The presence of both heavy metals and organic xenobiotic pollutants in a contaminated site
justifies the application of either a multitude of microbial degraders or microorganisms having
the capacity to detoxify a number of pollutants at the same time. Molybdenum is an essential
heavy metal that is toxic to ruminants at a high level. Ruminants such as cow and goats
experience severe hypocuprosis leading to scouring and death at a concentration as low as
several parts per million. In this study, a molybdenum-reducing bacterium with amide-degrading
capacity has been isolated from contaminated soils. The bacterium, using glucose as the best
electron donor reduces molybdenum in the form of sodium molybdate to molybdenum blue. The
maximal pH reduction occurs between 6.0 and 6.3, and the bacterium showed an excellent
reduction in temperatures between 25 and 40 oC. The reduction was maximal at molybdate
concentrations of between 15 and 25 mM. Molybdenum reduction incidentally was inhibited by
several toxic heavy metals. Other carbon sources including toxic xenobiotics such as amides
were screened for their ability to support molybdate reduction. Of all the amides, only
acrylamide can support molybdenum reduction. The other amides; such as acetamide and
propionamide can support growth. Analysis using phylogenetic analysis resulted in a tentative
identification of the bacterium as Pseudomonas sp. strain 135. This bacterium is essential in
remediating sites contaminated with molybdenum, especially in agricultural soil co-contaminated
with acrylamide, a known soil stabilizer.
The main goal of this research work is to measure the concentration levels of organochlorine residue in soil. The potential health risk of this pollutant on human was also determined. 10 samples were taken from a lowland paddy field situated in Kelantan, Malaysia. Physical parameters namely soil pH, organic carbon content, water content and particle size were identified to evaluate the quality of soil from the agriculture site. Soxhlet extraction and florisil clean-up process were applied to isolate 10 targeted organochlorine compounds prior to the final determination using a gas chromatography-electron capture detector. Soil from the lowland has characteristics such as slightly acidic, low organic carbon content, high water content and texture dominated by the sandy type. Concentration levels of six detected organochlorine pesticides were calculated in µg/kg. Hazard quotient value in all samples was less than the acceptable risk level HQ ≤ 1, thus reflecting the status of soil in the subjected area as unlikely to pose any adverse health effects.
The demonstration of the structure-properties relationship of shape-dependent photocatalysts remains a challenge today. Herein, one-dimensional (1-D)-like titania (TiO2), as a model photocatalyst, has been synthesized under a strong magnetic field in the presence of a magnetically responsive liquid crystal as the structure-aligning agent to demonstrate the relationship between a well-aligned structure and its photocatalytic properties. The importance of the 1-D-like TiO2 and its relationship with the electronic structures that affect the electron-hole recombination and the photocatalytic activity need to be clarified. The synthesis of 1-D-like TiO2 with liquid crystal as the structure-aligning agent was carried out using the sol-gel method under a magnetic field (0.3 T). The mixture of liquid crystal, 4'-pentyl-4-biphenylcarbonitrile (5CB), tetra-n-butyl orthotitanate (TBOT), 2-propanol, and water, was subjected to slow hydrolysis under a magnetic field. The TiO2-5CB took a well-aligned whiskerlike shape when the reaction mixture was placed under the magnetic field, while irregularly shaped TiO2-5CB particles were formed when no magnetic field was applied. It shows that the strong interaction between 5CB and TBOT during the hydrolysis process under a magnetic field controls the shape of titania. The intensity of the emission peaks in the photoluminescence spectrum of 1-D-like TiO2-5CB was lowered compared with the TiO2-5CB synthesized without the magnetic field, suggesting the occurrence of electron transfer from 5CB to the 1-D-like TiO2-5CB during ultraviolet irradiation. Apart from that, direct current electrical conductivity and Hall effect studies showed that the 1-D-like TiO2 composite enhanced electron mobility. Thus, the recombination of electrons and holes was delayed due to the increase in electron mobility; hence, the photocatalytic activity of the 1-D-like TiO2 composite in the oxidation of styrene in the presence of aqueous hydrogen peroxide under UV irradiation was enhanced. This suggests that the 1-D-like shape of TiO2 composite plays an important role in its photocatalytic activity.
