Displaying publications 221 - 240 of 2665 in total

Abstract:
Sort:
  1. Kamishima M, Hattori T, Suzuki G, Matsukami H, Komine C, Horii Y, et al.
    J Appl Toxicol, 2018 05;38(5):649-655.
    PMID: 29271492 DOI: 10.1002/jat.3569
    Exposure to endocrine-disrupting chemicals may adversely affect animals, particularly during development. Tris(1,3-dichloroisopropyl) phosphate (TDCIPP) is an organophosphate with anti-androgen function in vitro that is present in indoor dust at relatively high concentrations. In male rats, androgens are necessary for the development of reproductive organs, as well as the endocrine and central nervous systems. However, we currently do not know the exact effects of TDCIPP exposure through suckling on subsequent reproductive behavior in males. Here, we show that TDCIPP exposure (25-250 mg kg-1 via oral administration over 28 consecutive days post-birth) suppressed male sexual behavior and reduced testes size. These changes were dose-dependent and appeared first in adults rather than in juveniles. These results demonstrate that TDCIPP exposure led to normal body growth and appearance in juveniles, but disrupted the endocrine system and physiology in adults. Therefore, assays should be performed using adult animals to ensure accuracy, and to confirm the influence of chemical substances given during early mammalian life.
    Matched MeSH terms: Rats, Wistar; Rats
  2. Primasari DN, Nirwana I, Budi HS, Wardhana AS, Sari AF, Novita N, et al.
    ScientificWorldJournal, 2022;2022:6740853.
    PMID: 36561943 DOI: 10.1155/2022/6740853
    OBJECTIVE: Ellagic acid, a phenolic compound with anti-inflammatory potential, can be used to accelerate the bone healing process and affect human health, while hydroxyapatite is the most commonly used bone graft material. Using a combination of the two materials results in reduced inflammation and increased osteogenesis. This study aimed to determine the effects of combining ellagic acid and hydroxyapatite in bone marker remodelling by analysing the expression of tumour necrosis factor-α (TNF-α), interleukin 10 (IL-10), bone morphogenetic 4 protein (BMP-4), and osteopontin (OPN).

    METHODS: Thirty Wistar rats were used in the study. A defect was created in each animal's femur using a low-speed diamond bur. In the control group, the bone was then treated with polyethylene glycol (PEG). In one of the other groups, the bone was treated with hydroxyapatite, and in the other, with ellagic acid-hydroxyapatite. The femur was biopsied 7 days after the procedure and again 14 days after the procedure, and an indirect immunohistochemical (IHC) examination was performed for TNF-α, IL-10, BMP-4, and OPN expression.

    RESULTS: The ellagic acid-hydroxyapatite decreased TNF-α expression in the bone tissue after 7 days and again after 14 days (p 

    Matched MeSH terms: Rats, Wistar; Rats
  3. Anjum A, Cheah YJ, Yazid MD, Daud MF, Idris J, Ng MH, et al.
    Biol Res, 2022 Dec 09;55(1):38.
    PMID: 36494836 DOI: 10.1186/s40659-022-00407-0
    BACKGROUND: Excitotoxicity-induced in vivo injury models are vital to reflect the pathophysiological features of acute spinal cord injury (SCI) in humans. The duration and concentration of chemical treatment controls the extent of neuronal cell damage. The extent of injury is explained in relation to locomotor and behavioural activity. Several SCI in vivo methods have been reported and studied extensively, particularly contusion, compression, and transection models. These models depict similar pathophysiology to that in humans but are extremely expensive (contusion) and require expertise (compression). Chemical excitotoxicity-induced SCI models are simple and easy while producing similar clinical manifestations. The kainic acid (KA) excitotoxicity model is a convenient, low-cost, and highly reproducible animal model of SCI in the laboratory. The basic impactor approximately cost between 10,000 and 20,000 USD, while the kainic acid only cost between 300 and 500 USD, which is quite cheap as compared to traditional SCI method.

    METHODS: In this study, 0.05 mM KA was administered at dose of 10 µL/100 g body weight, at a rate of 10 µL/min, to induce spinal injury by intra-spinal injection between the T12 and T13 thoracic vertebrae. In this protocol, detailed description of a dorsal laminectomy was explained to expose the spinal cord, following intra-spinal kainic acid administration at desired location. The dose, rate and technique to administer kainic acid were explained extensively to reflect a successful paraplegia and spinal cord injury in rats. The postoperative care and complication post injury of paraplegic laboratory animals were also explained, and necessary requirements to overcome these complications were also described to help researcher.

