Displaying publications 221 - 240 of 396 in total

Abstract:
Sort:
  1. Lye YL, Bong CW, Lee CW, Zhang RJ, Zhang G, Suzuki S, et al.
    Sci Total Environ, 2019 Oct 20;688:1335-1347.
    PMID: 31726563 DOI: 10.1016/j.scitotenv.2019.06.304
    The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMXr) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L-1 with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMXr-bacteria (107 CFU mL-1) and SRGs (10-1/16S copies mL-1). Pearson correlation showed only positive correlation between the PO4 and SMXr-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMXr-bacteria and SRGs in the river.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  2. Ismail NAH, Wee SY, Haron DEM, Kamarulzaman NH, Aris AZ
    Mar Pollut Bull, 2020 Jan;150:110735.
    PMID: 31784268 DOI: 10.1016/j.marpolbul.2019.110735
    Endocrine-disrupting compounds (EDCs) such as hormones, pesticides, phenolic compounds, and pharmaceuticals compounds can cause adverse effects on humans, animals, and other living organisms. One of the largest mariculture areas situated in Pulau Kukup, Johor, Malaysia, is actively involved in exporting marine fish to other countries worldwide. This paper aims to provide baseline data on the level of EDC pollutants found in mariculture sediments in Malaysia since no reports have investigated this issue. Calculated samples recovered are between 50.39 and 129.10% at 100 ng/g spiking level. The highest concentration in the sediment samples was bisphenol A (0.072-0.389 ng/g dry weight) followed by diethylstilbestrol (<0.208-0.331 ng/g dry weight) and propranolol (<0.250-0.275 ng/g dry weight). Even though the concentrations of the targeted compounds obtained were low, their effects could become more evident longer term, which raises not only environmental health concerns but the potential risk to humans.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  3. Hassandoost R, Pouran SR, Khataee A, Orooji Y, Joo SW
    J Hazard Mater, 2019 08 15;376:200-211.
    PMID: 31128399 DOI: 10.1016/j.jhazmat.2019.05.035
    The main prerequisite of an active visible-light-driven photocatalyst is to effectively utilize the visible light to induce electron-hole (e-/h+) pairs of expanded lifetime. To this end, for the first time, the ternary heterojunctions of CeO2/Fe3O4 /Graphene oxide and Ce3+/ Fe3O4 /Graphene oxide (CeO2/Fe3O4/GO and Fe2.8Ce0.2O4/GO) were prepared via facile ultrasonic-assisted procedures and employed for destruction of oxytetracycline (OTC) under visible light irradiation. The changes in the relative crystal structure, morphology, atomic and surface functional group composition, magnetic, and optic properties of magnetite were uncovered by various techniques. The substantial degradation and mineralization of OTC via visible light/Fe2.8Ce0.2O4/GO system were thoroughly discussed in terms of narrowed band gap energy, the principal function of Ce3+/Ce4+ and Fe2+/Fe3+ redox pairs and GO platelets, enhanced charge separation and transfer, and enlarged active surface area. Furthermore, the performance of visible light/Fe2.8Ce0.2O4/GO system was evaluated for treating real wastewater and its efficiency was investigated using a number of enhancers and scavengers. Finally, the generated byproducts in the course of photodegradation were determined and the oxidation pathway, photocatalytic kinetics, and plausible mechanism were proposed. The results confirmed that the introduced Ce ions and graphene oxide sheets boost the photo-catalytic efficiency of magnetite for photodegradation of OTC.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  4. Haris H, Aris AZ, Mokhtar MB, Looi LJ
    Chemosphere, 2020 Apr;245:125590.
    PMID: 31874324 DOI: 10.1016/j.chemosphere.2019.125590
    This study was conducted to assess the reliability of Nerita lineata as a bioindicator for metals in sediment and the factors influencing the accumulation of metals and methylmercury in its soft tissue. The two matrices were analyzed for Co, Cr, Cu, THg, MeHg, Mn, Ni, Pb, and Zn. The metal concentrations in N. lineata were comparable to previously reported results with the exception of Ni which was higher. Cu, Mn, and Pb in N. lineata were significantly (p 
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  5. Chen WL, Ling YS, Lee DJH, Lin XQ, Chen ZY, Liao HT
    Chemosphere, 2020 Mar;242:125268.
