Displaying publications 2201 - 2220 of 3312 in total

Abstract:
Sort:
  1. Tan BL, Norhaizan ME, Chan LC
    PMID: 29977314 DOI: 10.1155/2018/6578648
    Manilkara zapota (L.) P. Royen (family: Sapotaceae) is commonly called sapodilla, or locally known as ciku. The detailed mechanisms underlying Manilkara zapota leaf methanol extract against HeLa human cervical cancer cells have yet to be investigated. Therefore, our present study is designed to investigate the ability to induce apoptosis and the underlying mechanisms of Manilkara zapota leaf methanol extract inducing cytotoxicity in HeLa cells. The apoptotic cell death was assessed using Annexin V-propidium iodide staining. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential activities were measured using dichlorodihydrofluorescein diacetate and MitoLite Orange, respectively, by NovoCyte Flow Cytometer. Bax and Bcl-2 expression were evaluated using Enzyme-Linked Immunosorbent Assay. Caspase-3 activity was determined using a colorimetric assay. The associated biological interaction pathways were evaluated using quantitative real-time PCR. Our data showed that HeLa cells were relatively more sensitive to Manilkara zapota leaf methanol extract than other cancer cell lines studied. Overall analyses revealed that Manilkara zapota leaf methanol extract can inhibit the viability of HeLa cells, induce mitochondrial ROS generation, and inhibit nuclear factor-kappa B (NF-κB) and epidermal growth factor receptor (EGFR) transcriptional activities. Our results suggested that Manilkara zapota leaf methanol extract might represent a potential anticervical cancer agent.
    Matched MeSH terms: HeLa Cells
  2. Khazaei S, Abdul Hamid R, Ramachandran V, Mohd Esa N, Pandurangan AK, Danazadeh F, et al.
    PMID: 29250124 DOI: 10.1155/2017/1468957
    Breast cancer is the second leading cause of cancer death among women and despite significant advances in therapy, it remains a critical health problem worldwide. Allium atroviolaceum is an herbaceous plant, with limited information about the therapeutic capability. We aimed to study the anticancer effect of flower extract and the mechanisms of action in MCF-7 and MDA-MB-231. The extract inhibits the proliferation of the cells in a time- and dose-dependent manner. The underlying mechanism involved the stimulation of S and G2/M phase arrest in MCF-7 and S phase arrest in MDA-MB-231 associated with decreased level of Cdk1, in a p53-independent pathway. Furthermore, the extract induces apoptosis in both cell lines, as indicated by the percentage of sub-G0 population, the morphological changes observed by phase contrast and fluorescent microscopy, and increase in Annexin-V-positive cells. The apoptosis induction was related to downregulation of Bcl-2 and also likely to be caspase-dependent. Moreover, the combination of the extract and tamoxifen exhibits synergistic effect, suggesting that it can complement current chemotherapy. LC-MS analysis displayed 17 major compounds in the extract which might be responsible for the observed effects. Overall, this study demonstrates the potential applications of Allium atroviolaceum extract as an anticancer drug for breast cancer treatment.
    Matched MeSH terms: MCF-7 Cells
  3. Pingguan-Murphy B, Nawi I
    Clinics (Sao Paulo), 2012 Aug;67(8):939-44.
    PMID: 22948463
    OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in three-dimensional cultures.

    METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period.

    RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05). The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05), indicating cell proliferation.

    CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

    Matched MeSH terms: Cells, Cultured
  4. Mohd-Radzman NH, Ismail WI, Jaapar SS, Adam Z, Adam A
    PMID: 24391675 DOI: 10.1155/2013/938081
    Stevioside from Stevia rebaudiana has been reported to exert antihyperglycemic effects in both rat and human subjects. There have been few studies on these effects in vitro. In this paper, radioactive glucose uptake assay was implemented in order to assess improvements in insulin sensitivity in 3T3-L1 cells by elevation of glucose uptake following treatment with stevioside. Oil Red-O staining and MTT assay were utilized to confirm adipocyte differentiation and cell viability, respectively. Findings from this research showed a significant increase in absorbance values in mature adipocytes following Oil Red-O staining, confirming the differentiation process. Stevioside was noncytotoxic to 3T3-L1 cells as cell viability was reduced by a maximum of 17%, making it impossible to determine its IC50. Stevioside increased glucose uptake activities by 2.1 times (p < 0.001) in normal conditions and up to 4.4 times (p < 0.001) in insulin-resistant states. At times, this increase was higher than that seen in positive control group treated with rosiglitazone maleate, an antidiabetic agent. Expressions of pY20 and p-IRS1 which were measured via Western blot were improved by stevioside treatment. In conclusion, stevioside has direct effects on 3T3-L1 insulin sensitivity via increase in glucose uptake and enhanced expression of proteins involved in insulin-signalling pathway.
    Matched MeSH terms: 3T3-L1 Cells
  5. Narrima P, Paydar M, Looi CY, Wong YL, Taha H, Wong WF, et al.
    PMID: 24808916 DOI: 10.1155/2014/248103
    Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48 h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development.
    Matched MeSH terms: MCF-7 Cells
  6. Memon AH, Ismail Z, Aisha AF, Al-Suede FS, Hamil MS, Hashim S, et al.
    PMID: 25530783 DOI: 10.1155/2014/470179
    Syzygium campanulatum Korth is an equatorial, evergreen, aboriginal shrub of Malaysia. Conventionally it has been used as a stomachic. However, in the currently conducted study dimethyl cardamonin or 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC) was isolated from S. campanulatum Korth, leaf extract. The structural characterization of DMC was carried out by making use of various techniques including UV, IR, NMR spectral followed by LC-MS, and X-ray crystallographic techniques. For determining the purity of compound, highly effective techniques including TLC, HPLC, and melting point were used. The cytotoxicity of DMC and three different extracts of S. campanulatum was evaluated against human colon cancer cell line (HT-29) by three different assays. DMC and ethanolic extract revealed potent and dose-dependent cytotoxic activity on the cancer cell line with IC50 12.6 and 90.1 µg/mL, respectively. Quite astonishingly to our knowledge, this is the very first report on S. campanulatum as being a rich source (3.5%) of DMC, X-ray crystallography, and anticancer activity on human colon cancer cells.
    Matched MeSH terms: HT29 Cells
  7. Md Zamri ND, Imam MU, Abd Ghafar SA, Ismail M
    PMID: 25431609 DOI: 10.1155/2014/371907
    The antioxidant properties of germinated brown rice (GBR) are likely mediated by multiple bioactives. To test this hypothesis, HepG2 cells pretreated with GBR extracts, rich in acylated steryl glycoside (ASG), gamma amino butyric acid GABA), phenolics or oryzanol, were incubated with hydrogen peroxide (H2O2) and their hydroxyl radical (OH(•)) scavenging capacities and thiobarbituric acid-reactive substances (TBARS) generation were evaluated. Results showed that GBR-extracts increased OH(•) scavenging activities in both cell-free medium and posttreatment culture media, suggesting that the extracts were both direct- and indirect-acting against OH(•). The levels of TBARS in the culture medium after treatment were also reduced by all the extracts. In addition, H2O2 produced transcriptional changes in p53, JNK, p38 MAPK, AKT, BAX, and CDK4 that were inclined towards apoptosis, while GBR-extracts showed some transcriptional changes (upregulation of BAX and p53) that suggested an inclination for apoptosis although other changes (upregulation of antioxidant genes, AKT, JNK, and p38 MAPK) suggested that GBR-extracts favored survival of the HepG2 cells. Our findings show that GBR bioactive-rich extracts reduce oxidative stress through improvement in antioxidant capacity, partly mediated through transcriptional regulation of antioxidant and prosurvival genes.
    Matched MeSH terms: Hep G2 Cells
  8. Tasyriq M, Najmuldeen IA, In LL, Mohamad K, Awang K, Hasima N
    PMID: 22997533
    In continuation of our interest towards the elucidation of apoptotic pathways of cytotoxic phytocompounds, we have embarked upon a study on the anticancer effects of 7α-hydroxy-β-sitosterol (CT1), a rare natural phytosterol oxide isolated from Chisocheton tomentosus. CT1 was found to be cytotoxic on three different human tumor cell lines with minimal effects on normal cell controls, where cell viability levels were maintained ≥80% upon treatment. Our results showed that cell death in MCF-7 breast tumor cells was achieved through the induction of apoptosis via downregulation of the ERK1/2 signaling pathway. CT1 was also found to increase proapoptotic Bax protein levels, while decreasing anti-apoptotic Bcl-2 protein levels, suggesting the involvement of the intrinsic pathway. Reduced levels of initiator procaspase-9 and executioner procaspase-3 were also observed following CT1 exposure, confirming the involvement of cytochrome c-mediated apoptosis via the mitochondrial pathway. These results demonstrated the cytotoxic and apoptotic ability of 7α-hydroxy-β-sitosterol and suggest its potential anti-cancer use particularly on breast adenocarcinoma cells.
    Matched MeSH terms: MCF-7 Cells
  9. Ranneh Y, Abu Bakar MF, Md Akim A, Bin Baharum Z, S Ellulu M, Fadel A
    Asian Pac J Cancer Prev, 2023 Jul 01;24(7):2473-2483.
    PMID: 37505782 DOI: 10.31557/APJCP.2023.24.7.2473
    BACKGROUND: The objective of this study was to investigate the potential anti-proliferative activities of a methanolic extract of cocoa leaves (CL) obtained through sequential partition and fractionation against MCF-7 breast cancer cells.  Methods: The methanolic extract of CL was partitioned in three separated solvents (hexane, dichloromethane, and methanol). Hexane partition was the most potent against MCF-7 cells growth with the lowest IC50 value. Then, it was subjected to two fractionation procedures, resulting in the identification of the CL bioactive fraction (II-F7) with potent toxicity against MCF-7 cells.

