Displaying publications 241 - 260 of 704 in total

Abstract:
Sort:
  1. Abu Sepian NR, Mat Yasin NH, Zainol N, Rushan NH, Ahmad AL
    Environ Technol, 2019 Apr;40(9):1110-1117.
    PMID: 29161985 DOI: 10.1080/09593330.2017.1408691
    The immobilisation of Chlorella vulgaris 211/11B entrapped in combinations of natural matrices to simplify the harvesting process was demonstrated in this study. Three combinations of matrices composed of calcium alginate (CA) and sodium alginate (SA), sodium carboxymethyl cellulose (CMC) and SA, and mixed matrices (SA, CA, and CMC) were investigated. The number of cells grown for each immobilised matrix to microalgae volume ratios (0.2:1-1:1) were explored and compared with using SA solely as a control. The optimum volume ratios obtained were 1:1 for SA, 0.3:1 for CA and SA, 1:1 for CMC and SA, and 0.3:1 for mixed matrices. The immobilised microalgae of mixed matrices exhibited the highest number of cells with 1.72 × 109 cells/mL at day 10 and 30.43% of oil extraction yield followed by CA and SA (24.29%), CMC and SA (13.00%), and SA (6.71%). Combining SA, CA, and CMC had formed a suitable structure which improved the growth of C. vulgaris and increased the lipid production compared to the immobilisation using single matrix. Besides, the fatty acids profile of the oil extracted indicates a high potential for biodiesel production.
    Matched MeSH terms: Biomass
  2. Liu L, Chen J, Lim PE, Wei D
    Bioresour Technol, 2018 May;255:140-148.
    PMID: 29414159 DOI: 10.1016/j.biortech.2018.01.114
    The single cell oil (SCO) production by the mono and mixed culture of microalgae Chlorella pyrenoidosa and red yeast Rhodotorula glutinis was investigated using non-detoxified cassava bagasse hydrolysate (CBH) as carbon source. The results suggested that the two strains were able to tolerate and even degrade some byproducts presented in the CBH, and the mixed culture approach enhanced the degradation of certain byproducts. Biomass (20.37 ± 0.38 g/L) and lipid yield (10.42 ± 1.21 g/L) of the mixed culture achieved in the batch culture were significantly higher than that of the mono-cultures (p biomass and lipid yield to 31.45 ± 4.93 g/L and 18.47 ± 3.25 g/L, respectively. The lipids mainly composed of oleic acid and palmitic acid, suggesting the potential applications such as biofuel feedstock, cosmetics, food additives and lubricant. This study provided new insights for the integration of the economical SCO production with agro-industrial waste disposal.
    Matched MeSH terms: Biomass
  3. Chen CY, Nagarajan D, Cheah WY
    Bioresour Technol, 2018 Apr;253:1-7.
    PMID: 29328929 DOI: 10.1016/j.biortech.2017.12.102
    In this study, Nannochloropsis oceanica CY2 was grown in deep-sea water (DSW)-based medium in 5-L plastic bag-type photobioreactors (PBRs) for the autotrophic production of Eicosapentaenoic acid (EPA, 20:5n-3). EPA production of N. oceanica CY2 was stimulated when it was grown in 100% DSW amended with 1.5 g L-1 NaNO3, achieving a EPA content of 3.1% and a biomass concentration of 3.3 g L-1. An outdoor-simulated microalgae cultivation system was also conducted to validate the feasibility of outdoor cultivation of the CY2 strain in plastic bag-type PBRs. Using an inoculum size of 0.6 g/L, the biomass concentration in the PBR culture was 3.5 g L-1, while the EPA content and productivity reached a maximal level of 4.12% and 7.49 mg L-1 d-1, respectively. When the PBRs were operated on semi-batch mode, the EPA productivity could further increase to 9.9 mg L-1 d-1 with a stable EPA content of 4.1%.
    Matched MeSH terms: Biomass
  4. Yavari S, Malakahmad A, Sapari NB, Yavari S
    J Environ Manage, 2017 Feb 18;193:201-210.
