Materials and Methods: The study started with the identification of selected LAB by 16S rRNA, followed by optimization of GABA production by culture conditions using different initial pH, temperature, glutamate concentration, incubation time, carbon, and nitrogen sources. 16S rRNA polymerase chain reaction and analysis by phylogenetic were used to identify Lactobacillus plantarum (coded as N5) responsible for the production of GABA.
Results: GABA production by high-performance liquid chromatography was highest at pH of 5.5, temperature of 36°C, glutamate concentration of 500 mM, and incubation time of 84 h. Peptone and glucose served as the nitrogen and carbon sources, respectively, whereas GABA was produced at optimum fermentation condition of 211.169 mM.
Conclusion: Production of GABA by L. plantarum N5 was influenced by initial pH of 5.5, glutamic acid concentration, nitrogen source, glucose as carbon source, and incubation temperature and time.
Materials and Methods: A batch of newly hatched hybrid grouper fry (Epinephelus fuscoguttatus × Epinephelus lanceolatus) were followed from the larval stage to market size. Samples of the hybrid groupers, water, live feed, and artificial fish pellets were collected periodically from day 0 to 180 in the hybrid grouper hatchery. Reverse transcription-polymerase chain reaction (RT-PCR) and nested PCR amplifications were carried out on VNN-related sequences. The phylogenetic tree including the sampled causative agent of VNN was inferred from the coat protein genes from all known Betanodavirus species using Molecular Evolutionary Genetics Analysis (MEGA). Pearson's correlation coefficient values were calculated to determine the strength of the correlation between the presence of VNN in hybrid grouper samples and its associated risk factors.
Results: A total of 113 out of 146 pooled and individual samples, including hybrid grouper, water, and artificial fish pellet samples, demonstrated positive results in tests for the presence of VNN-associated viruses. The clinical signs of infection observed in the samples included darkened skin, deformation of the backbone, abdominal distension, skin lesions, and fin erosion. VNN was present throughout the life stages of the hybrid groupers, with the first detection occurring at day 10. VNN-associated risk factors included water temperature, dissolved oxygen content, salinity, ammonia level, fish size (adults more at risk than younger stages), and life stage (age). Detection of VNN-associated viruses in water samples demonstrated evidence of horizontal transmission of the disease. All the nucleotide sequences found in this study had high nucleotide identities of 88% to 100% to each other, striped jack nervous necrosis virus (SJNNV), and the reassortant strain red-spotted grouper NNV/SJNNV (RGNNV/SJNNV) isolate 430.2004 (GenBank accession number JN189932.1) (n=26). The phylogenetic analysis showed that quasispecies was present in each VNN-causing virus-positive sample, which differed based on the type of sample and life stage.
Conclusion: This study was the first to confirm the existence of a reassortant strain (RGNNV/SJNNV) in hybrid groupers from Malaysia and Southeast Asia. However, the association between the mode of transmission and the risk factors of this virus needs to be investigated further to understand the evolution and potential new host species of the reassortant strain.
OBJECTIVES: This study focuses on the potential of crude cell free supernatant (CCFS) from lactic acid bacteria (LAB) to inhibit of the growth of S. mutans UKMCC 1019.
DESIGN: A total of 61 CCFS from LAB strains were screened for their inhibitory ability against S. mutans UKMCC 1019 by broth microdilution method. The selected LAB with highest antimicrobial activity was identified and its CCFS was characterized for pH stability, temperature tolerance, enzyme sensitivity, metabolism of carbohydrates, enzymatic activities and antimicrobial activity against S. mutans UKMCC 1019 and C. albicans UKMCC 3001 by well diffusion assay. The effect of CCFS on cell structure of S. mutans UKMCC 1019 was observed under transmission electron microscopy (TEM).
RESULTS: The CCFS from isolate CC2 from Kimchi showed the highest inhibition against S. mutans UKMCC 1019, which was 76.46 % or 4406.08 mm2/mL and it was identified to be most closely related to Enterococcus faecium DSM 20477 based on 16 s rRNA sequencing. The CCFS of E. faecium DSM 20477 had high tolerance to acidic and alkaline environment as well as high temperature. It also shows high antifungal activities against C. albicans UKMCC 3001 with 2362.56 mm2/mL. Under TEM, the cell walls and the cytoplasm membrane of S. mutans UKMCC 1019 were disrupted by the antimicrobial substance, causing cell lysis.
CONCLUSIONS: Hence, the CCFS from E. faecium DSM 20477 is a potential bacteriocin in future for the treatment of dental caries.