This work reports on a novel glucose biosensor based on co-immobilization of glucose oxidase (GOx) and horseradish peroxidase with polymerized multiporous nanofiber (MPNFs) of SnO2 onto glassy carbon electrode with chitosan. Multiporous nanofibers of SnO2 were synthesized by electrospinning method from the tin precursor which possesses high surface area good electrical conductivity, and the nanofibers were polymerized with polyaniline (PANI). GOx and HRP were then co-immobilized with the nanofibers on the surface of the glassy carbon electrode by using chitosan. The polymerized nanofibers play a significant role in facilitating the direct electron transfer between the electroactive center of the immobilized enzyme and the electrode surface. The morphology of the nanofiber and polymerized nanofiber has been evaluated by field emission scanning electron microscopy (FESEM). Cyclic Voltammetry and amperometry were employed to study and optimize the performance of the fabricated biosensor. The PANI/SnO2-NF/GOx-HRP/Ch/GC biosensor displayed a linear amperometric response towards the glucose concentration range from 5 to 100 μM with a detection limit of 1.8 μM (S/N = 3). Also, the anti-interference study and real sample analysis was investigated. Furthermore, the biosensor reported in this work exhibited excellent stability, reproducibility, and repeatability.
Light has found applications in data transmission, such as optical fibers and waveguides and in optoelectronics. It consists of a series of electromagnetic waves, with particle behavior. Photonics involves the proper use of light as a tool for the benefit of humans. It is derived from the root word "photon", which connotes the tiniest entity of light analogous to an electron in electricity. Photonics have a broad range of scientific and technological applications that are practically limitless and include medical diagnostics, organic synthesis, communications, as well as fusion energy. This will enhance the quality of life in many areas such as communications and information technology, advanced manufacturing, defense, health, medicine, and energy. The signal transmission methods used in wireless photonic systems are digital baseband and RoF (Radio-over-Fiber) optical communication. Microwave photonics is considered to be one of the emerging research fields. The mid infrared (mid-IR) spectroscopy offers a principal means for biological structure analysis as well as nonintrusive measurements. There is a lower loss in the propagations involving waveguides. Waveguides have simple structures and are cost-efficient in comparison with optical fibers. These are important components due to their compactness, low profile, and many advantages over conventional metallic waveguides. Among the waveguides, optofluidic waveguides have been found to provide a very powerful foundation for building optofluidic sensors. These can be used to fabricate the biosensors based on fluorescence. In an optical fiber, the evanescent field excitation is employed to sense the environmental refractive index changes. Optical fibers as waveguides can be used as sensors to measure strain, temperature, pressure, displacements, vibrations, and other quantities by modifying a fiber. For some application areas, however, fiber-optic sensors are increasingly recognized as a technology with very interesting possibilities. In this review, we present the most common and recent applications of the optical fiber-based sensors. These kinds of sensors can be fabricated by a modification of the waveguide structures to enhance the evanescent field; therefore, direct interactions of the measurand with electromagnetic waves can be performed. In this research, the most recent applications of photonics components are studied and discussed.
Silver Oxide (Ag2O)-Guar gum nanocomposite was fabricated via a simple sonochemical co-precipitation method. The obtained photocatalyst was characterized with various techniques such as X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, UV-vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, scanning electron microscopy and transmission electron microscopy along with energy dispersion X-ray spectroscopy. The findings have demonstrated that Ag2O nanoparticles are spherical of 5-20 nm and were dispersed on the surface of polysaccharide guar gum to form Ag2O-guar gum nanocomposite. The as-synthesized nanocomposite was enacted as a competent photocatalyst for the reduction of nitrobenzene and oxidation of benzyl alchohol. The conversion efficiency for the reduction of nitrobenzene was 96 % with the addition of sodium borohydride, and the conversion of benzyl alcohol was 98 %. The highly efficient photocatalytic activity was due to the exceedingly dispersed Ag2O-guar gum nanocomposite where effective separation rate of energy driven electron-hole pairs and stronger light absorption occurs. The possible mechanism of the reactions was implicated in understanding the active species involved in the photocatalytic study.