    PMID: 28226259 DOI: 10.1016/j.jenvman.2017.02.035
    Imidazolinones are a family of herbicides that are used to control a broad range of weeds. Their high persistence and leaching potential make them probable risk to the ecosystems. In this study, biochar, the biomass-derived solid material, was produced from oil palm empty fruit bunches (EFB) and rice husk (RH) through pyrolysis process. Feedstock and pyrolysis variables can control biochar sorption capacity. Therefore, the present study attempts to evaluate effects of three pyrolysis variables (temperature, heating rate and retention time) on abilities of biochars for removal of imazapic and imazapyr herbicides from soil. Response surface methodology (RSM) was used for optimizing the variables to achieve maximum sorption performance of the biochars. Experimental data were interpreted accurately by quadratic models. Based on the results, sorption capacities of both biochars raised when temperature decreased to 300 °C, mainly because of increased biochars effective functionality in sorption of polar molecules. Heating rate of 3°C/min provided optimum conditions to maximize the sorption capacities of both biochars. Retention time of about 1 h and 3 h were found to be the best for EFB and RH biochars, respectively. EFB biochar was more efficient in removal of the herbicides, especially imazapyr due to its chemical composition and higher polarity index (0.42) rather than RH biochar (0.39). Besides, higher cation exchange capacity (CEC) values of EFB biochar (83.90 cmolc/kg) in comparison with RH biochar (70.73 cmolc/kg) represented its higher surface polarity effective in sorption of the polar herbicides.
    Matched MeSH terms: Biomass
  5. Majeed Z, Nawazish S, Baig A, Akhtar W, Iqbal A, Muhammad Khan W, et al.
    PLoS One, 2023;18(2):e0278568.
    PMID: 36848343 DOI: 10.1371/journal.pone.0278568
    Green biomass is a renewable and biodegradable material that has the potential use to trap urea to develop a high-efficiency urea fertilizer for crops' better performance. Current work examined the morphology, chemical composition, biodegradability, urea release, soil health, and plant growth effects of the SRF films subjected to changes in the thickness of 0.27, 0.54, and 1.03 mm. The morphology was examined by Scanning Electron Microscopy, chemical composition was analyzed by Infrared Spectroscopy, and biodegradability was assessed through evolved CO2 and CH4 quantified through Gas Chromatography. The chloroform fumigation technique was used for microbial growth assessment in the soil. The soil pH and redox potential were also measured using a specific probe. CHNS analyzer was used to calculate the total carbon and total nitrogen of the soil. A plant growth experiment was conducted on the Wheat plant (Triticum sativum). The thinner the films, the more they supported the growth and penetration of the soil's microorganisms mainly the species of fungus possibly due to the presence of lignin in films. The fingerprint regions of the infrared spectrum of SRF films showed all films in soil changed in their chemical composition due to biodegradation but the increase in the thickness possibly provides resistance to the films' losses. The higher thickness of the film delayed the rate and time for biodegradation and the release of methane gas in the soil. The 1.03 mm film (47% in 56 days) and 0.54 mm film (35% in 91 days) showed the slowest biodegradability as compared to the 0.27 mm film with the highest losses (60% in 35 days). The slow urea release is more affected by the increase in thickness. The Korsymer Pappas model with release exponent value of < 0.5 explained the release from the SRF films followed the quasi-fickian diffusion and also reduced the diffusion coefficient for urea. An increase in the pH and decrease in the redox potential of the soil is correlated with higher total organic content and total nitrogen in the soil in response to amending SRF films with variable thickness. Growth of the wheat plant showed the highest average plant length, leaf area index and grain per plant in response to the increase in the film's thickness. This work developed an important knowledge to enhance the efficiency of film encapsulated urea that can better slow the urea release if the thickness is optimized.
    Matched MeSH terms: Biomass
  6. Kee PE, Cheng YS, Chang JS, Yim HS, Tan JCY, Lam SS, et al.
    Environ Res, 2023 Mar 15;221:115284.