    RESULTS: This injury model produced impaired hind limb locomotor function with mild seizure. Hence this protocol will help researchers to induce spinal cord injury in laboratories at extremely low cost and also will help to determine the necessary supplies, methods for producing SCI in rats and treatments designed to mitigate post-injury impairment.

    CONCLUSIONS: Kainic acid intra-spinal injection at the concentration of 0.05 mM, and rate 10 µL/min, is an effective method create spinal injury in rats, however more potent concentrations of kainic acid need to be studied in order to create severe spinal injuries.

    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  4. Kamal DAM, Ibrahim SF, Ugusman A, Mokhtar MH
    Int J Mol Sci, 2022 Nov 25;23(23).
    PMID: 36499085 DOI: 10.3390/ijms232314757
    Reproductive and metabolic anomalies in polycystic ovary syndrome (PCOS) have been associated with the dysregulation of sex steroid receptors. Kelulut honey (KH) has been shown to be beneficial in PCOS-induced rats by regulating folliculogenesis and the oestrus cycle. However, no study has been conducted to evaluate KH's effect on sex steroid receptors in PCOS. Therefore, the current study examined the effects of KH, metformin, or clomiphene alone and in combination on the mRNA expression and protein distribution of androgen receptor (AR), oestrogen receptor α (ERα), oestrogen receptor β (ERβ), and progesterone receptor (PR) in PCOS-induced rats. The study used female Sprague-Dawley rats, which were treated orally with 1 mg/kg/day of letrozole for 21 days to develop PCOS. PCOS-induced rats were then divided and treated orally for 35 days with KH, metformin, clomiphene, KH + metformin, KH+ clomiphene and distilled water. In this study, we observed aberrant AR, ERα, ERβ and PR expression in PCOS-induced rats compared with the normal control rats. The effects of KH treatment were comparable with clomiphene and metformin in normalizing the expression of AR, ERα, and ERβ mRNA. However, KH, clomiphene and metformin did not affect PR mRNA expression and protein distribution. Hence, this study confirms the aberrant expression of sex steroid receptors in PCOS and demonstrates that KH treatment could normalise the sex steroid receptors profile. The findings provide a basis for future clinical trials to utilize KH as a regulator of sex steroid receptors in patients with PCOS.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  5. Kiyooka T, Ohanyan V, Yin L, Pung YF, Chen YR, Chen CL, et al.
    Basic Res Cardiol, 2022 Jan 17;117(1):3.
    PMID: 35039940 DOI: 10.1007/s00395-021-00908-1
    Endothelial dysfunction in diabetes is generally attributed to oxidative stress, but this view is challenged by observations showing antioxidants do not eliminate diabetic vasculopathy. As an alternative to oxidative stress-induced dysfunction, we interrogated if impaired mitochondrial function in endothelial cells is central to endothelial dysfunction in the metabolic syndrome. We observed reduced coronary arteriolar vasodilation to the endothelium-dependent dilator, acetylcholine (Ach), in Zucker Obese Fatty rats (ZOF, 34 ± 15% [mean ± standard deviation] 10-3 M) compared to Zucker Lean rats (ZLN, 98 ± 11%). This reduction in dilation occurred concomitantly with mitochondrial DNA (mtDNA) strand lesions and reduced mitochondrial complex activities in the endothelium of ZOF versus ZLN. To demonstrate endothelial dysfunction is linked to impaired mitochondrial function, administration of a cell-permeable, mitochondria-directed endonuclease (mt-tat-EndoIII), to repair oxidatively modified DNA