257 DOI: 10.1007/s00125-013-2874-4
    AIMS/HYPOTHESIS: Most genetic variants identified for type 2 diabetes have been discovered in European populations. We performed genome-wide association studies (GWAS) in a Chinese population with the aim of identifying novel variants for type 2 diabetes in Asians.

    METHODS: We performed a meta-analysis of three GWAS comprising 684 patients with type 2 diabetes and 955 controls of Southern Han Chinese descent. We followed up the top signals in two independent Southern Han Chinese cohorts (totalling 10,383 cases and 6,974 controls), and performed in silico replication in multiple populations.

    RESULTS: We identified CDKN2A/B and four novel type 2 diabetes association signals with p 

    Matched MeSH terms: Paired Box Transcription Factors/genetics*
  11. Azmahani A, Nakamura Y, Ishida H, McNamara KM, Fujimura T, Haga T, et al.
    Hum Pathol, 2016 10;56:128-33.
    PMID: 27343835 DOI: 10.1016/j.humpath.2016.06.005
    Sex steroids have been postulated to influence skin development and functions as well as its pathogenesis. MCC occurs in both sexes; however, the specific differences in pathogenesis among sexes have yet to be conclusively defined. The detailed status of sex steroid receptors (AR, PRA and PRB, and ERα, ERβ) are also unknown in MCC patients. We first immunolocalized sex steroid receptors and compared the results with immunolocalization of relevant transcription factors including SOX2, FOXA1, and Bcl-2 and Ki-67 in 18 cases of MCCs. AR, PRA, PRB, ERα, ERβ, Bcl-2, SOX2, and FOXA1 immunoreactivity was evaluated by using the modified H score method, and Ki-67 was quantified using labeling index. ERβ immunoreactivity was markedly present in all the cases of MCC examined, with relatively weak immunoreactivity of ERα, AR, PRA, and PRB. The status of ERβ immunoreactivity was also significantly correlated with Ki-67 labeling index and Bcl-2 score. These results demonstrated that ERβ could be associated with regulation of both cell proliferation and apoptosis in MCCs.
    Matched MeSH terms: Transcription Factors/analysis
  12. Zhang L, Feng XK, Ng YK, Li SC
    BMC Genomics, 2016 Aug 18;17 Suppl 4:430.
    PMID: 27556418 DOI: 10.1186/s12864-016-2791-2
    BACKGROUND: Accurately identifying gene regulatory network is an important task in understanding in vivo biological activities. The inference of such networks is often accomplished through the use of gene expression data. Many methods have been developed to evaluate gene expression dependencies between transcription factor and its target genes, and some methods also eliminate transitive interactions. The regulatory (or edge) direction is undetermined if the target gene is also a transcription factor. Some methods predict the regulatory directions in the gene regulatory networks by locating the eQTL single nucleotide polymorphism, or by observing the gene expression changes when knocking out/down the candidate transcript factors; regrettably, these additional data are usually unavailable, especially for the samples deriving from human tissues.

    RESULTS: In this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data processing inequality by involving the dependency direction to distinguish between direct and transitive relationship between genes. We also define two types of important regulators which can influence a majority of the genes in the network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch of genes that are related to Alzheimer's disease; 2. ZNF329 and RB1 significantly regulate those 'mesenchymal' gene expression signature genes for brain tumors.

    CONCLUSION: By merely leveraging gene expression data, CBDN can efficiently infer the existence of gene-gene interactions as well as their regulatory directions. The constructed networks are helpful in the identification of important regulators for complex diseases.

