OBJECTIVE: To compare the cancer spectrum and frequencies between male BRCA1 and BRCA2 PV carriers.
DESIGN, SETTING, AND PARTICIPANTS: Retrospective cohort study of 6902 men, including 3651 BRCA1 and 3251 BRCA2 PV carriers, older than 18 years recruited from cancer genetics clinics from 1966 to 2017 by 53 study groups in 33 countries worldwide collaborating through the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Clinical data and pathologic characteristics were collected.
MAIN OUTCOMES AND MEASURES: BRCA1/2 status was the outcome in a logistic regression, and cancer diagnoses were the independent predictors. All odds ratios (ORs) were adjusted for age, country of origin, and calendar year of the first interview.
RESULTS: Among the 6902 men in the study (median [range] age, 51.6 [18-100] years), 1634 cancers were diagnosed in 1376 men (19.9%), the majority (922 of 1,376 [67%]) being BRCA2 PV carriers. Being affected by any cancer was associated with a higher probability of being a BRCA2, rather than a BRCA1, PV carrier (OR, 3.23; 95% CI, 2.81-3.70; P
OBJECTIVES: This study assesses the extent of adulteration of E. longifolia herbal medicinal products (HMPs) using DNA barcoding validated by HPLC analysis.
MATERIALS AND METHODS: Chloroplastic rbcL and nuclear ITS2 barcode regions were used in the present study. The sequences generated from E. longifolia HMPs were compared to sequences in the GenBank using MEGABLAST to verify their taxonomic identity. These results were verified by neighbor-joining tree analysis in which branches of unknown specimen are compared to the reference sequences established from this study and other retrieved from the GenBank. The HMPs were also analysed using HPLC analysis for the presence of eurycomanone bioactive marker.
RESULTS: Identification using DNA barcoding revealed that 37% of the tested HMPs were authentic while 27% were adulterated with the ITS2 barcode region proven to be the ideal marker. The validation of the authenticity using HPLC analysis showed a situation in which a species which was identified as authentic was found not to contain the expected chemical compound.
DISCUSSION AND CONCLUSIONS: DNA barcoding should be used as the first screening step for testing of HMPs raw materials. However, integration of DNA barcoding with HPLC analysis will help to provide detailed knowledge about the safety and efficacy of the HMPs.