in ZOF, restored mitochondrial function and vasodilation to Ach (94 ± 13%). Conversely, administration of a cell-permeable, mitochondria-directed exonuclease (mt-tat-ExoIII) produced mtDNA strand breaks in ZLN, reduced mitochondrial complex activities and vasodilation to Ach in ZLN (42 ± 16%). To demonstrate that mitochondrial function is central to endothelium-dependent vasodilation, we introduced (via electroporation) liver mitochondria (from ZLN) into the endothelium of a mesenteric vessel from ZOF and restored endothelium-dependent dilation to vasoactive intestinal peptide (VIP at 10-5 M, 4 ± 3% vasodilation before mitochondrial transfer and 48 ± 36% after transfer). Finally, to demonstrate mitochondrial function is key to endothelium-dependent dilation, we administered oligomycin (mitochondrial ATP synthase inhibitor) and observed a reduction in endothelium-dependent dilation. We conclude that mitochondrial function is critical for endothelium-dependent vasodilation.
    Matched MeSH terms: Rats, Zucker; Rats
  6. Mat NH, Bakar SNS, Murugaiyah V, Chawarski MC, Hassan Z
    Behav Brain Res, 2023 Feb 15;439:114251.
    PMID: 36503042 DOI: 10.1016/j.bbr.2022.114251
    Mitragynine exerts its analgesic effect mainly via opioid receptors activation. Additionally, the effect may be mediated via mitragynine's anti-inflammatory property and non-opioid receptor pain pathways, namely through the TRPV1 receptor. No studies identify hitherto, hence, the current study aimed to investigate the mitragynine's analgesic effect via the anti-inflammatory property, non-opioid receptor (TRPV1) and the effective dose (ED) to alleviate pain. Male and female Sprague Dawley rats were pre-treated intraperitoneally with either mitragynine (1, 5, 10, 13, 15 or 30 mg/kg), vehicle, or indomethacin (1 mg/kg) 30 min before inducing inflammatory pain using acetic acid. The writhes and pain-related withdrawal behaviour occurrence were counted within a 1-h duration. Percentage of writhes inhibition, pain-related withdrawal behaviour aggregate, ED50 and ED95 were determined. The body temperature was recorded and TRPV1 expression in the rats' brains was measured. Mitragynine (except 1 mg/kg) significantly reduced the number of writhes compared with the vehicle administered group. Mitragynine (30 mg/kg) demonstrated 99.5% inhibition of writhing behaviour and low withdrawal behaviour score compared with vehicle and indomethacin and successfully blocked the hypothermia induced by acetic acid. The overall ED50 and ED95 values of mitragynine were 3.62 and 20.84 mg/kg, respectively. The percentage of writhing inhibition and withdrawal behaviour were similar in both genders. Mitragynine (15 and 30 mg/kg) significantly reduced the TRPV1 expression in the brain of the rats. Mitragynine alleviated pain-like behaviour and showed analgesic effects via anti-inflammatory and non-opioid receptor pathways. The findings also suggest that mitragynine might regulate some physiological functions of the rat.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  7. Chestnykh D, Graßl F, Pfeifer C, Dülk J, Ebner C, Walters M, et al.
    Psychopharmacology (Berl), 2023 Apr;240(4):1011-1031.
    PMID: 36854793 DOI: 10.1007/s00213-023-06347-1
    RATIONALE: The dopamine D4 receptors (DRD4) play a key role in numerous brain functions and are involved in the pathogenesis of various psychiatric disorders. DRD4 ligands have been shown to moderate anxiety, reward and depression-like behaviours, and cognitive impairments. Despite a series of promising but ambiguous findings, the therapeutic advantages of DRD4 stimulation remain elusive.

