Displaying publications 221 - 240 of 249 in total

Abstract:
Sort:
  1. Peh K, Khan T, Ch'ng H
    J Pharm Pharm Sci, 2000 Sep-Dec;3(3):303-11.
    PMID: 11177648
    To investigate the suitability of chitosan films prepared using two different solvents, acetic acid (Chitosan-AA) and lactic acid (Chitosan-LA), for wound dressing, in comparison with a commercial preparation, Omiderm.
    Matched MeSH terms: Biomechanical Phenomena
  2. Shuid AN, Mohamad S, Mohamed N, Fadzilah FM, Mokhtar SA, Abdullah S, et al.
    J Orthop Res, 2010 Dec;28(12):1651-6.
    PMID: 20572125 DOI: 10.1002/jor.21180
    Fracture healing is a complex process, which is further complicated if the bone is osteoporotic. Calcium is one of the important minerals in bone and has been found to prevent osteoporosis but its role in fracture healing of osteoporotic bone is still unclear. We carried out a study on the effects of calcium supplementation on the late phase healing of fractured osteoporotic bone using an ovariectomized rat model. Twenty-four female Sprague-Dawley rats were divided into three groups: sham-operated (SO), ovariectomized-control (OVXC), and ovariectomized + calcium supplements (Ca). The right femurs of all the rats were fractured at mid-epiphysis and a K-wire was inserted for internal fixation. After 2 months of treatment, the rats were sacrificed and the femora were dissected out for radiological and biomechanical assessment. As expected, osteoporosis resulted in impaired healing as shown by the poor radiological and biomechanical properties of the OVXC group. CT scans showed significantly lower callus volumes in the SO and Ca groups compared to the OVXC group. Radiological scoring of fracture healing and callus staging of the SO and Ca groups were better than the OVXC group. However, the biomechanical parameters of the Ca group were significantly lower than the SO group and similar to the OVXC group. Therefore, calcium supplements may appear to improve fracture healing of osteoporotic bone but failed to improve strength.
    Matched MeSH terms: Biomechanical Phenomena
  3. Tam YJ, Allaudin ZN, Lila MA, Bahaman AR, Tan JS, Rezaei MA
    BMC Biotechnol, 2012;12:70.
    PMID: 23039947 DOI: 10.1186/1472-6750-12-70
    Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells.
    Matched MeSH terms: Biomechanical Phenomena
  4. Kouhi M, Jayarama Reddy V, Ramakrishna S
    Appl Biochem Biotechnol, 2019 Jun;188(2):357-368.
    PMID: 30456599 DOI: 10.1007/s12010-018-2922-0
    Bioceramic nanoparticles with high specific surface area often tend to agglomerate in the polymer matrix, which results in undesirable mechanical properties of the composites and poor cell spreading and attachment. In the present work, bredigite (BR) nanoparticles were modified with an organosilane coupling agent, 3-glycidoxypropyltrimethoxysilane (GPTMS), to enhance its dispersibility in the polymer matrix. The polyhydroxybutyrate-co-hydroxyvaletare (PHBV) nanofibrous scaffolds containing either bredigite or GPTMS-modified bredigite (G-BR) nanoparticles were fabricated using electrospinning technique and characterized using scanning electron microscopy, transmission electron microscopy, and tensile strength. Results demonstrated that modification of bredigite was effective in enhancing nanoparticle dispersion in the PHBV matrix. PHBV/G-BR scaffold showed improved mechanical properties compared to PHBV and PHBV/BR, especially at the higher concentration of nanoparticles. In vitro bioactivity assay performed in the simulated body fluid (SBF) indicated that composite PHBV scaffolds were able to induce the formation of apatite deposits after incubation in SBF. From the results of in vitro biological assay, it is concluded that the synergetic effect of BR and GPTMS provided an enhanced hFob cells attachment and proliferation. The developed PHBV/G-BR nanofibrous scaffolds may be considered for application in bone tissue engineering.
    Matched MeSH terms: Biomechanical Phenomena
  5. Labens R, Khairuddin NH, Murray M, Jermyn K, Ahmad RS
    Vet Surg, 2019 Jan;48(1):96-104.
    PMID: 30403407 DOI: 10.1111/vsu.13123
    OBJECTIVE: To assess fracture gap reduction and stability of linear vs triangular 4.5-mm lag screw repair of experimental, uniarticular, and complete forelimb proximal phalanx (P1) fractures.

    STUDY DESIGN: Experimental.