    PMID: 36640934 DOI: 10.1016/j.envres.2023.115284
    With rapid growing world population and increasing demand for natural resources, the production of sufficient food, feed for protein and fat sources and sustainable energy presents a food insecurity challenge globally. Insect biorefinery is a concept of using insect as a tool to convert biomass waste into energy and other beneficial products with concomitant remediation of the organic components. The exploitation of insects and its bioproducts have becoming more popular in recent years. This review article presents a summary of the current trend of insect-based industry and the potential organic wastes for insect bioconversion and biorefinery. Numerous biotechnological products obtained from insect biorefinery such as biofertilizer, animal feeds, edible foods, biopolymer, bioenzymes and biodiesel are discussed in the subsequent sections. Insect biorefinery serves as a promising sustainable approach for waste management while producing valuable bioproducts feasible to achieve circular bioeconomy.
    Matched MeSH terms: Biomass
  7. Satya ADM, Cheah WY, Yazdi SK, Cheng YS, Khoo KS, Vo DN, et al.
    Environ Res, 2023 Feb 01;218:114948.
    PMID: 36455634 DOI: 10.1016/j.envres.2022.114948
    Water usage increased alongside its competitiveness due to its finite amount. Yet, many industries still rely on this finite resource thus recalling the need to recirculate their water for production. Circular bioeconomy is presently the new approach emphasizing on the 'end-of-life' concept with reusing, recycling, and recovering materials. Microalgae are the ideal source contributing to circular bioeconomy as it exhibits fast growth and adaptability supported by biological rigidity which in turn consumes nutrients, making it an ideal and capable bioremediating agent, therefore allowing water re-use as well as its biomass potential in biorefineries. Nevertheless, there are challenges that still need to be addressed with consideration of recent advances in cultivating microalgae in wastewater. This review aimed to investigate the potential of microalgae biomass cultivated in wastewater. More importantly, how it'll play a role in the circular bioeconomy. This includes an in-depth look at the production of goods coming from wastes tattered by emerging pollutants. These emerging pollutants include microplastics, antibiotics, ever-increasingly sewage water, and heavy metals which have not been comprehensively compared and explored. Therefore, this review is aiming to bring new insights to researchers and industrial stakeholders with interest in green alternatives to eventually contribute towards environmental sustainability.
    Matched MeSH terms: Biomass
  8. Rawindran H, Syed R, Alangari A, Khoo KS, Lim JW, Sahrin NT, et al.
    Environ Res, 2023 Apr 01;222:115352.
    PMID: 36716802 DOI: 10.1016/j.envres.2023.115352
    The capacity to maximize the proliferation of microalgal cells by means of topologically textured organic solid surfaces under various pH gave rise to the fundamental biophysical analysis of cell-surface attachment in this study. The substrate used in analysis was palm kernel expeller (PKE) in which the microalgal cells had adhered onto its surface. The findings elucidated the relevance of surface properties in terms of surface wettability and surface energy in relation to the attached microalgal growth with pH as the limiting factor. The increase in hydrophobicity of PKE-microalgae attachment was able to facilitate the formation of biofilm better. The pH 5 and pH 11 were found to be the conditions with highest and lowest microalgal growths, respectively, which were in tandem with the highest contact angle value at pH 5 and conversely for pH 11. The work of attachment (Wcs) had supported the derived model with positive values being attained for all the pH conditions, corroborating the thermodynamic feasibility. Finally, this study had unveiled the mechanism of microalgal attachment onto the surface of PKE using the aid of extracellular polymeric surfaces (EPS) from microalgae. Also, the hydrophobic nature of PKE enabled excellent attachment alongside with nutrients for microalgae to grow and from layer-by-layer (LbL) assembly. This assembly was then isolated using organosolv method by means of biphasic solvents, namely, methanol and chloroform, to induce detachment.