    OBJECTIVES: The investigation focused on the behavioural effects of the recently developed DRD4 agonist, APH199, to evaluate its impact on anxiety, anhedonia, behavioural despair, establishment and retrieval of alcohol reinforcement, and amphetamine (AMPH)-induced symptoms.

    METHODS: Male C57BL/6 J mice and Sprague-Dawley rats were examined in five independent experiments. We assessed APH199 (0.1-5 mg/kg, i.p.) effects on a broad range of behavioural parameters in the open field (OF) test, conditioned place preference test (CPP), elevated plus maze (EPM), light-dark box (LDB), novelty suppressed feeding (NSF), forced swim test (FST), sucrose preference test (SPT), AMPH-induced hyperlocomotion test (AIH), and prepulse inhibition (PPI) of the acoustic startle response in AMPH-sensitized rats.

    RESULTS: APH199 caused mild and sporadic anxiolytic and antidepressant effects in EPM and FST, but no remarkable impact on behaviour in other tests in mice. However, we found a significant increase in AMPH-induced hyperactivity, suggesting an exaggeration of the psychotic-like responses in the AMPH-sensitized rats.

    CONCLUSIONS: Our data challenged the hypothesis of the therapeutic benefits of DRD4 agonists, pointing out a possible aggravation of psychosis. We suggest a need for further preclinical studies to ensure the safety of antipsychotics with DRD4 stimulating properties.

    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  8. Chen HJ, Dai FJ, Chang CR, Lau YQ, Chew BS, Chau CF
    J Food Drug Anal, 2019 10;27(4):869-875.
    PMID: 31590758 DOI: 10.1016/j.jfda.2019.06.005
    In the present study, the influences of diets (i.e. chow and AIN-93 diets) on the interpretation of various fecal parameters including viable microbiota, moisture, weight, and short-chain fatty acids in rats fed different amounts of inulin (0.5-2 g/kg). Eight groups of rats (n = 8/group) were fed, for 4 weeks, chow or AIN-93 diets with or without inulin supplementation. Fecal samples were analyzed for different fecal parameters. After a 2-week adaptation, apparent differences in some fecal parameters were observed between the chow and AIN-93 diet groups. Throughout the 4-week intervention period, significantly (p 
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  9. Bhupatiraju L, Bethala K, Wen Goh K, Singh Dhaliwal J, Ching Siang T, Menon S, et al.
    J Med Life, 2023 Feb;16(2):307-316.
    PMID: 36937470 DOI: 10.25122/jml-2022-0151
    Food supplements are used to improve cognitive functions in age-related dementia. This study was designed to determine the Murraya koenigii leaves' effect on Alloxan-induced cognitive impairment in diabetic rats and the contents of oxidative stress biomarkers, catalase, reduced glutathione, and glutathione reductase in brain tissue homogenates. Wistar rats were divided into seven groups (six rats per group). Group I received saline water (1 ml, p.o.), Diabetes was induced in Groups II-VII with Alloxan (120 mg/kg/p.o). Group III was provided with Donepezil HCl (2.5 mg/kg/p.o.), Group IV, V, VI, and VII with Murraya koenigii ethanol extract (200 and 400 mg/kg/p.o.) and aqueous extract (200 and 400 mg/kg/p.o.), respectively, for 30 days. Behavior, acetylcholinesterase (AChE) activity, oxidative stress status, and histopathological features were determined in the hippocampus and cerebral cortex. Administration of Murraya koenigii ethanolic and aqueous extracts significantly (P<0.05, P<0.001) increased the number of holes crossed by rats from one chamber to another. There was an increase in the (1) latency to reach the solid platform, (2) number of squares traveled by rats on the 30th day, and (3) percentage of spontaneous alternation behavior compared to the control group. Administration for successive days markedly decreased AChE activity (P<0.05), decreased TBARS level, and increased catalase, GSH, and GR levels. Murayya koenigii could be a promising food supplement for people with dementia. However, more research into sub-chronic toxicity and pharmacokinetic and pharmacodynamics interactions is essential.
    Matched MeSH terms: Rats, Wistar; Rats
  10. Ismail NH, Ibrahim SF, Mokhtar MH, Yahaya A, Zulkefli AF, Ankasha SJ, et al.
    Front Endocrinol (Lausanne), 2023;14:1031066.
    PMID: 36923220 DOI: 10.3389/fendo.2023.1031066
    INTRODUCTION: Vulvovaginal atrophy (VVA) is a common condition in post-menopausal women. Symptoms of VVA include dyspareunia, vaginal dryness, vaginal and/or vulvar itching, burning and soreness, dysuria and vaginal bleeding accompanying sexual activity. These symptoms are physiological responses to hypoestrogenicity, inducing atrophy of the vagina epithelia and sudden reduction in mucous production. Prevailing therapy for VVA is hormone replacement therapy (HRT), notably estrogen, progesterone or a combination of the two. However, using HRT is associated with an increased incidence of breast and endometrial cancer, venous thromboembolism in the lungs and legs, stroke and cardiovascular complications.

    METHODS: This study evaluated Malaysian Gelam honey as a nutraceutical alternative to estrogen HRT (ERT) in alleviating VVA. A total of 24 female 8-weekold Sprague Dawley rats underwent bilateral oophorectomy. A minimum of 14 days elapsed from the time of surgery and administration of the first dose of Gelam honey to allow the female hormones to subside to a stable baseline and complete recovery from surgery. Vaginal tissues were harvested following a 2-week administration of Gelam honey, the harvested vagina tissue underwent immunohistochemistry (IHC) analysis for protein localization and qPCR for mRNA expression analysis.