    RESULTS: Further investigation into CL bioactive fraction (II-F7) revealed significant dose-dependent growth inhibitory effects on MCF-7 cells, which were attributed to the induction of apoptosis, as evidenced by the presence of apoptotic bodies, fragmented DNA, and disruption of mitochondrial membrane potential. Additionally, treatment with CL bioactive fraction (II-F7) upregulated the expression of pro-apoptotic genes (DDIT3, GADD45G and HRK) and significantly increased the activities of caspase-8 and caspase-9.

    CONCLUSION: Overall, this study suggests that bioactive fraction (II-F7) from CL extract has significant and selective cytotoxicity against MCF-7 cells through inducing apoptosis and has potential as a therapeutic agent for breast cancer treatment.

    Matched MeSH terms: MCF-7 Cells
  10. Gul I, Yunus U, Ajmal M, Bhatti MH, Chaudhry GE
    Biomed Mater, 2021 Aug 31;16(5).
    PMID: 34375958 DOI: 10.1088/1748-605X/ac1c61
    Cancer is the leading cause of death worldwide. Capecitabine (CP) shows severe side effects because of early metabolism in stomach that affects the normal cells and organs, particularly liver and stomach. In this scope, we report the biocompatible, nontoxic polymeric thin films loaded with anti-cancer drug, CP for target specific, sublingual delivery of CP. Chitosan (CS) and polyvinyl alcohol (PVA) were used as biodegradable polymers alongwith glutaraldehyde (GLA) cross linker. CP-loaded thin films (TFCP1-TFCP5) were fabricated by solvent casting method. The results of Fourier transform infrared spectroscopy confirmed the presence of CP and polymers (CS and PVA) with GLA which binds through hydrogen bonding, and compatibility of drug with different excipients. Thermogravemetric analysis showed that the thin films are highly stable while differential scanning calorimeter thermograms confirmed the complete miscibility/entrapment of CP within PVA/CS thin film matrix. X-ray diffraction patterns revealed the molecular ineractions between CP and polymer matrix. High degree of swelling index of thin films at pH 7.4 was observed in comparison to pH 5.5. CP release studies in acetate (pH 5.5) and phosphate buffer (pH 7.4) showed that the thin films swell and result in drug diffusion faster in phosphate buffer through diffusion governed by Higuchi's model. Cytotoxicity results displayed that CPTFs killed MCF-7 and T47D (human breast adenocarcinoma) cells more effectively as compared to CP alone. The results of adhesion assay also showed that the PVA and CS both are safe and biocompatible. TFCP1 and TFCP3 thin films efficiently induced the apoptosis as compared to CP alone. The improved ability of TFCP1 and TFCP3 to induce cytotoxicity in MCF-7 cells reflects the potential of these thin films for targeted drug delivery. The CPTFs were stable for 4 months at 4 °C/60% ± 2%RH and 25 °C/70% ± 2%RH. In conclusion, the thin film formulations showed target specific controlled and burst release properties and thus could prove to be effective for human breast cancer treatment.
    Matched MeSH terms: MCF-7 Cells
  11. Xie CB, Shaikh LH, Garg S, Tanriver G, Teo AE, Zhou J, et al.
    Sci Rep, 2016 Apr 21;6:24697.
    PMID: 27098837 DOI: 10.1038/srep24697