    SAMPLE POPULATION: Fourteen equine cadaver limbs/horses.

    METHODS: Simulated fractures were repaired with 2 lag screws under 4-Nm insertion torque (linear repair). Computed tomography (CT) imaging was performed with the leg unloaded and loaded to forces generated while walking. The fracture repair was revised to include 3 lag screws placed with the same insertion torque (triangular repair) prior to CT. The width of the fracture gap was assessed qualitatively by 2 observers and graded on the basis of gap measurements relative to the average voxel size at dorsal, mid, and palmar P1 sites. Interobserver agreement was assessed with Cohen's κ. The effect of repair type, loading condition, and measurement site on fracture gap grades was evaluated by using Kendall's τ-b correlation coefficients and paired nonparametric tests. Significance was set at P ≤ .05.

    RESULTS: Agreement between loading and fracture gap widening was fair in triangular (κ = 0.53) and excellent in linear (κ = 0.81) repairs. Loading resulted in fracture gap distraction in linear repairs (Plinear  = .008). Triangular repairs reduced fractures better irrespective of loading (Punloaded  = .003; Ploaded  

    Matched MeSH terms: Biomechanical Phenomena
  6. Nadarajah S, Samsudin A, Ramli N, Tan CT, Mimiwati Z
    Optom Vis Sci, 2017 10;94(10):981-985.
    PMID: 28858045 DOI: 10.1097/OPX.0000000000001117
    SIGNIFICANCE: To our knowledge, this is the first time a study looking at the association between corneal hysteresis (CH) and obstructive sleep apnea syndrome (OSAS) severity has been reported. We provide evidence that CH is lower in OSAS and speculate on the possible causes.

    PURPOSE: The present study aims to look at the association between CH and severity of OSAS, and whether CH could be another link between OSAS and the development of glaucoma.

    METHODS: This was a cross-sectional, observational study at the University Malaya Medical Centre, Kuala Lumpur. Patients undergoing polysomnography for assessment of OSAS were recruited. We measured central corneal thickness (CCT) using optical biometry, and CH using ocular response analysis. Intraocular pressure (IOP) and Humphrey visual field (HVF) indices were also measured. The Apnea Hypopnea Index (AHI) divided patients into normal, mild, moderate, and severe OSAS categories. The normal and mild categories (47.9%) were then collectively called group 1, and the moderate and severe categories (52.1%) were called group 2. T tests, Pearson correlation tests, and general linear model analysis were performed, with P .05). CH correlated negatively with AHI (r = -0.229, P = .013) and positively with lowest oxygen saturation (r = 0.213, P = .022).

    CONCLUSIONS: CH is lower in moderate/severe OSAS than in normal/mild cases. This may be another link between OSAS and the development of glaucoma; further studies are indicated to determine the significance of this connection.

    Matched MeSH terms: Biomechanical Phenomena
  7. Ng CK, Chen JY, Yeh JZY, Ho JPY, Merican AM, Yeo SJ
    J Arthroplasty, 2018 06;33(6):1936-1944.
    PMID: 29395720 DOI: 10.1016/j.arth.2017.12.025
    BACKGROUND: We hypothesized that there is a correlation between the distal femoral rotation and proximal tibial joint line obliquity in nonarthritic knees. This has significance for kinematic knee arthroplasty, in which the target knee alignment desired approximates the knee before disease.

    METHODS: Fifty computed tomography scans of nonarthritic knees were evaluated using three-dimensional image processing software. Four distal femoral rotational axes were determined in the axial plane: the transepicondylar axis (TEA), transcondylar axis (TCA), posterior condylar axis (PCA), and a line perpendicular to Whiteside's anterior-posterior axis. Then, angles were measured relative to the TEA. Tibial joint line obliquity was measured as the angle between the proximal tibial plane and a line perpendicular to the axis of the tibia.

    RESULTS: There was a strong positive correlation between PCA-TEA and tibial joint line obliquity (r = 0.68, P < .001) as well as TCA-TEA and tibial joint line obliquity (r = 0.69, P < .001). In addition, the tibial joint line obliquity and TCA-TEA angles were similar, 3.7° ± 2.2° (mean ± standard deviation) and 3.5° ± 1.7°, respectively (mean difference, 0.2° ± 0.2°; P = .369).