    RESULTS: Results indicated that Gelam honey administration had increased the localization of Aqp1, Aqp5, CFTR and Muc1 proteins in vaginal tissue compared to the menopause group. The effect of Gelam honey on the protein expressions is summarized as Aqp1>CFTR>Aqp5>Muc1.

    DISCUSSION: Gene expression analysis reveals Gelam honey had no effect on Aqp1 and CFTR genes. Gelam honey had up-regulated Aqp5 gene expression. However, its expression was lower than in the ERT+Ovx group. Additionally, Gelam honey up-regulated Muc1 in the vagina, with an expression level higher than those observed either in the ERT+Ovx or SC groups. Gelam honey exhibits a weak estrogenic effect on the genes and proteins responsible for regulating water in the vaginal tissue (Aqp1, Aqp5 and CFTR). In contrast, Gelam honey exhibits a strong estrogenic ability in influencing gene and protein expression for the sialic acid Muc1. Muc1 is associated with mucous production at the vaginal epithelial layer. In conclusion, the protein and gene expression changes in the vagina by Gelam honey had reduced the occurrence of vaginal atrophy in surgically-induced menopause models.

    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  11. Suhaimi FW, Zul Aznal AN, Mohamad Nor Hazalin NA, Teh LK, Hassan Z, Salleh MZ
    Behav Brain Res, 2023 May 28;446:114411.
    PMID: 36997094 DOI: 10.1016/j.bbr.2023.114411
    Kratom (M. speciosa Korth) is an herbal plant native to Southeast Asia. The leaves have been widely used to alleviate pain and opioid withdrawal symptoms. However, the increasing trend of recreational use of kratom among youth is concerning because substance abuse may render the adolescent brain more susceptible to neuropathological processes, causing dramatic consequences that persist into adulthood. Therefore, the present study aimed to investigate the long-term effects of mitragynine, the main alkaloid and lyophilized kratom decoction (LKD) exposure during adolescence on cognitive behaviours and brain metabolite profiles in adult rats. Adolescent male Sprague-Dawley rats were given mitragynine (3, 10 or 30 mg/kg) or LKD orally for 15 consecutive days during postnatal days 31-45 (PND31-45). Behavioural testing was performed during adulthood (PND70-84) and the brains were subjected to metabolomic analysis. The results show that a high dose of mitragynine impaired long-term object recognition memory. Social behaviour and spatial learning were not affected, but both mitragynine and LKD impaired reference memory. Brain metabolomic study revealed several altered metabolic pathways that may be involved in the cognitive behavioural effects of LKD and mitragynine exposure. These pathways include arachidonic acid, taurine and hypotaurine, pantothenate and CoA biosynthesis, and tryptophan metabolism, while the N-isovalerylglycine was identified as the potential biomarker. In summary, adolescent kratom exposure can cause long-lasting cognitive behavioural deficits and alter brain metabolite profiles that are still evident in adulthood. This finding also indicates that the adolescent brain is vulnerable to the impact of early kratom use.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  12. Kamal DAM, Ibrahim SF, Ugusman A, Zaid SSM, Mokhtar MH
    Nutrients, 2022 Oct 18;14(20).
    PMID: 36297046 DOI: 10.3390/nu14204364
    Polycystic ovary syndrome (PCOS) has been linked to aberrant folliculogenesis and abnormalities in the aromatase enzyme (Cyp19a1) and the steroidogenic enzyme, 17-alpha-hydroxylase (Cyp17a1) expression. It has been demonstrated that Kelulut honey (KH) improves both female and male reproductive system anomalies in animal studies. Here, we examined the effects of isolated and combined KH, metformin, and clomiphene in improving folliculogenesis, aromatase, and steroidogenic enzyme profiles and ovarian histomorphology in letrozole-induced PCOS rats. Letrozole (1 mg/kg/day) was administered to female Sprague-Dawley (SD) rats for 21 days to induce PCOS. PCOS rats were subsequently divided into six experimental groups: untreated, treatment with metformin (500 mg/kg/day), clomiphene (2 mg/kg/day), KH (1 g/kg/day), combined KH (1 g/kg/day) and metformin (500 mg/kg/day), and combined KH (1 g/kg/day) and clomiphene (2 mg/kg/day). All treatments were given orally for 35 days. We found that KH was comparable with clomiphene and metformin in improving the expression of Cyp17a1 and Cyp19a1, apart from enhancing folliculogenesis both histologically and through the expression of folliculogenesis-related genes. Besides, the combination of KH with clomiphene was the most effective treatment in improving the ovarian histomorphology of PCOS rats. The effectiveness of KH in restoring altered folliculogenesis, steroidogenic, and aromatase enzyme profiles in PCOS warrants a future clinical trial to validate its therapeutic effect clinically.
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  13. Abdul Wahab SM, Husain K, Jantan I, Arshad L, Haque MA, Mohd Fauzi N, et al.
    Curr Pharm Biotechnol, 2023;24(11):1465-1477.
    PMID: 36545731 DOI: 10.2174/1389201024666221221113020
    BACKGROUND: Annona muricata L. (Annonaceae) (AM)'s remarkable anti-inflammatory and anti-cancer activities make it a targeted plant to be explored for its immunomodulatory properties. Traditional practitioners have employed various components of AM to cure a variety of ailments, including cancer, diabetes, and inflammation.