In this research we investigated the effect of composition on the fabrication and morphological characteristics of a hybrid polymeric solar cell which consists of an electron donating conjugated polymer, namely is poly(3-hexylthiophene) (P3HT) combined with an electron-accepting component, which is a type of inorganic compound of TiO2 nanocrystals. The composition of TiO2 in the blends is varied and the optimum performance of the devices are studied. The optical and morphological characterizations are carried out via UV-Visible absorption spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The electrical characteristics of the devices are measured by using Keithley 2400 SMU and solar simulator with light intensity of 100 mW/cm2.
During the last quarter of the twentieth century there have been intensive research activities looking for green sources of energy. The main aim of the green generators or converters of energy is to replace the conventional (fossil) energy sources, hence reducing further accumulation of the green house gasses GHGs. Conventional silicon and III-V semiconductor solar cell based on crystalline bulk, quantum well and quantum dots structure or amorphous and thin film structures provided a feasible solution. However, natural dye sensitized solar cells NDSSC are a promising class of photovoltaic cells with the capability of generating green energy at low production cost since no vacuum systems or expensive equipment are required in their fabrication. Also, natural dyes are abundant, easily extracted and safe materials. In NDSSC, once dye molecules exposed to light they become oxidized and transfer electrons to a nanostructured layer of wide bandgap semiconductors such as TiO2. The generated electrons are drawn outside the cell through ohmic contact to a load. In this paper we review the structure and operation principles of the dye sensitized solar cell DSSC. We discuss preparation procedures, optical and electrical characterization of the NDSSC using local dyes extracted from Henna (lawsonia inermis L.), pomegranate, cherries and Bahraini raspberries (rubus spp.). These natural organic dyes are potential candidates to replace some of the man-made dyes used as sensitizer in many commercialized photoelectrochemical cells. Factors limiting the operation of the DSSC are discussed. NDSSCs are expected to be a favored choice in the building-integrated
photovoltaics (BIPV) due to their robustness, therefore, requiring no special shielding from natural events such as tree strikes or hails.
The performance of pipeline system used in petroleum industry is crucially declined by natural microbial activities and
demanding extra operational cost. Requirement on high capability of functional substances is attracting worldwide
research interest. The aim of this paper was to study the effectiveness of benzyltriethylammonium chloride (BTC) on
reducing the activity of a consortium bacteria consisting of sulfate-reducing bacteria (C-SRB). C-SRB was isolated from
tropical crude oil and enumeration of this consortium was measured by viable cell count technique. The effectiveness of
BTC was calculated from potentiodynamic polarization method and biofilm analysis was performed by scanning electron
microscope. The viable cell count technique indicated that the maximum growth of C-SRB was approximately 160 trillion
CFU/mL at 7 days incubation period. BTC was capable of reducing biocorrosion activity due to adsorption process and
mitigating SRB species. Biofilm analysis has proven that C-SRB activity is minimized due to less presence of bacterial
growth, extracellular polymeric substances and corrosion product. In conclusion, BTC is capable to inhibit C-SRB activity
on biocorrosion of carbon steel pipeline.