    PMID: 31896175 DOI: 10.1016/j.chemosphere.2019.125268
    This study investigated chlorinated transformation products (TPs) and their parent micropollutants, aromatic pharmaceuticals and personal care products (PPCPs) in the urban water bodies of two metropolitan cities. Nine PPCPs and 16 TPs were quantitatively or semi-quantitatively determined using isotope dilution techniques and liquid chromatography-tandem mass spectrometry. TPs and most PPCPs were effectively removed by conventional wastewater treatments in a wastewater treatment plant (WWTP). Chlorinated parabens and all PPCPs (at concentrations below 1000 ng/L) were present in the waters receiving treated wastewater. By contrast, the waters receiving untreated wastewater contained higher levels of PPCPs (up to 9400 ng/L) and more species of chlorinated TPs including chlorinated parabens, triclosan, diclofenac, and bisphenol A. The very different chemical profiles between the water bodies of the two cities of similar geographical and climatic properties may be attributed to their respective uses of chemicals and policies of wastewater management. No apparent increase in the number of species or abundances of TPs was observed in either the chlorinated wastewater or the seawater rich in halogens. This is the first study to elucidate and compare the profiles of multiple TPs and their parent PPCPs in the water bodies of coastal cities from tropical islands. Our findings suggest that chlorinated derivatives of bisphenol A, diclofenac, triclosan, and parabens in the surface water originate from sources other than wastewater disinfection or marine chlorination. Although further studies are needed to identify the origins, conventional wastewater treatments may protect natural water bodies against contamination by those chlorinated substances.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  6. Baharuddin SH, Mustahil NA, Reddy AVB, Abdullah AA, Mutalib MIA, Moniruzzaman M
    Chemosphere, 2020 Jun;249:126125.
    PMID: 32058133 DOI: 10.1016/j.chemosphere.2020.126125
    The application of chemical dispersants in marine oil spill remediation is comprehensively reported across the globe. But, the augmented toxicity and poor biodegradability of reported chemical dispersants have created necessity for their replacement with the bio-based green dispersants. Therefore, in the present study, we have synthesized five ionic liquids (ILs) namely 1-butyl-3-methylimidazolium lauroylsarcosinate, 1,1'-(1,4-butanediyl)bis(1-H-pyrrolidinium) dodecylbenzenesulfonate, tetrabutylammonium citrate, tetrabutylammonium polyphosphate and tetrabutylammonium ethoxylate oleyl ether glycolate, and formulated a water based ILs dispersant combining the synthesized ILs at specified compositions. The effectiveness of formulated ILs dispersant was found between 70.75% and 94.71% for the dispersion of various crude oils ranging from light to heavy. Further, the acute toxicity tests against zebra fish and grouper fish have revealed the practically non-toxic behaviour of formulated ILs dispersant with LC50 value greater than 100 ppm after 96 h. In addition, the formulated ILs dispersant has provided excellent biodegradability throughout the test period. Overall, the formulated new ILs dispersant is deemed to facilitate environmentally benign oil spill remediation and could effectively substitute the use of hazardous chemical dispersants in immediate future.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  7. Ooi L, Okazaki K, Arias-Barreiro CR, Heng LY, Mori IC
    Chemosphere, 2020 May;247:125933.
    PMID: 32079055 DOI: 10.1016/j.chemosphere.2020.125933
    Toxicity Identification Evaluation (TIE) is a useful method for the classification and identification of toxicants in a composite environment water sample. However, its extension to a larger sample size has been restrained owing to the limited throughput of toxicity bioassays. Here we reported the development of a high-throughput method of TIE Phase I. This newly developed method was assisted by the fluorescence-based cellular oxidation (CO) biosensor fabricated with roGFP2-expressing bacterial cells in 96-well microplate format. The assessment of four river water samples from Langat river basin by this new method demonstrated that the contaminant composition of the four samples can be classified into two distinct groups. The entire toxicity assay consisted of 2338 tests was completed within 12 h with a fluorescence microplate reader. Concurrently, the sample volume for each assay was reduced to 50 μL, which is 600 to 4700 times lesser to compare with conventional bioassays. These imply that the throughput of the CO biosensor-assisted TIE Phase I is now feasible for constructing a large-scale toxicity monitoring system, which would cover a whole watershed scale.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  8. Show PL, Pal P, Leong HY, Juan JC, Ling TC
    Environ Monit Assess, 2019 Mar 18;191(4):227.