    OBJECTIVE: The present study evaluated the immunosuppressive effects of 80% ethanol extract of of AM leaves in male Wistar rats on different parameters of humoral and cellular immune responses.

    METHODS: AM leaf extract (AMLE) was analyzed using UHPLC-MS/MS to profile its secondary metabolites. AMLE was rich in polyphenols which include (epi)catechin-(epi)catechin-(epi) catechin, caffeic acid, coumaroylquinic acid, hyperin, kaempferol, quinic acid and rutin. The rats were administered 100, 200 and 400 mg/kg bw of the extract daily for 14 days. The effects of AMLE on innate immune responses were determined by evaluating phagocytosis, neutrophils migration, reactive oxygen species (ROS) release, CD11b/CD18 integrin expression, and ceruloplasmin, lysozyme and myeloperoxidase (MPO) levels. The adaptive immune parameters were evaluated by immunizing the rats with sheep red blood cells (sRBC) on day 0 and administered orally with AMLE for 14 days.

    RESULTS: AMLE established significant immunosuppressive effects on the innate immune parameters by inhibiting the neutrophil migration, ROS production, phagocytic activity and expression of CD11b/CD18 integrin in a dose-dependent pattern. AMLE also suppressed ceruloplasmin, MPO and lysozyme expressions in the rat plasma dose-dependently. AMLE dose-dependently inhibited T and B lymphocytes proliferation, Th1 and Th2 cytokine production, CD4+ and CD8+ co-expression in splenocytes, immunoglobulins (IgM and IgG) expression and the sRBC-induced swelling rate of rat paw in delayed-type hypersensitivity (DTH).

    CONCLUSION: The strong inhibitory effects on the different parameters of humoral and cellular responses indicate that AMLE has potential to be an important source of effective immunosuppressive agents.

    Matched MeSH terms: Rats, Wistar; Rats
  14. Md Pisar M, Chee BJ, Long I, Osman A
    Ann Med, 2023 Dec;55(1):2224970.
    PMID: 37318144 DOI: 10.1080/07853890.2023.2224970
    BACKGROUND AND AIM: Centella asiatica (L.) Urb. (Apiaceae) is a renowned medicinal plant being used in the Ayurvedic system for its pharmacological effects on the central nervous system such as rejuvenating, sedative, anxiolytic and memory-enhancing properties. The present study was designed to investigate the effect of Centella asiatica (CA) extract on inflammatory responses induced by lipopolysaccharide (LPS) and resulting changes in cognitive behavior.

    MATERIALS AND METHODS: Adult male Sprague-Dawley rats were divided into 4 groups as control, LPS, CA and LPS + CA. The treatments with LPS (5 mg/kg) were intraperitoneally (i.p) injected on day 4 and CA ethanol extract (200 mg/kg) were given orally for 14 days. Morris Water Maze (MWM) test was performed to assess spatial learning and memory performance. Acute oral toxicity of the extract at the highest dose of 5000 mg/kg was also conducted.