    Matched MeSH terms: Biomass
  9. Kohyama TI, Sheil D, Sun IF, Niiyama K, Suzuki E, Hiura T, et al.
    Nat Commun, 2023 Mar 13;14(1):1113.
    PMID: 36914632 DOI: 10.1038/s41467-023-36671-1
    Despite their fundamental importance the links between forest productivity, diversity and climate remain contentious. We consider whether variation in productivity across climates reflects adjustment among tree species and individuals, or changes in tree community structure. We analysed data from 60 plots of humid old-growth forests spanning mean annual temperatures (MAT) from 2.0 to 26.6 °C. Comparing forests at equivalent aboveground biomass (160 Mg C ha-1), tropical forests ≥24 °C MAT averaged more than double the aboveground woody productivity of forests <12 °C (3.7 ± 0.3 versus 1.6 ± 0.1 Mg C ha-1 yr-1). Nonetheless, species with similar standing biomass and maximum stature had similar productivity across plots regardless of temperature. We find that differences in the relative contribution of smaller- and larger-biomass species explained 86% of the observed productivity differences. Species-rich tropical forests are more productive than other forests due to the high relative productivity of many short-stature, small-biomass species.
    Matched MeSH terms: Biomass
  10. Nizamuddin S, Siddiqui MTH, Baloch HA, Mubarak NM, Griffin G, Madapusi S, et al.
    Environ Sci Pollut Res Int, 2018 Jun;25(18):17529-17539.
    PMID: 29663294 DOI: 10.1007/s11356-018-1876-7
    The process parameters of microwave hydrothermal carbonization (MHTC) have significant effect on yield of hydrochar. This study discusses the effect of process parameters on hydrochar yield produced from MHTC of rice husk. Results revealed that, over the ranges tested, a lower temperature, lower reaction time, lower biomass to water ratio, and higher particle size produce more hydrochar. Maximum hydrochar yield of 62.8% was obtained at 1000 W, 220 °C, and 5 min. The higher heating value (HHV) was improved significantly from 6.80 MJ/kg of rice husk to 16.10 MJ/kg of hydrochar. Elemental analysis results showed that the carbon content increased and oxygen content decreased in hydrochar from 25.9 to 47.2% and 68.5 to 47.0%, respectively, improving the energy and combustion properties. SEM analysis exhibited modification in structure of rice husk and improvement in porosity after MHTC, which was further confirmed from BET surface analysis. The BET surface area increased from 25.0656 m2/g (rice husk) to 92.6832 m2/g (hydrochar). Thermal stability of hydrochar was improved from 340 °C for rice husk to 370 °C for hydrochar.
    Matched MeSH terms: Biomass
  11. Sharif A, Bhattacharya M, Afshan S, Shahbaz M
    Environ Sci Pollut Res Int, 2021 Nov;28(41):57582-57601.
    PMID: 34089449 DOI: 10.1007/s11356-021-13829-2
    A key objective of renewable energy development in the USA is to reduce CO2 emissions by decreasing reliance on fossil fuels in the coming decades. Using quantile-on-quantile regressions, this research examines the relationship between disaggregated sources of renewable energy (biomass, biofuel, geothermal, hydroelectric, solar, wind, wood, and waste) and CO2 emissions in the USA during the period from 1995 to 2017. Our findings support the deployment of various types of renewables in combating CO2 emissions for each quantile. In particular, a negative effect of renewable energy consumption on CO2 emissions is observed for the lower quantiles in almost all types of renewables. The effect of all the renewable energy sources taken together is significant for the lower and upper quantiles of the provisional distribution of CO2 emissions. The effect of renewable energy becomes stronger and more significant in the middle quantiles, where a pronounced causal effect of return and volatility is detected for the lower and upper middle quantiles. At the same time, heterogeneity in the findings across various types of renewable energy sources reveals differences in the relative importance of each type within the energy sector taken as a whole. Future US initiatives in renewable energy deployment at both the federal and the state levels should take into consideration the relative importance of each type, so as to maximize the efficacy of renewable energy policies in combating CO2 emissions.
