Heavy metal pollution leads to human health problems and represents a constant threat to the environment. Pollutant
clean-up using conventional methods are often hampered by high cost and ineffective pollutant removal. Phytoremediation
technique is a preferable alternative due to its minimal side effects to the environment in addition to reasonable treatment
cost. In this study, we investigated the potential of Centella asiatica and Orthosiphon stamineus as phytoremediation
agents. Both species were grown in contaminated soil obtained from industrial land. Plant growth response and their
ability to accumulate and translocate zinc, copper and lead were assessed. From this study, root growth of C. asiatica
was compromised when grown in contaminated soil. Copper was highly accumulated in C. asiatica roots while the
leaves were more concentrated with zinc and lead. Conversely, all three tested metals were highly detected in the roots
of O. stamineus, although the root elongation was not adversely affected. Low amount of metals in the stems of both
species permits longer stem length. Correlation study showed that the accumulation of zinc, copper and lead in plant
tissues varies depending on plant species and the type of metals. Based on the bioaccumulation, translocation and
enrichment factor, our study showed that C. asiatica was tolerant towards zinc, copper and lead; hence suitable for
phytoextraction. By contrast, O. stamineus acted as a moderate accumulator of the tested metal elements.
Freshwater fish has been studied and reported numerously. However, little attention has been made and limited studies available on local marine fish in Malaysia. Thus, in this study, concentrations of heavy metals (Cd, Cr, Pb and Cu) were studied in four major local marine fish Megalaspis cordyla (hardtail scad), Rastrelliger kanagurta (Indian mackerel), Selaroides leptolepis (yellowstripe scad) and Sardinella fimbriata (fringescale sardinella). The study was also intended to estimate potential health risk assessment from these heavy metals to the consumption of fish and assess maximum allowable fish consumption rate. The range of heavy metal concentrations were 0.053-0.096 mg/kg for Cd, 1.16-2.34 mg/kg for Cr, 8.34-12.44 mg/kg for Pb and 1.40-3.21 mg/kg for Cu in four major self-caught saltwater fish. Heavy metal levels of Cd and Cu in the local marine fish from Port Dickson are below the limit enforced by Food Regulations (1985) while the levels of Cr and Pb have exceeded the limit. Potential health risks associated with Cd, Cr, Cu and Pb were assessed based on target hazard quotients. HQ values calculated for Cd, Cr and Cu were less than 1, thus indicate that no adverse effects while HQ values for Pb exceeded 1 for all the fish species assessed with the exception of Megalaspis spp and Sardinella sppa. Cr was the highest while Pb concentrations were the lowest in all the studied fish samples for maximum allowable fish consumption rate. A long term monitoring program is crucial to be done in coastal areas with high consumption of local marine fish along Port Dickson to obtain real consumption rates and other cofounders factors in local population.
Technical benefit of incorporation of Palm Oil Clinker (POC) in cement-based applications has been proven in recent
studies. The aim of this work was to assess the heavy metal leaching behavior to ensure environmental safety of using
POC in cement-based applications. The chemical composition, morphology, total organic carbon (TOC) and mineralogy
were determined using XRF, FESEM, TOC analyzers and XRD to select appropriate chemical reagents for complete digestion.
HNO3
, HF and HClO4
were used for digestion of POC to measure heavy metal content using ICP-MS. The chemical reagents
CH3
COOH, NH2
OH-HCl, H2
O2
+CH3
COONH4
and HF+HNO3
+HCl were used for extraction of acid soluble, reducible,
oxidizable and residual fractions of heavy metals in POC, respectively. The leaching toxicity of the POC was investigated
by the USEPA 1311 TCLP method. The result showed the presence of Be, V, Cr, Ni, Cu, Zn, As, Se, Ag, Cd, Ba and Pb with
levels of 5.13, 11.02, 2.65, 1.93, 45.43, 11.84, 15.07, 0, 0, 81.97 and 1.76 mg/kg, respectively, in POC. The leaching value
in mg/L of As (4.56), Cu(1.05), Be (0.89), Zn(0.51), Ba(0.26), Ni (0.17), V(0.15), Cr(0.001) and Se (0.001) is found well
below the standard limit of risk. Risk assessment code (RAC) analysis confirms the safe incorporation of POC in cementbased
applications.
Algae have recently received a lot of attention as a new biomass source for the production of renewable energy and an important bioremediation agent. This study was carried out to evaluate the potential of green algae Scenedesmus obliquus grow in different concentrations of wastewater and the improvement of cultivation conditions to produce biomass rich in sugar to produce bioethanol by fermentation processes. The highest sugar content of S. obliquus biomass was recorded for algae cultivated with 40 and 85% wastewater after 9 days under aeration condition with dark and light duration (44.5%). It was found that the highest removal efficiency of BOD and COD were 18% for S. obliquus grown under aeration condition. The highest ethanol efficiency of S. obliquus biomass hydrolysate was 20.33% at 4th day. The best condition of S. obliquus to grow efficiently was under aeration with light and dark durations, where it has high efficiency to remove heavy metals from wastewater in this condition.