    PMID: 30887225 DOI: 10.1007/s10661-019-7380-9
    Landfill application is the most common approach for biowaste treatment via leachate treatment system. When municipal solid waste deposited in the landfills, microbial decomposition breaks down the wastes generating the end products, such as carbon dioxide, methane, volatile organic compounds, and liquid leachate. However, due to the landfill age, the fluctuation in the characteristics of landfill leachate is foreseen in the leachate treatment plant. The focuses of the researchers are keeping leachate from contaminating groundwater besides keeping potent methane emissions from reaching the atmosphere. To address the above issues, scientists are required to adopt green biological methods to keep the environment safe. This review focuses on the assorting of research papers on organic content and nitrogen removal from the leachate via recent effective biological technologies instead of conventional nitrification and denitrification process. The published researches on the characteristics of various Malaysian landfill sites were also discussed. The understanding of the mechanism behind the nitrification and denitrification process will help to select an optimized and effective biological treatment option in treating the leachate waste. Recently, widely studied technologies for the biological treatment process are aerobic methane oxidation coupled to denitrification (AME-D) and partial nitritation-anammox (PN/A) process, and both were discussed in this review article. This paper gives the idea of the modification of the conventional treatment technologies, such as combining the present processes to make the treatment process more effective. With the integration of biological process in the leachate treatment, the effluent discharge could be treated in shortcut and novel pathways, and it can lead to achieving "3Rs" of reduce, reuse, and recycle approach.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  9. Jani J, Lusk MG, Yang YY, Toor GS
    PLoS One, 2020;15(4):e0230908.
    PMID: 32236119 DOI: 10.1371/journal.pone.0230908
    Stormwater runoff is recognized as a cause of water quality degradation because it may carry nitrogen (N) and other pollutants to aquatic ecosystems. Stormwater ponds are a stormwater control measure often used to manage stormwater runoff by holding a permanent pool of water, which reduces the peak flow, magnitude of runoff volume, and concentrations of nutrients and pollutants. We instrumented the outlet of a stormwater pond in an urban residential neighbourhood in Florida, United States to (1) investigate the concentration and composition of N forms during the summer rainy season (May to September 2016), and (2) determine the bioavailability of organic N in the stormwater pond with a bioassay experiment. A total of 144 outflow water samples over 13 storm events were collected at the outlet of the stormwater pond that collects runoff from the residential catchment. Samples were analysed for various inorganic N [ammonium (NH4-N), nitrate (NO3-N)], and organic N forms [dissolved organic nitrogen (DON), and particulate organic nitrogen (PON)]. Flow-weighted mean concentration of total N (TN) in pond outflow for all collected storm events was 1.3±1.42 mg L-1, with DON as the dominant form (78%), followed by PON and NO3-N (each at 8%), and NH4-N (6%). In the bioassay experiment, organic N (DON+PON) was significantly decreased by 25-28% after 5 days of incubation, suggesting that a portion of the DON carried from the pond outflow to receiving water bodies may be bioavailable. These results suggest that efforts to mitigate stormwater N outflows from urban ponds should incorporate both inorganic and organic N in management plans.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  10. Prabakaran K, Eswaramoorthi S, Nagarajan R, Anandkumar A, Franco FM
    Chemosphere, 2020 Aug;252:126430.
    PMID: 32200178 DOI: 10.1016/j.chemosphere.2020.126430
    By convention, dissolved trace elements in the river water are considered to be the fraction that passes through a 0.45 μm filter. However, several researchers have considered filtration cut-off other than 0.45 μm for the separation of dissolved trace elements from particulate fraction. Recent research indicated that trace elements could exist in particulate form as colloids and natural nanoparticles. Moreover, the trace elements in the continental dust (aerosols) constitute a significant component in their geochemical cycling. Due to their high mobility, the trace elements in the micron and sub-micron scale have biogeochemical significance in the coastal zone. In this context, this study focuses on the highly mobile fraction of trace elements in particulates (<11 μm) and dissolved form in the Lower Baram River. A factor model utilizing trace elements in the dissolved and mobile phase in the particulates (<11 μm) along with water column characteristics and the partition coefficient (Kd) of the trace elements indicated a more significant role for manganese oxyhydroxides in trace element transport. Perhaps, iron oxyhydroxides play a secondary role. The factor model further illustrated the dissolution of aluminium and authigenic clay formation. Except for Fe and Al, the contamination risk of mobile trace elements in particulates (<11 μm) together with dissolved form are within the permissible limits of the Malaysian water quality standards during monsoon (MON) and postmonsoon (POM) seasons.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  11. Nasir AM, Goh PS, Abdullah MS, Ng BC, Ismail AF
    Chemosphere, 2019 Oct;232:96-112.