A novel bimetallic double thiocyanate-bridged ruthenium and tungsten metal complex containing bipyridyl and dithiolene co-ligands was synthesized and the behavior of the complex as a dye-sensitizer for a photoelectrochemical (PEG) cell for a direct water splitting reaction was investigated. The ligands and metal complexes were characterized on the basis of elemental analysis as well as uv-Vis, Fourier transform infrared ( Pim) and nuclear magnetic resonance (11I and 13C NMR) spectroscopy. Cyclic voltammetry of the bimetallic complex showed multiple redox couples, in which half potentials E 112 at 0 .625 , 0.05 and 0.61 V were assigned as the formal redox processes of Ru(III)IRu(II) reduction, W(IV)IW(V) and W(V)IW(VI) oxidations, respectively. Photocurrent measurements were performed in homogeneous system and TiO2 was used as the photoanode for photocurrent measurements. Current density generated by the bimetallic complex was higher than that of N3 commercial dye which suggested that the bimetallic complex donated more electrons to the semiconductor.
In this study, biochars derived from waste fiberboard biomass were applied in tetracycline (TC) removal in aqueous solution. Biochar samples were prepared by slow pyrolysis at 300, 500, and 800°C, and were characterized by ultimate analysis, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), etc. The effects of ionic strength (0-1.0 mol/L of NaCl), initial TC concentration (2.5-60 ppm), biochar dosage (1.5-2.5 g/L), and initial pH (2-10) were systemically determined. The results present that biochar prepared at 800°C (BC800) generally possesses the highest aromatization degree and surface area with abundant pyridinic N (N-6) and accordingly shows a better removal efficiency (68.6%) than the other two biochar samples. Adsorption isotherm data were better fitted by the Freundlich model (R2 is 0.94) than the Langmuir model (R2 is 0.85). Thermodynamic study showed that the adsorption process is endothermic and mainly physical in nature with the values of ΔH0 being 48.0 kJ/mol, ΔS0 being 157.1 J/mol/K, and ΔG0 varying from 1.02 to -2.14 kJ/mol. The graphite-like structure in biochar enables the π-π interactions with a ring structure in the TC molecule, which, together with the N-6 acting as electron donor, is the main driving force of the adsorption process.
The development of a non-thermal plasma jet with a capillary configuration working at atmospheric pressure is reported
in this paper. The plasma jet is powered by a power source with frequency of several kilohertz. The working gas is
argon. The plasma obtained has been characterized by optical emission spectroscopic measurements and electrical
measurements of the discharge using voltage and current probes. The electron temperature has been estimated by using
the modified Boltzmann plot method utilizing the Ar 4p-4s transition. The electron temperatures at various positions
along the plasma jet length have been obtained and it is found that the electron temperature decreases at position further
from orifice. The electron density has been estimated from current and voltage measurements using the power balance
method. The effects of gas flow rate, applied voltage and frequency on the characteristics of the plasma jet have also been
investigated. The applications of the atmospheric pressure plasma jet (APPJ) developed to modify the surface properties
of Polyethyleneterephthalate (PET) and polycarbonate (PC) have been tested. Our results showed that the atmospheric
pressure non-thermal plasma jet can be effectively used to enhance the surface wettability and surface energy of the
PET and PC. The plasma jet has also been tested for inactivation of prokaryotic cells (Escherichia coli, Staphylococcus
aureus). In the case of E. coli, better than 4 log10 reduction can be achieved. The effect of plasma jet on the pH of cell
culture medium has suggested that the plasma species, particularly the electrons, are solely responsible for the effect
of inactivation of living cells.
The fungicide captan, which is commonly used to control fungal diseases in many plants, causes soil infertility and cancer to human beings. Hence, this fungicide was tested for utilization as a sole carbon source by a newly soil isolate, Planomicrobium flavidum strain EF. This bacterium resists captan up to 2000 ppm and showed higher growth patterns in minimum salt medium supplemented with captan only, if compared with minimum salt medium without captan. Moreover, almost 77.5% of captan has been utilized by Planomicrobiu flavidum after only 2 h of growth under shaking conditions and only 0.8% of the fungicide was remained after 24 h of bacterial growth. Captan residues in both soil samples and minimal salt medium were accurately estimated using GC-ECD (gas chromatography - electron detector) and GC-MS/MS (gas chromatography - mass spectrum) technologies. According to current results, Planomicrobium flavidum strain EF is highly recommended for captan and may be other fungicides bioremediation.