    RESULTS: Single administration of LPS was able to significantly elicit learning and memory impairment (p 

    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  15. Kamath S, Rao SG, Murthy KD, Bairy KL, Bhat S
    Indian J Exp Biol, 2006 Nov;44(11):902-4.
    PMID: 17205711
    Contribution and role of a pyramid/square box on the wound healing suppressant effect of dexamethasone was studied in rats of either sex using excision wound model to record the wound contraction rate and epithelization period. The results showed enhanced wound contraction rate and decreased epithelization period in the pyramid-exposed rats as compared to controls. Thus, it appears that pyramid environment facilitates the process of wound healing. Also, the wound healing suppressant effects of dexamethasone were significantly reduced.
    Matched MeSH terms: Rats, Wistar; Rats
  16. Hardiany NS, Dewi PKK, Dewi S, Tejo BA
    Sci Rep, 2024 Jan 05;14(1):603.
    PMID: 38182767 DOI: 10.1038/s41598-024-51221-5
    In this study, the potential neuroprotective ability of coriander seeds (Coriandrum sativum L.) ethanolic extract (CSES) as a neuroprotectant agent in the brains of high-fat diet-induced obese rats was analyzed. The study investigated how CSES impacts oxidative stress markers (i.e., malondialdehyde/MDA, glutathione/GSH and catalase), inflammation marker (i.e., Interleukin-6/IL-6), cellular senescence markers (i.e., senescence-associated β-galactoside/SA-β-Gal activity and p16), brain damage marker (i.e., Neuron-specific Enolase/NSE), and neurogenesis markers (i.e., mature Brain-derived Neurotropic Factor/BDNF, pro-BDNF, and mature/pro-BDNF ratio). Male adult Wistar rats were fed a high-fat diet and given CSES once daily, at 100 mg/kg body weight, for 12 weeks. CSES significantly reduced MDA concentration (p = 
    Matched MeSH terms: Rats, Wistar; Rats
  17. Fareez IM, Lim SM, Ramasamy K
    Probiotics Antimicrob Proteins, 2024 Feb;16(1):99-112.
    PMID: 36508139 DOI: 10.1007/s12602-022-10020-y
    The pathogenesis of colorectal cancer (CRC) is associated with gut dysbiosis that is attributed to unhealthy lifestyles and dietary habits. Consumption of microencapsulated probiotics may potentially restore the gut microbiota in favour of prevention against CRC. This study determined the fate of microencapsulated Lactiplantibacillus plantarum (formerly known as Lactobacillus plantarum) LAB12 in the gastrointestinal tract (GIT) and assessed the chemopreventive effect of microencapsulated L. plantarum LAB12 in vivo. The targeted release of L. plantarum LAB12 from Alg-based microcapsules at the stomach, ileum, caecum and colon of Sprague-Dawley rats was examined by confocal microscopy and qPCR. Microcapsules loaded with L. plantarum LAB12 remained intact in the stomach. Free L. plantarum LAB12 were present in abundance (> 7 log CFU) only in the intestines. Subsequently, the chemopreventive properties of microencapsulated L. plantarum LAB12 were validated against NU/NU nude mice bearing orthotopic transplanted CT-26 CRC (12 female mice; 4-6 weeks old; 20-22 g; n = 6/group). Orthotopic mice pre-supplemented with microencapsulated L. plantarum LAB12 (10 log CFU kg-1 BW for 11 weeks) were presented with significantly (p 
    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  18. Titisari N, Fauzi A, Razak ISA, Samsulrizal N, Ahmad H
    Open Vet J, 2023 Aug;13(8):983-990.
    PMID: 37701670 DOI: 10.5455/OVJ.2023.v13.i8.4
    BACKGROUND: Fish oil, which is regarded as the primary source of omega-3 fatty acids, has been long studied for its potential as an antidiabetic therapy. However, its protective ability against insulin resistance and pancreatic islet alteration remains unclear and controversial.

    AIM: To investigate the beneficial effects of fish oil consumption on the progression of insulin resistance and pancreatic islet dysfunction in a rat model of diabetes.