This study is aimed to assess the heavy metals contamination and health risk in Shrimp (Macrobrachium rosenbergii and Penaeus monodon) collected from Khulna-Satkhira region in Bangladesh. The results showed that the Pb concentrations (0.52-1.16 mg/kg) in all shrimp samples of farms were higher than the recommended limit. The Cd levels (0.05-0.13 mg/kg) in all samples and Cr levels in all farms except tissue content at Satkhira farm were higher than the permissible limits. The individual concentration of Pb, Cd, and Cr between shrimp tissue and shell in all rivers and farms were not statistically significant (P > 0.05). Target hazard quotient (THQ) and hazard index (HI) were estimated to assess the non-carcinogenic health risks. Shrimp samples from all locations under the current study were found to be safe for consumption, the possibility of health risk associated with non-carcinogenic effect is very low for continuous consumption for 30 years.
Fifty-five core marine sediments from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea of coastal East Malaysia were analyzed for heavy metals by instrumental neutron activation analysis and inductively coupled plasma mass spectroscopy. The enrichment factor and the modified degree of contamination were used to calculate the anthropogenic and pollution status of the elements in the samples. The enrichment factor of As, Cd, Cr, Cu, Ni, Pb, and Zn varied from 0.42-4.26, 0.50-2.34, 0.31-0.82, 0.20-0.61, 0.91-1.92, 0.23-1.52, and 0.90-1.28, respectively, with the modified degree of contamination values below 0.6. Comparative data showed that coastal East Malaysia has low levels of contamination.
Functional surfaces and polymers with branched structures have a major impact on physicochemical properties and performance of membrane materials. With the aim of greener approach for enhancement of permeation, fouling resistance and detrimental heavy metal ion rejection capacity of polyetherimide membrane, novel grafting of poly (4-styrenesulfonate) brushes on low cost, natural bentonite was carried out via distillation-precipitation polymerisation method and employed as a performance modifier. It has been demonstrated that, modified bentonite clay exhibited significant improvement in the hydrophilicity, porosity, and water uptake capacity with 3 wt. % of additive dosage. SEM and AFM analysis showed the increase in macrovoides and surface roughness with increased additive concentration. Moreover, the inclusion of modified bentonite displayed an increase in permeation rate and high anti-irreversible fouling properties with reversible fouling ratio of 75.6%. The humic acid rejection study revealed that, PEM-3 membrane having rejection efficiency up to 87.6% and foulants can be easily removed by simple hydraulic cleaning. Further, nanocomposite membranes can be significantly employed for the removal of hazardous heavy metal ions with a rejection rate of 80% and its tentative mechanism was discussed. Conspicuously, bentonite clay-bearing poly (4-styrenesulfonate) brushes are having a synergistic effect on physicochemical properties of nanocomposite membrane to enhance the performance in real field applications.
The present study applied the use of sequential extraction technique and simple bioaccessibility extraction test to investigate the bioavailable fractions and the human bioaccessible concentration of metals collected from nine stations in surface sediment of the Bernam River. The concentrations of total and bioaccessible metals from different stations were in the range of 0.30-1.43 μg g(-1) and 0.04-0.14 μg g(-1) for total cadmium and bioaccessibility of cadmium, respectively, 6.20-288 μg kg(-1) and 2.06-8.53 μg kg(-1) for total mercury and bioaccessibility of mercury, respectively, and 9.2-106.59 μg g(-1) and 0.4-2.75 μg kg(-1) for total tin and bioaccessibility of tin, respectively. The chemical speciation of Cd in most sampling stations was in the order of oxidisable-organic > acid-reducible > residual > exchangeable, while the chemical speciation of Hg was in the order of exchangeable > residual > oxidisable-organic > acid-reducible and the chemical speciation of Hg was in the order of residual > oxidisable-organic > acid-reducible > exchangeable. The principal component analysis showed that the main factors influencing the bioaccessibility of mercury in surface sediments were the sediment total organic matter, cation exchange capacity, and easily, freely, or leachable and exchangeable fraction, and the factors influencing the bioaccessibility of tin were the total tin and cation exchange capacity, while the bioaccessibility of Cd in surface sediments was influenced by the only factor which is the easily, freely, or leachable and exchangeable fraction.