    Aldosterone-producing adenomas (APAs) vary in phenotype and genotype. Zona glomerulosa (ZG)-like APAs frequently have mutations of an L-type calcium channel (LTCC) CaV1.3. Using a novel antagonist of CaV1.3, compound 8, we investigated the role of CaV1.3 on steroidogenesis in the human adrenocortical cell line, H295R, and in primary human adrenal cells. This investigational drug was compared with the common antihypertensive drug nifedipine, which has 4.5-fold selectivity for the vascular LTCC, CaV1.2, over CaV1.3. In H295R cells transfected with wild-type or mutant CaV1.3 channels, the latter produced more aldosterone than wild-type, which was ameliorated by 100 μM of compound 8. In primary adrenal and non-transfected H295R cells, compound 8 decreased aldosterone production similar to high concentration of nifedipine (100 μM). Selective CaV1.3 blockade may offer a novel way of treating primary hyperaldosteronism, which avoids the vascular side effects of CaV1.2-blockade, and provides targeted treatment for ZG-like APAs with mutations of CaV1.3.
    Matched MeSH terms: Cells, Cultured
  12. Dzaki N, Woo WK, Thangadurai S, Azzam G
    Exp Cell Res, 2019 12 15;385(2):111688.
    PMID: 31678212 DOI: 10.1016/j.yexcr.2019.111688
    CTPsyn is a crucial metabolic enzyme which synthesizes CTP nucleotides. It has the extraordinary ability to compartmentalize into filaments termed cytoophidia. Though the structure is evolutionarily conserved across kingdoms, the mechanisms behind their formation remain unknown. MicroRNAs (miRNAs) are short single-stranded RNA capable of directing mRNA silencing and degradation. D. melanogaster has a high total gene count to miRNA gene number ratio, alluding to the possibility that CTPsyn too may come under their regulation. A thorough miRNA overexpression involving 123 miRNAs was conducted, followed by CTPsyn-specific staining upon cytoophidia-rich egg chambers. This revealed a small group of candidates which confer either a lengthening or truncating effect on cytoophidia, suggesting they may play a role in regulating CTPsyn. MiR-975 and miR-1014 are both cytoophidia-elongating, whereas miR-190 and miR-932 are cytoophidia-shortening. Though target prediction shows that miR-975 and miR-932 do indeed have binding sites on CTPsyn mRNA, in vitro assays instead revealed a low probability of this being true, instead indicating that the effects asserted by overexpressed miRNAs indirectly reach CTPsyn and its cytoophidia through the actions of middling elements. In silico target prediction and qPCR quantification indicated that, at least for miR-932 and miR-1014, these undetermined elements may be players in fat metabolism. This is the first study to thoroughly investigate miRNAs in connection to CTPsyn expression and activity in any species. The findings presented could serve as a basis for further queries into not only the fundamental aspects of the enzyme's regulation, but may uncover new facets of closely related pathways as well.
    Matched MeSH terms: Cells, Cultured
  13. Yuhainis Firus Khan A, Mohtar F, Rahman TA, Muid SA, Froemming GRA, Nawawi H
    J Appl Biomed, 2023 Jun;21(2):73-79.
    PMID: 37212154 DOI: 10.32725/jab.2023.006
    INTRODUCTION: Thymoquinone (TQ) is one of the bioactive compounds in Nigella sativa (NS). Also known as black seeds/cumin, it has been postulated to possess anti-atherogenic properties. However, research on the effects of NS oil (NSO) and TQ on atherogenesis remain scarce. The aim of this study is to determine gene and protein expression of Intercellular Adhesion Molecule-1 (ICAM-1), Vascular Cell Adhesion Molecule-1 (VCAM-1), and Endothelial-eukocyte adhesion molecule (E-selectin) in Human Coronary Artery Endothelial Cells (HCAECs).