    Matched MeSH terms: Biomass
  12. Bosu S, Rajamohan N, Sagadevan S, Raut N
    Chemosphere, 2023 Dec;345:140471.
    PMID: 37871875 DOI: 10.1016/j.chemosphere.2023.140471
    The rapid consumption of metals and unorganized disposal have led to unprecedented increases in heavy metal ion concentrations in the ecosystem, which disrupts environmental homeostasis and results in agricultural biodiversity loss. Mitigation and remediation plans for heavy metal pollution are largely dependent on the discovery of cost-effective, biocompatible, specific, and robust detectors because conventional methods involve sophisticated electronics and sample preparation procedures. Carbon dots (CDs) have gained significant importance in sensing applications related to environmental sustainability. Fluorescence sensor applications have been enhanced by their distinctive spectral properties and the potential for developing efficient photonic devices. With the recent development of biomass-functionalized carbon dots, a wide spectrum of multivalent and bivalent transition metal ions responsible for water quality degradation can be detected with high efficiency and minimal toxicity. This review explores the various methods of manufacturing carbon dots and the biochemical mechanisms involved in metal detection using green carbon dots for sensing applications involving Cu (II), Fe (III), Hg (II), and Cr (VI) ions in aqueous systems. A detailed discussion of practical challenges and future recommendations is presented to identify feasible design routes.
    Matched MeSH terms: Biomass
  13. Nurul Rizki I, Amalina I, Hasan NS, Khusnun NF, Abdul Jalil A, Firmansyah ML
    Chemosphere, 2023 Dec;345:140455.
    PMID: 37858767 DOI: 10.1016/j.chemosphere.2023.140455
    Electronic waste has become a global concern, as it has been steadily increasing over the years. The lack of regulation and appropriate processing facilities has rendered these wastes an environmental hazard. However, they represent excellent alternative sources of precious metals, which are highly in demand in various industries. Adsorption has been a popular method for metal removal/recovery because of several advantages, such as ease of use and low cost. In this regard, it is crucial to develop an inexpensive and functionalized adsorbent to selectively adsorb precious metals. Thus, silica, which is derived from rice husk and is abundantly present in Indonesia, was functionalized using an ionic liquid (SiRH_Im) and used for Au(III) adsorption from a simulated mobile phone leach liquor. SiRH_Im exhibited a high adsorption capacity (232.5 mg g-1). The Au(III) adsorption kinetic suitably fitted with the pseudo-second-order kinetic model. The Au(III) adsorption followed a chemisorption route that suited the monolayer model. Thomas' and Yoon-Nelson's models were well suited for the continuous Au(III) behavior. Selective recovery of Au(III) from SiRH_Im was achieved via sequential desorption. SiRH_Im also showed excellent reusability, as indicated by a negligible decrease in adsorptive performance over three cycles. The functionalization of silica derived from rice husk using an ionic liquid led to the successful creation of a solid adsorbent with a high adsorption capacity toward precious metals present in a simulated leach solution. Our results highlight the benefit of the functionalization of biomass through the immobilization of an ionic liquid toward the enhancement of its adsorption capability.