This study was undertaken to assess the levels of trace metals (As, Cd, Cu, Pb, and Zn) in two common species of cockles (Anadara granosa and Anadara inaequivalvis) from two coastal areas in Thailand (Pattani Bay) and Malaysia (the Setiu Wetlands). A total of 350 cockles were collected in February and September 2014. Trace metals were determined by Inductively Coupled Plasma Mass Spectrometry. We observed that cockles in both areas had a higher accumulation of metals in September. Notably, the biota-sediment accumulation (BSAF) of Cd was highest in both areas. A strong positive correlation of Cd with the length of the cockles at Pattani Bay (r(2) = 0.597) and the Setiu Wetlands (r(2) = 0.675) was noted. It was suggested that As could be a limiting element (BSAF < 1) of cockles obtained from Pattani Bay. In comparison with the permissible limits set by the Thailand Ministry of Public Health and the Malaysia Food Regulations, mean values of As, Cd, Cu, Pb, and Zn were within acceptable limits, but the maximum values of Cd and Pb exceeded the limits for both areas. Regular monitoring of trace metals in cockles from both areas is suggested for more definitive contamination determination.
Information about the quality of drinking water, together with analysis of knowledge, attitude and practice (KAP) analysis and health risk assessment (HRA) remain limited. The aims of this study were: (1) to ascertain the level of KAP regarding heavy metal contamination of drinking water in Pasir Mas; (2) to determine the concentration of heavy metals (Al, Cr, Cu, Fe, Ni, Pb, Zn and Cd) in drinking water in Pasir Mas; and (3) to estimate the health risks (non-carcinogenic and carcinogenic) caused by heavy metal exposure through drinking water using hazard quotient and lifetime cancer risk.
Centella asiatica is a commonly used medicinal plant in Malaysia. As heavy metal accumulation in medicinal plants which are highly consumed by human is a serious issue, thus the assessment of heavy metals in C. asiatica is important for the safety of consumers. In this study, the heavy metal accumulation in C. asiatica and the potential health risks were investigated. Samples of C. asiatica and surface soils were collected from nine different sites around Peninsular Malaysia. The concentration of six heavy metals namely Cd, Cu, Ni, Fe, Pb and Zn were determined by air-acetylene flame atomic absorption spectrophotometer (AAS). The degree of anthropogenic influence was assessed by calculating the enrichment factor (EF) and index of geoaccumulation (Igeo). The heavy metal uptake into the plant was estimated through the calculation of translocation factor (TF), bioconcentration factor (BCF) and correlation study. Estimated daily intakes (EDI) and target hazard quotients (THQ) were used to determine the potential health risk of consuming C. asiatica. The results showed that the overall surface soil was polluted by Cd, Cu and Pb, while the uptake of Zn and Ni by the plants was high. The value of EDI and THQ showed that the potential of Pb toxicity in C. asiatica was high as well. As heavy metal accumulation was confirmed in C. asiatica, daily consumption of the plant derived from polluted sites in Malaysia was not recommended.
Spent Pleurotus sajor-caju compost mixed with livestock excreta, i.e. cow dung or goat manure, was contaminated with landfill leachate and vermiremediated in 75 days. Results showed an extreme decrease of heavy metals, i.e. Cd, Cr and Pb up to 99.81% removal as effect of vermiconversion process employing epigeic earthworms i.e. Lumbricus rubellus. In addition, there were increments of Cu and Zn from 15.01% to 85.63%, which was expected as non-accumulative in L. rubellus and secreted out as contained in vermicompost. This phenomenon is due to dual effects of heavy metal excretion period and mineralisation. Nonetheless, the increments were 50-fold below the limit set by EU and USA compost limits and the Malaysian Recommended Site Screening Levels for Contaminated Land (SSLs). Moreover, the vermicompost C:N ratio range is 20.65-22.93 and it can be an advantageous tool to revitalise insalubrious soil by acting as soil stabiliser or conditioner.
Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The advantages that oil palm biomass has includes the following:available and exists in abundance, appears to be effective technically, and can be integrated into existing processes. Despite these advantages, oil palm biomasses have disadvantages such as low adsorption capacity, increased COD, BOD and TOC. These disadvantages can be overcome by modifying the biomass either chemically or thermally. Such modification creates a charged surface and increases the heavy metal ion binding capacity of the adsorbent.
Metallothionein (MT) concentrations in gill and liver tissues of Oreochromis mossambicus were determined to assess biological response of fish to levels of some metals. Metal concentrations in gill and liver tissues of O. mossambicus ranged from 0.6 to 2.6 for Cd, 16 to 52 for Zn, 0.5 to 17 for Cu and 2 to 67 for T-Hg (all in μg/g wet weight, except for T-Hg in ng/g wet weight). Accumulation of Cd, Zn, Cu and Hg (μg/g wet weight) in the liver and gills of O. mossambicus were in the order of liver > gills. The concentrations of Cd, Zn, Cu and Hg in fish tissues were correlated with MT content. The increases in MT levels from the reference area Puchong Tengah compared to the polluted area Kampung Seri Kenangan were 3.4- and 3.8-fold for gills and livers, respectively. The results indicate that MT concentrations were tissue-specific, with the highest levels in the liver. Therefore, the liver can act as a tissue indicator in O. mossambicus in the study area.