    CONCLUSION: Both PCA-TEA and TCA-TEA strongly correlated with proximal tibial joint line obliquity indicating a relationship between distal femoral rotational geometry and proximal tibial inclination. These findings could imply that the native knee in flexion attempts to balance the collateral ligaments toward a rectangular flexion space. A higher tibial varus inclination is matched with a more internally rotated distal femur relative to the TEA.

    Matched MeSH terms: Biomechanical Phenomena
  8. Katijjahbe MA, Denehy L, Granger CL, Royse A, Royse C, Bates R, et al.
    Trials, 2017 06 23;18(1):290.
    PMID: 28645301 DOI: 10.1186/s13063-017-1974-8
    BACKGROUND: The routine implementation of sternal precautions to prevent sternal complications that restrict the use of the upper limbs is currently worldwide practice following a median sternotomy. However, evidence is limited and drawn primarily from cadaver studies and orthopaedic research. Sternal precautions may delay recovery, prolong hospital discharge and be overly restrictive. Recent research has shown that upper limb exercise reduces post-operative sternal pain and results in minimal micromotion between the sternal edges as measured by ultrasound. The aims of this study are to evaluate the effects of modified sternal precautions on physical function, pain, recovery and health-related quality of life after cardiac surgery.

    METHODS/DESIGN: This study is a phase II, double-blind, randomised controlled trial with concealed allocation, blinding of patients and assessors, and intention-to-treat analysis. Patients (n = 72) will be recruited following cardiac surgery via a median sternotomy. Sample size calculations were based on the minimal important difference (two points) for the primary outcome: Short Physical Performance Battery. Thirty-six participants are required per group to counter dropout (20%). All participants will be randomised to receive either standard or modified sternal precautions. The intervention group will receive guidelines encouraging the safe use of the upper limbs. Secondary outcomes are upper limb function, pain, kinesiophobia and health-related quality of life. Descriptive statistics will be used to summarise data. The primary hypothesis will be examined by repeated-measures analysis of variance to evaluate the changes from baseline to 4 weeks post-operatively in the intervention arm compared with the usual-care arm. In all tests to be conducted, a p value <0.05 (two-tailed) will be considered statistically significant, and confidence intervals will be reported.

    DISCUSSION: The Sternal Management Accelerated Recovery Trial (S.M.A.R.T.) is a two-centre randomised controlled trial powered and designed to investigate whether the effects of modifying sternal precautions to include the safe use of the upper limbs and trunk impact patients' physical function and recovery following cardiac surgery via median sternotomy.

    TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Registry identifier: ACTRN12615000968572 . Registered on 16 September 2015 (prospectively registered).

    Matched MeSH terms: Biomechanical Phenomena
  9. Mamat-Noorhidayah, Yazawa K, Numata K, Norma-Rashid Y
    PLoS One, 2018;13(3):e0193147.
    PMID: 29513694 DOI: 10.1371/journal.pone.0193147
    Resilin functions as an elastic spring that demonstrates extraordinary extensibility and elasticity. Here we use combined techniques, laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM) to illuminate the structure and study the function of wing flexibility in damselflies, focusing on the genus Rhinocypha. Morphological studies using LSCM and SEM revealed that resilin patches and cuticular spikes were widespread along the longitudinal veins on both dorsal and ventral wing surfaces. Nanoindentation was performed by using atomic force microscopy (AFM), where the wing samples were divided into three sections (membrane of the wing, mobile and immobile joints). The resulting topographic images revealed the presence of various sizes of nanostructures for all sample sections. The elasticity range values were: membrane (0.04 to 0.16 GPa), mobile joint (1.1 to 2.0 GPa) and immobile joint (1.8 to 6.0 GPa). The elastomeric and glycine-rich biopolymer, resilin was shown to be an important protein responsible for the elasticity and wing flexibility.
    Matched MeSH terms: Biomechanical Phenomena
  10. Abu Osman NA, Spence WD, Solomonidis SE, Paul JP, Weir AM
    Med Eng Phys, 2010 Sep;32(7):760-5.
    PMID: 20678997 DOI: 10.1016/j.medengphy.2010.04.020
    The purpose of this investigation was to vary the load on the patellar tendon bar and to study the subsequent effect this has on the pattern of the pressure distribution at the stump-socket interface. Ten male subjects from the Southern General Hospital in Glasgow, UK participated in this study. Measuring systems utilising strain gauge and electrohydraulic technologies were designed, developed and constructed to enable pressure measurements to be conducted. One transducer, the patellar tendon (PT) transducer, was attached to the patellar tendon bar of the socket such that the patellar tendon bar was capable of being translated by +/-10 mm towards or away from the tendon. The results of this study showed that the position of the patellar tendon bar had no significant effect on the pressure distribution around the socket indicating that it is an unnecessary feature, which, we propose, may be eliminated during manufacture of a trans-tibial socket.
    Matched MeSH terms: Biomechanical Phenomena
  11. Mukundala VV, Lim HH
    Singapore Med J, 2001 Feb;42(2):82-4.
    PMID: 11358198
    Fracture-dislocation of the lumbo-sacral spine was an unusual injury and was divided into anterior, posterior and lateral types depending on the displacement of the cephalad portion of the spine over the caudal portion. According to the authors' knowledge, only 31 cases of traumatic fracture-dislocation of the lumbo-sacral spine were reported in the English literature. Only 3 previous reports referred to this injury with a posterior displacement, which was an even rarer injury. This was the fourth report of this type of injury.
    Matched MeSH terms: Biomechanical Phenomena
  12. Mohamad S, Shuid AN, Mohamed N, Fadzilah FM, Mokhtar SA, Abdullah S, et al.
    Clinics (Sao Paulo), 2012 Sep;67(9):1077-85.
    PMID: 23018307
    OBJECTIVE: Osteoporosis increases the risk of bone fractures and may impair fracture healing. The aim of this study was to investigate whether alpha-tocopherol can improve the late-phase fracture healing of osteoporotic bones in ovariectomized rats.