    Matched MeSH terms: Transcription Factors/genetics
  13. Zhou J, Lam B, Neogi SG, Yeo GS, Azizan EA, Brown MJ
    Hypertension, 2016 12;68(6):1424-1431.
    PMID: 27777363
    Primary aldosteronism is present in ≈10% of hypertensives. We previously performed a microarray assay on aldosterone-producing adenomas and their paired zona glomerulosa and fasciculata. Confirmation of top genes validated the study design and functional experiments of zona glomerulosa selective genes established the role of the encoded proteins in aldosterone regulation. In this study, we further analyzed our microarray data using AmiGO 2 for gene ontology enrichment and Ingenuity Pathway Analysis to identify potential biological processes and canonical pathways involved in pathological and physiological aldosterone regulation. Genes differentially regulated in aldosterone-producing adenoma and zona glomerulosa were associated with steroid metabolic processes gene ontology terms. Terms related to the Wnt signaling pathway were enriched in zona glomerulosa only. Ingenuity Pathway Analysis showed "NRF2-mediated oxidative stress response pathway" and "LPS (lipopolysaccharide)/IL-1 (interleukin-1)-mediated inhibition of RXR (retinoid X receptor) function" were affected in both aldosterone-producing adenoma and zona glomerulosa with associated genes having up to 21- and 8-fold differences, respectively. Comparing KCNJ5-mutant aldosterone-producing adenoma, zona glomerulosa, and zona fasciculata samples with wild-type samples, 138, 56, and 59 genes were differentially expressed, respectively (fold-change >2; P<0.05). ACSS3, encoding the enzyme that synthesizes acetyl-CoA, was the top gene upregulated in KCNJ5-mutant aldosterone-producing adenoma compared with wild-type. NEFM, a gene highly upregulated in zona glomerulosa, was upregulated in KCNJ5 wild-type aldosterone-producing adenomas. NR4A2, the transcription factor for aldosterone synthase, was highly expressed in zona fasciculata adjacent to a KCNJ5-mutant aldosterone-producing adenoma. Further interrogation of these genes and pathways could potentially provide further insights into the pathology of primary aldosteronism.
    Matched MeSH terms: Transcription Factors/genetics*
  14. Phan MD, Nhu NTK, Achard MES, Forde BM, Hong KW, Chong TM, et al.
    J Antimicrob Chemother, 2017 10 01;72(10):2729-2736.
    PMID: 29091192 DOI: 10.1093/jac/dkx204
    Objectives: Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958.

    Methods: Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost.

    Results: A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B.

    Conclusions: This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli.