    PMID: 31152909 DOI: 10.1016/j.chemosphere.2019.05.174
    Heavy metal contamination in aqueous system has attracted global attention due to the toxicity and carcinogenicity effects towards living bodies. Among available removal techniques, adsorptive removal by nanosized materials such as metal oxide, metal organic frameworks, zeolite and carbon-based materials has attracted much attention due to the large active surface area, large number of functional groups, high chemical and thermal stability which led to outstanding adsorption performance. However, the usage of nanosized materials is restricted by the difficulty in separating the spent adsorbent from aqueous solution. The shift towards the use of adsorptive composite membrane for heavy metal ions removal has attracted much attention due to the synergistic properties of adsorption and filtration approaches in a same chamber. Thus, this review critically discusses the development of nanoadsorbents and adsorptive nanocomposite membranes for heavy metal removal over the last decade. The adsorption mechanism of heavy metal ions by the advanced nanoadsorbents is also discussed using kinetic and isotherm models. The challenges and future prospect of adsorptive membrane technology for heavy metal removal is presented at the end of this review.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  12. Sulaiman N, Chee Beng Y, Ahmad Bustamam FK, Khairuddin NSK, Muhamad H
    Drug Test Anal, 2020 Apr;12(4):504-513.
    PMID: 31898859 DOI: 10.1002/dta.2760
    Cypermethrin is a pyrethroid insecticide commonly used to control bagworm infestation in oil palm plantations. It is applied through spraying onto the leaves where the bagworms reside. This article reports the fate of cypermethrin used in a Malaysian oil palm plantation during a typical dry season through the analysis of cypermethrin residue in environmental and palm oil samples collected from a supervised field trial. Residues of cypermethrin were not detected in the soil samples collected at different depths, water samples collected at different points in the experimental plots, and oil samples extracted from fresh fruit bunches (FFB) harvested from each plot for both single and double dosages of treatment throughout the study interval. Analysis of leaf samples, however, revealed that cypermethrin residue was detected for both pesticide treatments up to day 2 after cypermethrin application.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  13. Rakib MRJ, Jolly YN, Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE, Khandaker MU, et al.
    Sci Rep, 2021 10 25;11(1):20999.
    PMID: 34697391 DOI: 10.1038/s41598-021-99750-7
    Although coastal water marine algae have been popularly used by others as indicators of heavy metal pollution, data within the Bay of Bengal for the estuarine Cox's Bazar region and Saint Martin's Island has remained scarce. Using marine algae, the study herein forms an effort in biomonitoring of metal contamination in the aforementioned Bangladesh areas. A total of 10 seaweed species were collected, including edible varieties, analyzed for metal levels through the use of the technique of EDXRF. From greatest to least, measured mean metal concentrations in descending order have been found to be K > Fe > Zr > Br > Sr > Zn > Mn > Rb > Cu > As > Pb > Cr > Co. Potential toxic heavy metals such as Pb, As, and Cr appear at lower concentration values compared to that found for essential mineral elements. However, the presence of Pb in Sargassum oligocystum species has been observed to exceed the maximum international guidance level. Given that some of the algae species are cultivated for human consumption, the non-carcinogenic and carcinogenic indices were calculated, shown to be slightly lower than the maxima recommended by the international organizations. Overall, the present results are consistent with literature data suggesting that heavy metal macroalgae biomonitoring may be species-specific. To the best of our knowledge, this study represents the first comprehensive macroalgae biomonitoring study of metal contamination from the coastal waters of Cox's Bazar and beyond.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  14. Choong CE, Ibrahim S, Yoon Y, Jang M
    Ecotoxicol Environ Saf, 2018 Feb;148:142-151.
    PMID: 29040822 DOI: 10.1016/j.ecoenv.2017.10.025
    In this work, palm shell waste powder activated carbon coated by magnesium silicate (PPAC-MS) were synthesized by the impregnation of magnesium silicate (MgSiO3) using economical material (silicon dioxide powder) via mild hydrothermal approach for the first time. As an effective adsorbent, PPAC-MS simultaneously removes BPA and Pb(II) in single and binary mode. Surprisingly, PPAC-MS exhibited a homogeneous thin plate mesh-like structure, as well as meso- and macropores with a high surface area of 772.1m2g-1. Due to its specific morphological characteristics, PPAC-MS had adsorption capacities of Pb(II) as high as 419.9mgg-1 and 408.8mgg-1 in single mode and binary mode based on Freudliuch isotherm model while those for BPA by PPAC-MS were 168.4mgg-1 and 254.7mgg-1 for single mode and binary modes corresponding to Langmuir isotherm model. Experiment results also indicated that the synergistic removal of BPA occurred because the precipitation process of Pb(II) leads to the co-precipitation of BPA with Pb(OH)2 compound. PPAC-MS showed a good reusability for 5 regeneration cycles using Mg(II) solution followed by thermal treatment. Overall, PPAC-MS has a high potential in the treatment process for wastewater containing both toxic heavy metals and emerging pollutants due to its high sorption capacities and reusability.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  15. Tayeb MA, Ismail BS, Khairiatul-Mardiana J
    Environ Monit Assess, 2017 Oct 11;189(11):551.