    METHOD: In total, 24 female Sprague-Dawley rats were divided into three groups. The first group was sham-operated, and the other two groups were ovariectomized. After two months, the right femora of the rats were fractured under anesthesia and internally repaired with K-wires. The sham-operated and ovariectomized control rat groups were administered olive oil (a vehicle), whereas 60 mg/kg of alpha-tocopherol was administered via oral gavage to the alpha-tocopherol group for six days per week over the course of 8 weeks. The rats were sacrificed, and the femora were dissected out. Computed tomography scans and X-rays were performed to assess fracture healing and callus staging, followed by the assessment of callus strengths through the biomechanical testing of the bones.

    RESULTS: Significantly higher callus volume and callus staging were observed in the ovariectomized control group compared with the sham-operated and alpha-tocopherol groups. The ovariectomized control group also had significantly lower fracture healing scores than the sham-operated group. There were no differences between the alpha-tocopherol and sham-operated groups with respect to the above parameters. The healed femora of the ovariectomized control group demonstrated significantly lower load and strain parameters than the healed femora of the sham-operated group. Alpha-tocopherol supplementation was not able to restore these biomechanical properties.

    CONCLUSION: Alpha-tocopherol supplementation appeared to promote bone fracture healing in osteoporotic rats but failed to restore the strength of the fractured bone.