    Matched MeSH terms: Biomass
  14. Zhang Y, Ren H, Li B, Udin SM, Maarof H, Zhou W, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124829.
    PMID: 37210053 DOI: 10.1016/j.ijbiomac.2023.124829
    Deep eutectic solvents (DESs) composed by amino acids (L-arginine, L-proline, L-alanine) as the hydrogen bond acceptors (HBAs) and carboxylic acids (formic acid, acetic acid, lactic acid, levulinic acid) as hydrogen bond donors (HBDs) were prepared and used for the dissolution of dealkaline lignin (DAL). The mechanism of lignin dissolution in DESs was explored at molecular level by combining the analysis of Kamlet-Taft (K-T) solvatochromic parameters, FTIR spectrum and density functional theory (DFT) calculations of DESs. Firstly, it was found that the formation of new hydrogen bonds between lignin and DESs mainly drove the dissolution of lignin, which were accompanied by the erosion of hydrogen bond networks in both lignin and DESs. The nature of hydrogen bond network within DESs was fundamentally determined by the type and number of functional groups in both HBA and HBD, which affected its ability to form hydrogen bond with lignin. One hydroxyl group and carboxyl group in HBDs provided active protons, which facilitated proton-catalyzed cleavage of β-O-4, thus enhancing the dissolution of DESs. The superfluous functional group resulted in more extensive and stronger hydrogen bond network in the DESs, thus decreasing the lignin dissolving ability. Moreover, it was found that lignin solubility had a closed positive correlation with the subtraction value of α and β (net hydrogen donating ability) of DESs. Among all the investigated DESs, L-alanine/formic acid (1:3) with the strong hydrogen-bond donating ability (acidity), weak hydrogen-bond accepting ability (basicity) and small steric-hindrance effect showed the best lignin dissolving ability (23.99 wt%, 60 °C). On top of that, the value of α and β of L-proline/carboxylic acids DESs showed some positive correlation with the global electrostatic potential (ESP) maxima and minima of the corresponding DESs respectively, indicating the analysis of ESP quantitative distributions of DESs could be an effective tool for DESs screening and design for lignin dissolution as well as other applications.
    Matched MeSH terms: Biomass
  15. Tong CY, Honda K, Derek CJC
    Environ Res, 2023 Jul 01;228:115872.
    PMID: 37054838 DOI: 10.1016/j.envres.2023.115872
    Mass microalgal-bacterial co-cultures have come to the fore of applied physiological research, in particularly for the optimization of high-value metabolite from microalgae. These co-cultures rely on the existence of a phycosphere which harbors unique cross-kingdom associations that are a prerequisite for the cooperative interactions. However, detailed mechanisms underpinning the beneficial bacterial effects onto microalgal growth and metabolic production are rather limited at the moment. Hence, the main purpose of this review is to shed light on how bacteria fuels microalgal metabolism or vice versa during mutualistic interactions, building upon the phycosphere which is a hotspot for chemical exchange. Nutrients exchange and signal transduction between two not only increase the algal productivity, but also facilitate in the degradation of bio-products and elevate the host defense ability. Main chemical mediators such as photosynthetic oxygen, N-acyl-homoserine lactone, siderophore and vitamin B12 were identified to elucidate beneficial cascading effects from the bacteria towards microalgal metabolites. In terms of applications, the enhancement of soluble microalgal metabolites is often associated with bacteria-mediated cell autolysis while bacterial bio-flocculants can aid in microalgal biomass harvesting. In addition, this review goes in depth into the discussion on enzyme-based communication via metabolic engineering such as gene modification, cellular metabolic pathway fine-tuning, over expression of target enzymes, and diversion of flux toward key metabolites. Furthermore, possible challenges and recommendations aimed at stimulating microalgal metabolite production are outlined. As more evidence emerges regarding the multifaceted role of beneficial bacteria, it will be crucial to incorporate these findings into the development of algal biotechnology.
    Matched MeSH terms: Biomass
  16. Ahmad Sobri MZ, Khoo KS, Sahrin NT, Ardo FM, Ansar S, Hossain MS, et al.
    Chemosphere, 2023 Oct;338:139526.
    PMID: 37459926 DOI: 10.1016/j.chemosphere.2023.139526
    The depletion of fossil fuel sources and increase in energy demands have increased the need for a sustainable alternative energy source. The ability to produce hydrogen from microalgae is generating a lot of attention in both academia and industry. Due to complex production procedures, the commercial production of microalgal biohydrogen is not yet practical. Developing the most optimum microalgal hydrogen production process is also very laborious and expensive as proven from the experimental measurement. Therefore, this research project intended to analyse the random time series dataset collected during microalgal hydrogen productions while using various low thermally pre-treated palm kernel expeller (PKE) waste via machine learning (ML) approach. The analysis of collected dataset allowed the derivation of an enhanced kinetic model based on the Gompertz model amidst the dark fermentative hydrogen production that integrated thermal pre-treatment duration as a function within the model. The optimum microalgal hydrogen production attained with the enhanced kinetic model was 387.1 mL/g microalgae after 6 days with 1 h thermally pre-treated PKE waste at 90 °C. The enhanced model also had better accuracy (R2 = 0.9556) and net energy ratio (NER) value (0.71) than previous studies. Finally, the NER could be further improved to 0.91 when the microalgal culture was reused, heralding the potential application of ML in optimizing the microalgal hydrogen production process.