    METHODS: Diabetic rats model (n = 30) were divided into five groups and received; 1) NS injection + NS oral (normal control); 2) NS injection + 3 g/kg fish oil (fish oil control); 3) streptozotocin (STZ) injection + NS oral [diabetes control (DC)]; 4) STZ injection + 1 g/kg fish oil (DFO1); and 5) STZ injection + 3 g/kg fish oil (DFO3). Fasting blood insulin was analyzed by commercial rat insulin enzyme-linked immunosorbent assay; meanwhile, the determination of insulin sensitivity was calculated by homeostatic model assessment of insulin resistance (HOMA-IR) and homeostatic model assessment of beta-cell function. A histological study was conducted on pancreas tissue using H and E staining.

    RESULTS: Fish oil supplementation reduced hyperglycemia and ameliorated HOMA-IR in STZ-induced animal models indicating that fish oil supplementation improved insulin sensitivity. Furthermore, animals treated with fish oil at a dose of 3 g/kg (DFO3) showed an enhancement in pancreatic islets, which was displayed by less abnormal structures than DC animals. This could imply that the administration of fish oil, especially rich in bioactive omega-3 fatty acids effectively inhibits insulin resistance and restore islet of Langerhans alteration in rats injected with STZ.

    CONCLUSION: Thus, the current study suggested that fish oil supplementation could support the treatment of diabetes but should not be considered as an alternative therapy.

    Matched MeSH terms: Rats, Wistar; Rats
  19. Moghadasi M, Akbari F, Najafi P
    Mol Biol Rep, 2024 Jan 16;51(1):111.
    PMID: 38227208 DOI: 10.1007/s11033-023-09197-4
    INTRODUCTION: Alzheimer's disease (AD) is characterized by progressive cognitive decline and a reduction in hippocampal neurotrophins, in which trimethytin (TMT) infusion causes tangles and neuronal dysfunction, creating an AD-like model in rats. Previous studies have demonstrated that crocin, which has anti-inflammatory properties, can enhance learning, memory acquisition, and cognitive behavior. This study aimed to assess the combined impact of aerobic exercise and crocin on memory, learning, and hippocampal Tau and neurotrophins gene expression in AD-like model rats.

    METHODS: Forty male Sprague Dawley rats were randomly divided into five groups: (1) healthy control, (2) Alzheimer's control, (3) endurance training, (4) crocin consumption, and (5) endurance training + crocin. Alzheimer's induction was achieved in groups 2-5 through intraperitoneal injection of 8 mg/kg TMT. Rats in groups 3 and 5 engaged in treadmill running three sessions per week, 15-30 min per session, at a speed of 15-20 m/min for eight weeks, and groups 4 and 5 received daily crocin supplementation of 25 mg/kg.

    RESULTS: Alzheimer's induction with TMT showed significant reduction in memory, learning, NGF, BDNF, and TrkB gene expression, and increase in tau gene expression (all p 

    Matched MeSH terms: Rats, Sprague-Dawley; Rats
  20. Abdo Qaid EY, Abdullah Z, Zakaria R, Long I
    Int J Neurosci, 2024 Jun;134(1):56-65.
    PMID: 35638219 DOI: 10.1080/00207454.2022.2084092
    PURPOSE/AIM: Neuroinflammation and oxidative stress have been encountered in neurodegenerative diseases such as Alzheimer's disease (AD). However, the neuroprotective effects of minocycline against lipopolysaccharide (LPS)-induced glial cells activation and oxidative stress damage in the medial prefrontal cortex (mPFC) of rats are still elusive. The purpose of this study is to investigate the effects of minocycline and memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist, on the microglia and astrocytes expression, as well as oxidative stress levels in the mPFC of LPS injected rats.

    MATERIALS AND METHODS: Fifty adult Male Sprague Dawley rats were divided into five groups: control, LPS (5 mg/kg), LPS treated with minocycline (25 mg/kg), LPS treated with minocycline (50 mg/kg) and LPS treated with memantine (10 mg/kg). The immunohistochemistry and western blotting were used to analyse the expressions and densities of microglia marker (Iba-1) and astrocyte marker, (GFAP) while enzyme-linked immunosorbent assay (ELISA) was used to measure the protein carbonyl (PCO), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) levels.

    RESULTS: In comparison to the control group, the expression and density of Iba-1 and GFAP were significantly enhanced in the LPS group (p 

    Matched MeSH terms: Rats, Sprague-Dawley; Rats
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links