2-Phenyl-N,N'-bis(pyridin-4-ylcarbonyl)butanediamide ligand with a series of transition metal complexes has been synthesized via two routes: microwave irradiation and conventional heating method. Microwave irritation method happened to be the efficient and versatile route for the synthesis of these metal complexes. These complexes were found to have the general composition M(L)Cl2/M(L)(CH3COO)2 (where M = Cu(II), Co(II), Ni(II), and L = ligand). Different physical and spectroscopic techniques were used to investigate the structural features of the synthesized compounds, which supported an octahedral geometry for these complexes. In vitro antifungal activity of the ligand and its metal complexes revealed that the metal complexes are highly active compared to the standard drug. Metal complexes showed enhanced activity compared to the ligand, which is an important step towards the designing of antifungal drug candidates.
Near-real-ime assay is anassay method that the whole process from sampling until results could be obtained in approximately Iess than one hour. The ElIman assay for acetyl cholinesterase (AChE) has near real-time potential due to its simplicity and fast assay time. The commercial acetylcholinesterase from Electrophorus electricus is well known for its uses in insecticides detection. A lesser known fact is AChE is also sensitive to heavy metals. A near real-time inhibitive assay for heavy metals using AChE from this source showed promising results. Several heavy metals such as copper, silver and mercury could be etected with IC50 values of1.212, 0.1185 and 0.097 mg I-1, respectively. The Limits of Detection (LOD) for copper, silver and mercury were 0.01, 0.015 and 0.01 mg I-1, respectively. TheLimits of quantitation (LOQ) or copper, silver and mercury were 0.196, 0.112 and 0.025 mg I-1, respectively. The LOQvalues for copper, silver and mercury were well below the maximum permissible limit for these metal ions as outlined by Malaysian Department of Environment. A polluted location demonstrated near real-time applicability of the assay with variation oftemporal levels of heavy metals detected. The results show that AChE from Electrophorus electricus has the potential to be used as a near real-time biomonitoring tool for heavy
This study aims to determine the composition and sources of particulate matter with an aerodynamic diameter of 10 μm or less (PM10) in a semi-urban area. PM10 samples were collected using a high volume sampler. Heavy metals (Fe, Zn, Pb, Mn, Cu, Cd and Ni) and cations (Na(+), K(+), Ca(2+) and Mg(2+)) were detected using inductively coupled plasma mass spectrometry, while anions (SO4 (2-), NO3 (-), Cl(-) and F(-)) were analysed using Ion Chromatography. Principle component analysis and multiple linear regressions were used to identify the source apportionment of PM10. Results showed the average concentration of PM10 was 29.5 ± 5.1 μg/m(3). The heavy metals found were dominated by Fe, followed by Zn, Pb, Cu, Mn, Cd and Ni. Na(+) was the dominant cation, followed by Ca(2+), K(+) and Mg(2+), whereas SO4 (2-) was the dominant anion, followed by NO3 (-), Cl(-) and F(-). The main sources of PM10 were the Earth's crust/road dust, followed by vehicle emissions, industrial emissions/road activity, and construction/biomass burning.
In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of < 30 can be applied as a nitrogen source in EFB co-composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.
Pollutants put great stress on the environment, especially the aquatic ecosystem; therefore, the ease with which pollutants migrate in water is a subject of global concern. In this study, leachate from landfill that was analyzed with the objective of understanding the potential impact to the environment was tested on Pangasius sutchi. Heavy metals available at various concentrations in raw leachate samples of both closed and active landfills necessitated the determination of their degree of bioaccumulation in this fish species in order to enrich the risk data on toxicity of effluents. Zinc (3.2 µg g(-1)), iron (2.1 µg g(-1)) and chromium (0.24 µg g(-1)) detected in the fish within 96 h of acute exposure is of concern. A histopathology test on excised liver of P. sutchi indicated cellular disruption from normal stain. Heterogeneous effluents like leachate may affect not only groundwater but can endanger aquatic ecosystems, especially in some regions where improper waste disposal and treatment allow the flow of leachate into surface water courses. Though metals might be beneficial to organisms, the extent at which they can accumulate in leachate-exposed fish is a risk and can initiate metal toxicity in aquatic life.
The increasing popularity and widespread use of traditional Chinese herbs as alternative medicine have sparked an interest in understanding their biosafety, especially in decoctions that are consumed. This study aimed to assess the level of microbial and heavy metal contamination in commonly consumed herbal medicine in Malaysia and the effects of boiling on these contamination levels.