    Matched MeSH terms: Transcription Factors/genetics*
  15. Peh SC, Shaminie J, Poppema S, Kim LH
    Singapore Med J, 2003 Apr;44(4):185-91.
    PMID: 12952030
    Castleman's disease is an uncommon disease and the histopathogenesis is poorly understood. This study aims to investigate their clinicopathological and immunophenotypic profile.
    Matched MeSH terms: Transcription Factors/metabolism
  16. Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, et al.
    Nature, 2017 Nov 02;551(7678):92-94.
    PMID: 29059683 DOI: 10.1038/nature24284
    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P 
    Matched MeSH terms: Transcription Factors/metabolism
  17. Agarwal R, Agarwal P
    Exp Biol Med (Maywood), 2017 Feb;242(4):374-383.
    PMID: 27798117 DOI: 10.1177/1535370216675065
    Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses.
    Matched MeSH terms: Transcription Factors/metabolism
  18. Leong PP, Mohammad R, Ibrahim N, Ithnin H, Abdullah M, Davis WC, et al.
    Immunol Lett, 2006 Feb 15;102(2):229-36.
    PMID: 16246429
    Dysfunction of the host immune system in cancer patients can be due to a number of reasons including suppression of tumour associated antigen reactive lymphocytes by regulatory T (Treg) cells. In this study, we used flow cytometry to determine the phenotype and relative abundance of the tumour infiltrating lymphocytes (TILs) from 47 enzymatically dissociated tumour specimens from patients with infiltrating ductal carcinoma (IDC) of the breast. The expression of both effector and regulatory markers on the TILs were determined by using a panel of monoclonal antibodies. Analysis revealed CD8(+) T cells (23.4+/-2.1%) were predominant in TILs, followed by CD4(+) T cells (12.6+/-1.7%) and CD56(+) natural killer cells (6.4+/-0.7%). The CD4(+)/CD8(+) ratio was 0.8+/-0.9%. Of the CD8(+) cells, there was a higher number (68.4+/-3.5%) that expressed the effector phenotype, namely, CD8(+)CD28(+) and about 46% of this subset expressed the activation marker, CD25. Thus, a lower number of infiltrating CD8(+) T cells (31.6+/-2.8%) expressed the marker for the suppressor phenotype, CD8(+)CD28(-). Of the CD4(+) T cells, 59.6+/-3.9% expressed the marker for the regulatory phenotype, CD4(+)CD25(+). About 43.6+/-3.8% CD4(+)CD25(+) subset co-expressed both the CD152 and FOXP3, the Treg-associated molecules. A positive correlation was found between the presence of CD4(+)CD25(+) subset and age (> or =50 years old) (r=0.51; p=0.045). However, no significant correlation between tumour stage and CD4(+)CD25(+) T cells was found. In addition, we also found that the CD4(+)CD25(-) subset correlated with the expression of the nuclear oestrogen receptor (ER)-alpha in the tumour cells (r=0.45; p=0.040). In conclusion, we detected the presence of cells expressing the markers for Tregs (CD4(+)CD25(+)) and suppressor (CD8(+)CD28(-)) in the tumour microenvironment. This is the first report of the relative abundance of Treg co-expressing CD152 and FOXP3 in breast carcinoma.
    Matched MeSH terms: Forkhead Transcription Factors/analysis
  19. Balasubramaniam VR, Hong Wai T, Ario Tejo B, Omar AR, Syed Hassan S
    PLoS One, 2013;8(9):e72429.
    PMID: 24073193 DOI: 10.1371/journal.pone.0072429
    We constructed a novel chicken (Gallus gallus) lung cDNA library fused inside yeast acting domain vector (pGADT7). Using yeast two-hybrid screening with highly pathogenic avian influenza (HPAI) nucleoprotein (NP) from the strain (A/chicken/Malaysia/5858/2004(H5N1)) as bait, and the Gallus gallus lung cDNA library as prey, a novel interaction between the Gallus gallus cellular RNA export adaptor protein Aly/REF and the viral NP was identified. This interaction was confirmed and validated with mammalian two hybrid studies and co-immunoprecipitation assay. Cellular localization studies using confocal microscopy showed that NP and Aly/REF co-localize primarily in the nucleus. Further investigations by mammalian two hybrid studies into the binding of NP of other subtypes of influenza virus such as the swine A/New Jersey/1976/H1N1 and pandemic A/Malaysia/854/2009(H1N1) to human Aly/REF, also showed that the NP of these viruses interacts with human Aly/REF. Our findings are also supported by docking studies which showed tight and favorable binding between H5N1 NP and human Aly/REF, using crystal structures from Protein Data Bank. siRNA knockdown of Aly/REF had little effect on the export of HPAI NP and other viral RNA as it showed no significant reduction in virus titer. However, UAP56, another component of the TREX complex, which recruits Aly/REF to mRNA was found to interact even better with H5N1 NP through molecular docking studies. Both these proteins also co-localizes in the nucleus at early infection similar to Aly/REF. Intriguingly, knockdown of UAP56 in A549 infected cells shows significant reduction in viral titer (close to 10 fold reduction). Conclusively, our study have opened new avenues for research of other cellular RNA export adaptors crucial in aiding viral RNA export such as the SRSF3, 9G8 and ASF/SF2 that may play role in influenza virus RNA nucleocytoplasmic transport.
    Matched MeSH terms: Transcription Factors/antagonists & inhibitors; Transcription Factors/genetics; Transcription Factors/metabolism*
  20. Zaatar AM, Lim CR, Bong CW, Lee MM, Ooi JJ, Suria D, et al.
    J Exp Clin Cancer Res, 2012 Sep 17;31:76.
    PMID: 22986368 DOI: 10.1186/1756-9966-31-76
    BACKGROUND: Treatment protocols for nasopharyngeal carcinoma (NPC) developed in the past decade have significantly improved patient survival. In most NPC patients, however, the disease is diagnosed at late stages, and for some patients treatment response is less than optimal. This investigation has two aims: to identify a blood-based gene-expression signature that differentiates NPC from other medical conditions and from controls and to identify a biomarker signature that correlates with NPC treatment response.

    METHODS: RNA was isolated from peripheral whole blood samples (2 x 10 ml) collected from NPC patients/controls (EDTA vacutainer). Gene expression patterns from 99 samples (66 NPC; 33 controls) were assessed using the Affymetrix array. We also collected expression data from 447 patients with other cancers (201 patients) and non-cancer conditions (246 patients). Multivariate logistic regression analysis was used to obtain biomarker signatures differentiating NPC samples from controls and other diseases. Differences were also analysed within a subset (n=28) of a pre-intervention case cohort of patients whom we followed post-treatment.

    RESULTS: A blood-based gene expression signature composed of three genes - LDLRAP1, PHF20, and LUC7L3 - is able to differentiate NPC from various other diseases and from unaffected controls with significant accuracy (area under the receiver operating characteristic curve of over 0.90). By subdividing our NPC cohort according to the degree of patient response to treatment we have been able to identify a blood gene signature that may be able to guide the selection of treatment.

    CONCLUSION: We have identified a blood-based gene signature that accurately distinguished NPC patients from controls and from patients with other diseases. The genes in the signature, LDLRAP1, PHF20, and LUC7L3, are known to be involved in carcinoma of the head and neck, tumour-associated antigens, and/or cellular signalling. We have also identified blood-based biomarkers that are (potentially) able to predict those patients who are more likely to respond to treatment for NPC. These findings have significant clinical implications for optimizing NPC therapy.

    Matched MeSH terms: Transcription Factors
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links