    METHODS: HCAECs were stimulated for 24 hours (h) with 200 µg/ml of Lipopolysaccharides (LPS) and different concentrations of NSO (55, 110, 220, 440 µg/ml) or TQ (4.5, 9.0, 18.0, 36.0 µm). The effects of NSO and TQ on gene and protein expressions were measured using multiplex gene assay and ELISA assay, respectively. Rose Bengal assay was used to analyse monocyte binding activity.

    RESULTS: NSO and TQ significantly reduced ICAM-1 and VCAM-1 gene and protein expressions. TQ showed significant reduction activity of the biomarkers in dose dependent manner. HCAECs pre-treated with NSO and TQ for 24 h significantly lowered monocytes adherence compared to non-treated HCAECs.

    CONCLUSIONS: NSO and TQ supplementation have anti-atherogenic properties and inhibit monocytes' adherence to HCAECs via down-regulation of ICAM-1 expression. NSO could potentially be incorporated in standard treatment regimens to prevent atherosclerosis and its related complications.

    Matched MeSH terms: Endothelial Cells
  14. Alzahrani B, Elderdery AY, Alsrhani A, Alzerwi NAN, Althobiti MM, Elkhalifa AME, et al.
    Int J Biol Macromol, 2023 Jul 31;244:125054.
    PMID: 37245766 DOI: 10.1016/j.ijbiomac.2023.125054
    The present study investigated the cytotoxicity and proapoptotic properties of iron oxide-sodium-alginate-thymoquinone nanocomposites against breast cancer MDA-MB-231 cells in vitro and in silico. This study used chemical synthesis to formulate the nanocomposite. Electron microscopies such as scanning (SEM) and transmission (TEM), Fourier transform infrared (FT-IR), Ultraviolet-Visible, Photoluminescence spectroscopy, selected area (electron) diffraction (SAED), energy dispersive X-ray analysis (EDX), and X-ray diffraction studies (XRD) were used to characterize the synthesized ISAT-NCs and the average size of them was found to be 55 nm. To evaluate the cytotoxic, antiproliferative, and apoptotic potentials of ISAT-NCs on MDA-MB-231 cells, MTT assays, FACS-based cell cycle studies, annexin-V-PI staining, ELISA, and qRT-PCR were used. PI3K-Akt-mTOR receptors and thymoquinone were predicted using in-silico docking studies. Cell proliferation is reduced in MDA-MB-231 cells due to ISAT-NC cytotoxicity. As a result of FACS analysis, ISAT-NCs had nuclear damage, ROS production, and elevated annexin-V levels, which resulted in cell cycle arrest in the S phase. The ISAT-NCs in MDA-MB-231 cells were found to downregulate PI3K-Akt-mTOR regulatory pathways in the presence of inhibitors of PI3K-Akt-mTOR, showing that these regulatory pathways are involved in apoptotic cell death. We also predicted the molecular interaction between thymoquinone and PI3K-Akt-mTOR receptor proteins using in-silico docking studies which also support PI3K-Akt-mTOR signaling inhibition by ISAT-NCs in MDA-MB-231 cells. As a result of this study, we can conclude that ISAT-NCs inhibit the PI3K-Akt-mTOR pathway in breast cancer cell lines, causing apoptotic cell death.
    Matched MeSH terms: MCF-7 Cells
  15. Jensen KS, Adams R, Bennett RS, Bernbaum J, Jahrling PB, Holbrook MR
    PLoS One, 2018;13(6):e0199534.
    PMID: 29920552 DOI: 10.1371/journal.pone.0199534
    Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus that can result in severe pulmonary disease and fatal encephalitis in humans and is responsible for outbreaks in Bangladesh, Malaysia, Singapore, India and possibly the Philippines. NiV has a negative-sense RNA genome that contains six genes and serves as a template for production of viral mRNA transcripts. NiV mRNA transcripts are subsequently translated into viral proteins. Traditionally, NiV quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) assays have relied on using primer sets that amplify a target (N that encodes the nucleocapsid) within the coding region of the viral gene that also amplifies viral mRNA. Here we describe a novel one-step qRT-PCR assay targeting the intergenic region separating the viral F and G proteins, thereby eliminating amplification of the viral mRNA. This assay is more accurate than the traditional qRT-PCR in quantifying concentrations of viral genomic RNA.
    Matched MeSH terms: Vero Cells
  16. Venkatraman G, Mohan PS, Mashghan MM, Wong KC, Abdul-Rahman PS, Vellasamy KM, et al.
    Bioprocess Biosyst Eng, 2024 Aug;47(8):1163-1182.
    PMID: 38491194 DOI: 10.1007/s00449-024-02984-8
    Alternanthera sessilis (AS) leaf extract was used to synthesize zinc oxide nanoparticles (ZnO NPs). Bioanalytical characterization techniques such as X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) confirmed the formation of crystalline ZnO NPs with average sizes of 40 nm. The AS-ZnO NPs antimicrobial activity was analyzed under dark (D) and white light (WL) conditions. The improved antimicrobial activity was observed against Escherichia coli, Staphylococcus aureus and Bacillus subtilis at the minimal inhibitory concentration (MIC) of 125 and 62.5 µg/mL under WL than the D at 125 and 250 µg/mL for E. coli, B. subtilis, and Pseudomonas aeruginosa, respectively. In contrast, the growth of P. aeruginosa and S. aureus was not completely inhibited until 1 mg/mL AS-ZnO NPs under WL and D. Similarly, AS-ZnO NPs displayed a weaker inhibitory effect against carbapenem-sensitive P. aeruginosa (CSPA) and carbapenem-resistant P. aeruginosa (CRPA) strains of PAC023, PAC041 and PAC032, PAC045 under D. Interestingly, the distinct inhibitory effect was recorded against CSPA PAC041 and CRPA PAC032 in which the bacteria growth was inhibited 99.9% at 250, 500 µg/mL under WL. The cytotoxicity results suggested AS-ZnO NPs demonstrated higher toxicity to MCF-7 breast cancer cells than the RAW264.7 macrophage cells. Further, AS-ZnO NPs exhibited higher catalytic potential against tetracycline hydrochloride (TC-H) degradation at 65.6% and 60.8% under WL than the dark at 59.35% and 48.6% within 120 min. Therefore, AS-ZnO NPs can be used to design a photo-improved antimicrobial formulation and environmental catalyst for removing TC-H from wastewater.
    Matched MeSH terms: RAW 264.7 Cells
  17. Vazifehmand R, Ali DS, Homaie FM, Jalalvand FM, Othman Z, Deming C, et al.
    Curr Cancer Drug Targets, 2024;24(12):1262-1274.
    PMID: 38357955 DOI: 10.2174/0115680096274769240115165344
    BACKGROUND: Due to the existence of tumor stem cells with tumorigenicity properties and resistance patterns, treatment of glioblastoma is not easy. Hypoxia is a major concern in glioblastoma therapy. Telomerase activity and telomere length alterations have been known to play a critical role in glioblastoma progression and invasion.