    Matched MeSH terms: Biomechanical Phenomena
  13. Gupta R, Elamvazuthi I, Dass SC, Faye I, Vasant P, George J, et al.
    Biomed Eng Online, 2014;13:157.
    PMID: 25471386 DOI: 10.1186/1475-925X-13-157
    Disorders of rotator cuff tendons results in acute pain limiting the normal range of motion for shoulder. Of all the tendons in rotator cuff, supraspinatus (SSP) tendon is affected first of any pathological changes. Diagnosis of SSP tendon using ultrasound is considered to be operator dependent with its accuracy being related to operator's level of experience.
    Matched MeSH terms: Biomechanical Phenomena
  14. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S
    PLoS One, 2014;9(5):e94520.
    PMID: 24827560 DOI: 10.1371/journal.pone.0094520
    The suction sockets that are commonly prescribed for transtibial amputees are believed to provide a better suspension than the pin/lock systems. Nevertheless, their effect on amputees' gait performance has not yet been fully investigated. The main intention of this study was to understand the potential effects of the Seal-in (suction) and the Dermo (pin/lock) suspension systems on amputees' gait performance.
    Matched MeSH terms: Biomechanical Phenomena
  15. Ng CT, Tan MP
    Age Ageing, 2013 Sep;42(5):561-6.
    PMID: 23864423 DOI: 10.1093/ageing/aft070
    Osteoarthritis and falls are common conditions affecting older individuals which are associated with disability and escalating health expenditure. It has been widely assumed that osteoarthritis is an established risk factor for falls in older people. The relationship between osteoarthritis and falls has, quite surprisingly, not been adequately elucidated, and published reports have been conflicting. Our review of the existing literature has found limited evidence supporting the current assumption that the presence of osteoarthritis is associated with increased risk of falls with suggestions that osteoarthritis may actually be protective against falls related fractures. In addition, joint arthroplasty appears to increase the risk of falls in individuals with osteoarthritis.
    Matched MeSH terms: Biomechanical Phenomena
  16. Abbas SS, Nasif MS, Al-Waked R, Meor Said MA
    Artif Organs, 2020 Feb;44(2):E20-E39.
    PMID: 31378963 DOI: 10.1111/aor.13536
    Platelet activation induced by shear stresses and non-physiological flow field generated by bileaflet mechanical heart valves (BMHVs) leads to thromboembolism, which can cause fatal consequences. One of the causes of platelet activation could be intermittent regurgitation, which arises due to asynchronous movement and rebound of BMHV leaflets during the valve closing phase. In this numerical study, the effect of intermittent regurgitation on the platelet activation potential of BMHVs was quantified by modeling a BMHV in the straight and anatomic aorta at implantation tilt angles 0°, 5°, 10°, and 20°. A fully implicit Arbitrary Lagrangian-Eulerian-based Fluid-Structure Interaction formulation was adopted with blood modeled as a multiphase, non-Newtonian fluid. Results showed that the intermittent regurgitation and consequently the platelet activation level increases with the increasing implantation tilt of BMHV. For the straight aorta, the leaflet of the 20° tilted BMHV underwent a rebound of approximately 20° after initially closing, whereas the leaflet of the 10°, 5°, and 0° tilted BMHVs underwent a rebound of 8.5°, 3°, and 0°, respectively. For the anatomic aorta, the leaflet of the 20° tilted BMHV underwent a rebound of approximately 24° after initially closing, whereas the leaflet of the 10°, 5°, and 0° tilted BMHVs underwent a rebound of 14°, 10°, and 7°, respectively. For all the implantation orientations of BMHVs, intermittent regurgitation and platelet activation were always higher in the anatomic aorta than in the straight aorta. The study concludes that the pivot axis of BMHV must be implanted parallel to the aortic root's curvature to minimize intermittent regurgitation and platelet activation.
    Matched MeSH terms: Biomechanical Phenomena
  17. Siow WM, Chin PL, Chia SL, Lo NN, Yeo SJ
    Clin Orthop Relat Res, 2013 May;471(5):1451-7.
    PMID: 23299954 DOI: 10.1007/s11999-012-2776-7
    There is marked racial disparity in TKA use rates, demographics, and outcomes between white and Afro-Caribbean Americans. Comparative studies of ethnicity in patients undergoing TKAs have been mostly in American populations with an underrepresentation of Asian groups. It is unclear whether these disparities exist in Chinese, Malays, and Indians.
    Matched MeSH terms: Biomechanical Phenomena
  18. Chu SY, Barlow SM, Lee J, Wang J
    Int J Speech Lang Pathol, 2017 12;19(6):616-627.
    PMID: 28425760 DOI: 10.1080/17549507.2016.1265587
    PURPOSE: This research characterised perioral muscle reciprocity and amplitude ratio in lower lip during bilabial syllable production [pa] at three rates to understand the neuromotor dynamics and scaling of motor speech patterns in individuals with Parkinson's disease (PD).

    METHOD: Electromyographic (EMG) signals of the orbicularis oris superior [OOS], orbicularis oris inferior [OOI] and depressor labii inferioris [DLI] were recorded during syllable production and expressed as polar-phase notations.

    RESULT: PD participants exhibited the general features of reciprocity between OOS, OOI and DLI muscles as reflected in the EMG during syllable production. The control group showed significantly higher integrated EMG amplitude ratio in the DLI:OOS muscle pairs than PD participants. No speech rate effects were found in EMG muscle reciprocity and amplitude magnitude across all muscle pairs.

    CONCLUSION: Similar patterns of muscle reciprocity in PD and controls suggest that corticomotoneuronal output to the facial nucleus and respective perioral muscles is relatively well-preserved in our cohort of mild idiopathic PD participants. Reduction of EMG amplitude ratio among PD participants is consistent with the putative reduction in the thalamocortical activation characteristic of this disease which limits motor cortex drive from generating appropriate commands which contributes to bradykinesia and hypokinesia of the orofacial mechanism.