    PMID: 29022154 DOI: 10.1007/s10661-017-6236-4
    This study focused on the residue detection of the herbicides triclopyr and glufosinate ammonium in the runoff losses from the Tasik Chini oil palm plantation area and the Tasik Chini Lake under natural rainfall conditions in the Malaysian tropical environment. Triclopyr and glufosinate ammonium are post-emergence herbicides. Both herbicides were foliar-sprayed on 0.5 ha of oil palm plantation plots, which were individualized by an uneven slope of 10-15%. Samples were collected at 1, 3, 7, 15, 30, 45, 60, 90, and 120 days after treatment. The concentrations of both herbicides quickly diminished from those in the analyzed sample by the time of collection. The highest residue levels found in the field surface leachate were 0.031 (single dosage, triclopyr), 0.041 (single dosage, glufosinate ammonium), 0.017 (double dosage, triclopyr), and 0.037 μg/kg (double dosage, glufosinate ammonium). The chromatographic peaks were observed at "0" day treatment (2 h after herbicide application). From the applied active ingredients, the triclopyr and glufosinate losses were 0.025 and 0.055%, respectively. The experimental results showed that both herbicides are less potent than other herbicides in polluting water systems because of their short persistence and strong adsorption onto soil clay particles.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  16. Sharip Z, Hashim N, Suratman S
    Environ Monit Assess, 2017 Oct 15;189(11):560.
    PMID: 29034408 DOI: 10.1007/s10661-017-6274-y
    This study investigates the presence and distribution of organochlorine pesticides in streams and the lake in the Sembrong Lake Basin in Malaysia. The catchment of Sembrong Lake has been converted to agricultural areas over the past 30 years, with oil palm plantations and modern agricultural farming being the main land use. Surface water samples were collected from eight sites comprising the stream and lake and analysed for 19 organochlorine pesticides (OCPs). In situ measurement of temperature, dissolved oxygen, pH and conductivity were also undertaken at each site. Aldrin, endrin, δ-BHC, 4,4-DDT, methoxychlor and endosulfan were the main OCPs detected in the lake basin. The total OCP concentration ranged between 5.42 and 349.2 ng/L. The most frequently detected OCPs were δ-BHC, heptachlor and aldrin. The maximum values detected were 23.0, 43.2 and 50.4 ng/L respectively. The highest concentration of OCPs was attributed to 4,4-DDT, but such high residue was rare and only detected once. Other OCP residues were low. Significant differences in the mean values were observed between lake and stream for dichlorodiphenyldichloroethylene (DDE) and α-endosulfan concentration (p 
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  17. Adiana G, Juahir H, Joseph B, Shazili NAM
    Mar Pollut Bull, 2017 Oct 15;123(1-2):232-240.
    PMID: 28865793 DOI: 10.1016/j.marpolbul.2017.08.055
    The present study aims to define the possible sources that contribute to the level of Pb into the Brunei Bay, Borneo. The cluster analysis has classified the bay into the northern part with heavy and agriculture-related industries; the southern area with a moderate rural human settlement as well as the southwestern area with a more pristine environment and a low level of human settlement. The score plot of spatial discriminant analysis verified a significant influence of the river system toward the estuary, whereas the temporal discriminant analysis has discriminated the seasonal changes. In comparison to elsewhere, the stable Pb isotopic ratios in Brunei Bay showed a fingerprint similar to coal-related sources and of aerosol input. Briefly, even though Pb in the Brunei Bay ecosystem proved to be at a low level, the stable Pb isotopic ratios showed that human and industrial activities are slowly contributing Pb into the bay ecosystem.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  18. Dalu T, Wasserman RJ, Magoro ML, Mwedzi T, Froneman PW, Weyl OLF
    Sci Total Environ, 2017 Dec 01;601-602:73-82.