Since the complexity of photocatalyst synthesis process and high cost of noble cocatalyst leftovers a major hurdle to producing hydrogen (H2) from water, a noble metal-free Ni-Si/MgO photocatalyst was realized for the first time to generate H2 effectively under illumination with visible light. The catalyst was produced by means of simple one-pot solid reaction using self-designed metal reactor. The physiochemical properties of photocatalyst were identified by XRD, FESEM, HRTEM, EDX, UV-visible, XPS, GC and PL. The photocatalytic activities of Ni-Si/MgO photocatalyst at different nickel concentrations were evaluated without adjusting pH, applied voltage, sacrificial agent or electron donor. The ultrathin-nanosheet with hierarchically porous structure of catalyst was found to exhibit higher photocatalytic H2 production than hexagonal nanorods structured catalyst, which suggests that the randomly branched nanosheets are more active surface to increase the light-harvesting efficiency due to its short electron diffusion path. The catalyst exhibited remarkable performance reaching up to 714 µmolh-1 which is higher among the predominant semiconductor catalyst. The results demonstrated that the photocatalytic reaction irradiated under visible light illumination through the production of hydrogen and hydroxyl radicals on metals. The outcome indicates an important step forward one-pot facile approach to prepare noble ultrathin photocatalyst for hydrogen production from water.
A series of new hexasubstituted cyclotriphosphazene compounds (4a-j) consisting of two Schiff base linking units and different terminal substituents was successfully synthesized and characterized. The structures of these compounds were confirmed using Fourier Transform Infra-Red (FTIR), Nuclear Magnetic Resonance (NMR), and CHN elemental analysis. Polarized optical microscopy (POM) was used to determine their liquid-crystal behavior, which was then further confirmed using differential scanning calorimetry (DSC). Compounds 4a-i with heptyl, nonyl, decyl, dodecyl, tetradecyl, hydroxy, 4-carboxyphenyl, chloro, and nitro terminal ends, respectively, showed the liquid-crystal properties, whereas compound 4j with the amino group was found to be non-mesogenic. The attachment of an electron-donating group in 4j eventually give a non-mesogenic product. The study of the fire-retardant properties of these compounds was done using the limiting oxygen index (LOI). In this study, polyester resin (PE) was used as a matrix for moulding, and the LOI value of pure PE was 22.53%. The LOI value increased to 24.71% when PE was incorporated with 1 wt.% of hexachlorocyclotriphosphazene (HCCP), thus indicating that HCCP has a good fire-retardant properties. The result showed that all the compounds have good agreement in their LOI values. Compound 4i with a nitro terminal group gave the highest LOI value of 28.37%.
Complete degradation of azo dye has always been a challenge due to the refractory nature of azo dye. An innovative hybrid system, constructed wetland-microbial fuel cell (CW-MFC) was developed for simultaneous azo dye remediation and energy recovery. This study investigated the effect of circuit connection and the influence of azo dye molecular structures on the degradation rate of azo dye and bioelectricity generation. The closed circuit system exhibited higher chemical oxygen demand (COD) removal and decolourisation efficiencies compared to the open circuit system. The wastewater treatment performances of different operating systems were ranked in the decreasing order of CW-MFC (R1 planted-closed circuit) > MFC (R2 plant-free-closed circuit) > CW (R1 planted-open circuit) > bioreactor (R2 plant-free-open circuit). The highest decolourisation rate was achieved by Acid Red 18 (AR18), 96%, followed by Acid Orange 7 (AO7), 67% and Congo Red (CR), 60%. The voltage outputs of the three azo dyes were ranked in the decreasing order of AR18 > AO7 > CR. The results disclosed that the decolourisation performance was significantly influenced by the azo dye structure and the moieties at the proximity of azo bond; the naphthol type azo dye with a lower number of azo bond and more electron-withdrawing groups could cause azo bond to be more electrophilic and more reductive for decolourisation. Moreover, the degradation pathway of AR18, AO7 and CR were elucidated based on the respective dye intermediate products identified through UV-Vis spectrophotometry, high-performance liquid chromatography (HPLC), and gas chromatograph-mass spectrometer (GC-MS) analyses. The CW-MFC system demonstrated high capability of decolouring azo dyes at the anaerobic anodic region and further mineralising dye intermediates at the aerobic cathodic region to less harmful or non-toxic products.