    Matched MeSH terms: Biomechanical Phenomena
  19. Khan SJ, Khan SS, Usman J, Mokhtar AH, Abu Osman NA
    Prosthet Orthot Int, 2019 Apr;43(2):148-157.
    PMID: 30192706 DOI: 10.1177/0309364618796849
    BACKGROUND:: Knee osteoarthritis is a major contributor to the global burden of disease. There is a need of reducing knee joint load and to improve balance and physical function among knee osteoarthritis patients.

    OBJECTIVES:: To test the hypothesis that toe-out gait will reduce second peak knee adduction moment further and increase fall risk when combined with knee brace and laterally wedged insole in knee osteoarthritis patients.

    STUDY DESIGN:: Single visit study with repeated measures.

    METHODS:: First and second peak knee adduction moments, fall risk and comfort level. First and second peak knee adduction moments were determined from three-dimensional gait analysis, completed under six randomized conditions: (1) natural, (2) knee brace, (3) knee brace + toe-out gait, (4) laterally wedged insole, (5) laterally wedged insole + toe-out gait, and (6) knee brace + laterally wedged insole + toe-out gait. Fall risk was assessed by Biodex Balance System using three randomized stability settings: (1) static, (2) moderate dynamic setting (FR12), and (3) high dynamic setting (FR8).

    RESULTS:: The reduction in first peak knee adduction moment and second peak knee adduction moment was greatest (7.16% and 25.55%, respectively) when toe-out gait combine with knee brace and laterally wedged insole. Significant increase in fall risk was observed with knee brace + laterally wedged insole + toe-out gait (42.85%) at FR12. Similar significant balance reductions were found at FR8 condition for knee brace + toe-out gait (35.71%), laterally wedged insole + toe-out gait (28.57%), and knee brace + laterally wedged insole + toe-out gait (50%) as compared to natural. However, knee brace decreased fall risk at FR12 by 28.57%.

    CONCLUSION:: There is a synergistic effect of toe-out when combined with knee brace and laterally wedged insole concurrently in second peak knee adduction moment reduction but with a greater degree of fall risk. Simultaneous use of conservative treatments also decreases comfort level.

    CLINICAL RELEVANCE: Patients with mild and moderate knee osteoarthritis are usually prescribed conservative treatment techniques. This study will provide an insight whether or not a combination of these techniques have a synergistic effect in reducing knee joint load.

    Matched MeSH terms: Biomechanical Phenomena
  20. Haseeb A, Ajit Singh V, Teh CSJ, Loke MF
    J Orthop Surg (Hong Kong), 2019 5 30;27(2):2309499019850324.
    PMID: 31138005 DOI: 10.1177/2309499019850324
    BACKGROUND: Ceftaroline is a cephalosporin that is effective against methicillin-resistant Staphylococcus aureus (MRSA) infections. The objective of this study was to determine the feasibility of using ceftaroline-loaded Polymethyl methacrylate (PMMA) as antibiotic cement against MRSA versus vancomycin-loaded PMMA in an in vitro setting.

    METHODS: PMMA pellets were prepared with three separate concentrations of each of the two antibiotics tested. They were tested to determine the effect of increasing concentration of antibiotics on the biomechanical properties of PMMA and antibiotic activity by measuring the zone of inhibition and broth elution assay.

    RESULTS: Ceftaroline PMMA at 3 wt%, three-point bending was 37.17 ± 0.51 N ( p < 0.001) and axial loading was 41.95 N ± 0.51 ( p < 0.001). At 5-wt% vancomycin-PMMA, three-point bending was 41.65 ± 0.79 N ( p = 0.02) and axial loading was 49.49 ± 2.21 N ( p = 0.01). Stiffness of ceftroline-loaded PMMA in low and medium concentration was significantly higher than the vancomycin. The zone of inhibition for ceftaroline was higher than vancomycin. Ceftaroline at 3 wt% eluted up to 6 weeks (0.3 ± 0.1 μg/ml) above the minimum inhibitory concentration (MIC) and vancomycin at 2.5 wt% eluted up to 3 weeks, same as MIC, that is, 0.5 ± 0.0 μg/ml.

    CONCLUSIONS: Ceftaroline, loaded at similar concentrations as vancomycin into PMMA, is a more potent alternative based on its more favourable bioactivity and elution properties, while having a lesser effect on the mechanical properties of the cement. The use of 3-wt% ceftaroline as antibiotic laden PMMA against MRSA is recommended. It should be noted that this was an in vitro study and to determine the clinical efficacy would need prospective, controlled and randomized studies.

    Matched MeSH terms: Biomechanical Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links