    PMID: 28551541 DOI: 10.1016/j.scitotenv.2017.05.162
    This study explores diatom community dynamics in a highly modified semi-arid temperate region river system characterised by inconsistent river flow. Various water and sediment environmental variables were assessed using a multi-faceted analysis approach to determine the spatio-temporal drivers of benthic diatom communities in the river system. Overall, the diatom community was generally dominated by pollution tolerant species, reflecting the anthropogenic intensity and activities on the river system. Diatom community composition was found to be largely determined by water column chemistry variables particularly nutrient concentrations in comparison to sediment chemistry and physical variables. Strong seasonal diatom species composition was also observed and this was driven by strong seasonal variations in nutrient loads and metal concentrations, a result of the variable water flow across the two seasons. However, the greater temporal variation in communities was observed in the smaller systems with the mainstream river system being more homogenous over time. In addition, diatom community composition and environmental variables were found to be different and more pronounced between streams and mainstream sites, than between canals and streams. The study highlights the complex interaction between water column, sediment and physical variables in determining the diatom species composition in small river systems. It also highlights the importance of river flow inconsistency as an indirect variable that alters primary drivers such as nutrient concentrations in the water column and heavy metal levels in the sediment.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  19. Auta HS, Emenike CU, Fauziah SH
    Environ Pollut, 2017 Dec;231(Pt 2):1552-1559.
    PMID: 28964604 DOI: 10.1016/j.envpol.2017.09.043
    The continuous accumulation of microplastics in the environment poses ecological threats and has been an increasing problem worldwide. In this study, eight bacterial strains were isolated from mangrove sediment in Peninsular Malaysia to mitigate the environmental impact of microplastics and develop a clean-up option. The bacterial isolates were screened for their potential to degrade UV-treated microplastics from polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS). Only two isolates, namely, Bacillus cereus and Bacillus gottheilii, grew on a synthetic medium containing different microplastic polymers as the sole carbon source. A shake flask experiment was carried out to further evaluate the biodegradability potential of the isolates. Degradation was monitored by recording the weight loss of microplastics and the growth pattern of the isolates in the mineral medium. The biodegradation extent was validated by assessment of the morphological and structural changes through scanning electron microscopy and Fourier transform infrared spectroscopy analyses. The calculated weight loss percentages of the microplastic particles by B. cereus after 40 days were 1.6%, 6.6%, and 7.4% for PE, PET, and PS, respectively. B. gottheilii recorded weight loss percentages of 6.2%, 3.0%, 3.6%, and 5.8% for PE, PET, PP, and PS, respectively. The designated isolates degraded the microplastic material and exhibited potential for remediation of microplastic-contaminated environment. Biodegradation tests must be conducted to characterize the varied responses of microbes toward pollutants, such as microplastics. Hence, a novel approach for biodegradation of microplastics must be developed to help mitigate the environmental impact of plastics and microplastic polymers.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  20. Ting YF, Praveena SM, Aris AZ, Ismail SNS, Rasdi I
    Ecotoxicology, 2017 Dec;26(10):1327-1335.
    PMID: 28975452 DOI: 10.1007/s10646-017-1857-5
    Steroid estrogens such as 17β-Estradiol (E2) and 17α-Ethynylestradiol (EE2) are highly potent estrogens that widely detected in environmental samples. Mathematical modelling such as concentration addition (CA) and estradiol equivalent concentration (EEQ) models are usually associated with measuring techniques to assess risk, predict the mixture response and evaluate the estrogenic activity of mixture. Wastewater has played a crucial role because wastewater treatment plant (WWTP) is the major sources of estrogenic activity in aquatic environment. The aims of this is to determine E2 and EE2 concentrations in six WWTPs effluent, to predict the estrogenic activity of the WWTPs effluent using CA and EEQ models where lastly the effectiveness of two models is evaluated. Results showed that all the six WWTPs effluent had relative high E2 concentration (35.1-85.2 ng/L) compared to EE2 (0.02-1.0 ng/L). The estrogenic activity predicted by CA model was similar among the six WWTPs (105.4 ng/L), due to the similarity of individual dose potency ratio calculated by respective WWTPs. The predicted total EEQ was ranged from 35.1 EEQ-ng/L to 85.3 EEQ-ng/L, explained by high E2 concentration in WWTPs effluent and E2 EEF value that standardized to 1.0 μg/L. The CA model is more effective than EEQ model in estrogenic activity prediction because EEQ model used less data and causes disassociation from the predicted behavior. Although both models predicted relative high estrogenic activity in WWTPs effluent, dilution effects in receiving river may lower the estrogenic response to aquatic inhabitants.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links