    OBJECTIVE: This study aimed to investigate the effects of HSV-G47Δ oncolytic virus on telomerase and telomere length alterations in U251GBMCSCs (U251-Glioblastoma cancer stem cells) under hypoxia and normoxia conditions.

    METHODS: U251-CSCs were exposed to the HSV-G47Δ virus in optimized MOI (Multiplicity of infection= 1/14 hours). An absolute telomere length and gene expression of telomerase subunits were determined using an absolute human telomere length quantification PCR assay. Furthermore, a bioinformatics pathway analysis was carried out to evaluate physical and genetic interactions between dysregulated genes with other potential genes and pathways.

    RESULTS: Data revealed that U251CSCs had longer telomeres when exposed to HSV-G47Δ in normoxic conditions but had significantly shorter telomeres in hypoxic conditions. Furthermore, hTERC, DKC1, and TEP1 genes were significantly dysregulated in hypoxic and normoxic microenvironments. The analysis revealed that the expression of TERF2 was significantly reduced in both microenvironments, and two critical genes from the MRN complex, MER11 and RAD50, were significantly upregulated in normoxic conditions. RAD50 showed a significant downregulation pattern in the hypoxic niche. Our results suggested that repair complex in the telomeric structure could be targeted by HSV-G47Δ in both microenvironments.

