METHODS: Two extractions were processed and further fractionated by column chromatography to evaluate the concentration that inhibit 50% of 2,2'-azinobis (3-ethylbenzothiazoline-6-suslfonic acid, 1,1-diphenyl-2-picryl-hydrazyl radicals, and their ferric reducing antioxidant power. The identification of the fractions of phenolic compounds was done by ultra performance liquid chromatography.
RESULTS: The aqueous-acetone extracts of Feretia apodanthera and Ozoroa insignis exhibited the highest antioxidant potentials comparable to those of the standard quercetin. Their subsequently silica gel column fractionation showed three most active fractions from which the major constituents quercetin, myricetin, kampferol, rutin and isoquercetin were identified.
CONCLUSIONS: These plant species have potent antioxidant profiles and polyphenol compounds that may help to manage with radical related disease and aging.
MATERIALS AND METHODS: Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. IC50 concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting.
RESULTS: P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells.
CONCLUSIONS: These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.