Nanostructured hydrogenated carbon nitride (CNx:H) thin films were synthesized on a crystal silicon substrate at low deposition temperature by radio-frequency plasma-enhanced chemical vapor deposition (PECVD). Methane and nitrogen were the precursor gases used in this deposition process. The effects of N₂ to the total gas flow rate ratio on the formation of CNx:H nanostructures were investigated. Field-emission scanning electron microscopy (FESEM), Auger electron spectroscopy (AES), Raman scattering, and Fourier transform of infrared spectroscopies (FTIR) were used to characterize the films. The atomic nitrogen to carbon ratio and sp² bonds in the film structure showed a strong influence on its growth rate, and its overall structure is strongly influenced by even small changes in the N₂:(N₂ + CH₄) ratio. The formation of fibrous CNx:H nanorod structures occurs at ratios of 0.7 and 0.75, which also shows improved surface hydrophobic characteristic. Analysis showed that significant presence of isonitrile bonds in a more ordered film structure were important criteria contributing to the formation of vertically-aligned nanorods. The hydrophobicity of the CNx:H surface improved with the enhancement in the vertical alignment and uniformity in the distribution of the fibrous nanorod structures.
Efficient solar driven photoelectrochemical (PEC) response by enhancing charge separation has attracted great interest in the hydrogen generation application. The formation of one-dimensional ZnO nanorod structure without bundling is essential for high efficiency in PEC response. In this present research work, ZnO nanorod with an average 500 nm in length and average diameter of about 75 nm was successfully formed via electrodeposition method in 0.05 mM ZnCl₂ and 0.1 M KCl electrolyte at 1 V for 60 min under 70 °C condition. Continuous efforts have been exerted to further improve the solar driven PEC response by incorporating an optimum content of TiO₂ into ZnO nanorod using dip-coating technique. It was found that 0.25 at % of TiO₂ loaded on ZnO nanorod film demonstrated a maximum photocurrent density of 19.78 mA/cm² (with V vs. Ag/AgCl) under UV illumination and 14.75 mA/cm² (with V vs. Ag/AgCl) under solar illumination with photoconversion efficiency ~2.9% (UV illumination) and ~4.3% (solar illumination). This performance was approximately 3-4 times higher than ZnO film itself. An enhancement of photocurrent density and photoconversion efficiency occurred due to the sufficient Ti element within TiO₂-ZnO nanorod film, which acted as an effective mediator to trap the photo-induced electrons and minimize the recombination of charge carriers. Besides, phenomenon of charge-separation effect at type-II band alignment of Zn and Ti could further enhance the charge carrier transportation during illumination.
Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS) with graphene produces the graphene-AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene-Au nanocomposites. The paper highlights the graphene-gold nanoparticle (AuNP) as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS)-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer.
A novel sustainable hybrid system of photocatalytic fuel cell (PFC) and Fenton process is an alternative wastewater treatment technology for energy-saving and efficient treatment of organic pollutants. The electrons generated from PFC photoanode are used to produce H2O2 in the Fenton reactor and react with the in situ generation of Fe2+ from sacrificial iron for hydroxyl radical formation. In this study, the effect of different initial Amaranth dye concentrations on degradation and electricity generation were investigated. ZnO/Zn photoanode was prepared by anodizing method and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results revealed that the maximum power density (9.53 mW/m2) and current density (0.0178 mA/m2) were achieved at 10 mg/L of Amaranth. The correlation between dye degradation, voltage output, and kinetic photocatalytic degradation were also investigated and discussed.