    CONCLUSION: In the glioblastoma treatment strategy, telomerase and telomere complex could be potential targets for HSV-G47Δ in both microenvironments.

    Matched MeSH terms: Tumor Cells, Cultured
  18. Liew KY, Chee HY, Abas F, Leong SW, Harith HH, Israf DA, et al.
    Daru, 2024 Dec;32(2):729-744.
    PMID: 39395148 DOI: 10.1007/s40199-024-00542-x
    BACKGROUND: Rhinovirus (RV) infection is a major cause of common colds and asthma exacerbations, with no antiviral drug available. Curcumin exhibits broad-spectrum antiviral activities, but its therapeutic effect is limited by a poor pharmacokinetics profile. Curcumin-like diarylpentanoid analogs, particularly 2-benzoyl-6-(3,4-dihydroxybenzylidene)cyclohexen-1-ol (BDHBC) and 5-(3,4-dihydroxyphenyl)-3-hydroxy-1-(2-hydroxyphenyl)penta-2,4-dien-1-one (DHHPD), have better solubility and stability compared to curcumin.

    OBJECTIVES: Therefore, this study aims to evaluate and compare the antiviral effects of curcumin, BDHBC, and DHHPD in an in vitro model of RV infection.

    METHODS: The inhibitory effects on RV-16 infection in H1 HeLa cells were assessed using cytopathic effect (CPE) reduction assay, virus yield reduction assay, RT-qPCR, and Western blot. Antiviral effects in different modes of treatment (pre-, co-, and post-treatment) were also compared. Additionally, intercellular adhesion molecule 1 (ICAM-1) expression, RV binding, and infectivity were measured with Western blot, flow cytometry, and virucidal assay, respectively.

    RESULTS: When used as a post-treatment, BDHBC (EC50: 4.19 µM; SI: 8.32) demonstrated stronger antiviral potential on RV-16 compared to DHHPD (EC50: 18.24 µM; SI: 1.82) and curcumin (less than 50% inhibition). BDHBC also showed the strongest inhibitory effect on RV-induced CPE, virus yield, vRNA, and viral proteins (P1, VP0, and VP2). Furthermore, BDHBC pre-treatment has a prophylactic effect against RV infection, which was attributed to reduced basal expression of ICAM-1. However, it did not affect virus binding, but exerted virucidal activity on RV-16, contributing to its antiviral effect during co-treatment.

    CONCLUSION: BDHBC exhibits multiple antiviral mechanisms against RV infection and thus could be a potential antiviral agent for RV.

    Matched MeSH terms: HeLa Cells
  19. Mabruk MJ, Sheahan B, Atkins G
    PMID: 16771222
    The effect of infection with teratogenic viruses at early stages of pregnancy is not fully understood. This study aimed to look at the effect of infection with teratogenic viruses such as bovine viral diarrhea virus (BVDV) and border disease virus (BDV), on early stage embryos at the hatched blastocyst stage. BVDV and BDV are known to cross the placenta of infected mothers and lead to congenital defects and death of developing fetuses. This study can be a good model for better understanding the effects of other teratogenic viruses such as Rubella virus in humans.
    Matched MeSH terms: Cells, Cultured
  20. Lee ASC, Yap KL
    PMID: 10774695
    Poliovirus kept on the cut surfaces of fully ripe papaya cubes placed in an ice box showed a sharp and significant reduction in the recovery of infectious virus about 15 minutes after exposure. Thereafter, a very gradual decrease ensued and infectious residual virus was detected up to the end of the 6-hour exposure period. Papaya cubes washed or kept overnight before virus inoculation, and from less ripe fruits produced a similar survival pattern. A very small proportion of the inoculum was recovered from the mashed content of the inoculated papaya cubes thus suggesting that most of the non-recovered virus particles were inactivated. The results suggest that the importance of poliovirus-contaminated cut papayas as a transmission vehicle for the virus is greatly reduced by the rapid decline in the infectivity of a large proportion of the virus soon after contamination. Nevertheless, the potential to transmit remains as a small residual pool of infectious poliovirus is able to survive for a relatively long period.
    Matched MeSH terms: Cells, Cultured
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links