    Matched MeSH terms: Biomass
  17. Hui GT, Meng TK, Kassim MA
    Bioprocess Biosyst Eng, 2023 Oct;46(10):1499-1512.
    PMID: 37580470 DOI: 10.1007/s00449-023-02917-x
    Conventionally, microalgal lipid extraction uses volatile organic compounds as an extraction solvent. However, these solvents are harmful to human and environmental health. Therefore, this study evaluated the feasibility of alternative green solvents, namely, ethanol, dimethyl carbonate (DMC), cyclopentyl methyl ether (CPME), and 2-methyltetrahydrofuran (2-MeTHF) in lipid extraction from Chlorella sp. via ultrasound-assisted extraction (UAE). This study indicated that extraction parameters, such as ethanol-to-2-MeTHF ratio, solvent-to-biomass ratio, temperature, and time, significantly affected the crude lipid yield (P biomass ratio of 20:1 (v/w) at 60 °C for 25 min accompanying 100 W and 40 kHz. Ethanol-2-MeTHF-extracted lipids showed dominance in linoleic acid, α-linolenic acid, and palmitic acid. Overall this findings supported UAE using ethanol and 2-MeTHF as extraction solvents is a promising green alternative to conventional solvent extraction of lipids from microalgae.
    Matched MeSH terms: Biomass
  18. Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Karimi K, Madadi M, Chisti Y, Peng W, et al.
    Sci Total Environ, 2023 Nov 15;899:165751.
    PMID: 37499830 DOI: 10.1016/j.scitotenv.2023.165751
    Life cycle assessment was used to evaluate the environmental impacts of phytoplanktonic biofuels as possible sustainable alternatives to fossil fuels. Three scenarios were examined for converting planktonic biomass into higher-value commodities and energy streams using the alga Scenedesmus sp. and the cyanobacterium Arthrospira sp. as the species of interest. The first scenario (Sc-1) involved the production of biodiesel and glycerol from the planktonic biomass. In the second scenario (Sc-2), biodiesel and glycerol were generated from the planktonic biomass, and biogas was produced from the residual biomass. The process also involved using a catalyst derived from snail shells for biodiesel production. The third scenario (Sc-3) was similar to Sc-2 but converted CO2 from the biogas upgrading to methanol, which was then used in synthesizing biodiesel. The results indicated that Sc-2 and Sc-3 had a reduced potential (up to 60 % less) for damaging human health compared to Sc-1. Sc-2 and Sc-3 had up to 61 % less environmental impact than Sc-1. Sc-2 and Sc-3 reduced the total cumulative exergy demand by up to 44 % compared to Sc-1. In conclusion, producing chemicals and utilities within the biorefinery could significantly improve environmental sustainability, reduce waste, and diversify revenue streams.
    Matched MeSH terms: Biomass
  19. Amari A, Elboughdiri N, Ahmed Said E, Zahmatkesh S, Ni BJ
    J Environ Manage, 2024 Feb;351:119761.
    PMID: 38113785 DOI: 10.1016/j.jenvman.2023.119761
    The practice of aquaculture is associated with the generation of a substantial quantity of effluent. Microalgae must effectively assimilate nitrogen and phosphorus from their surrounding environment for growth. This study modeled the algal biomass film, NO3-N concentration, and pH in the membrane bioreactor using the response surface methodology (RSM) and an artificial neural network (ANN). Furthermore, it was suggested that the optimal condition for each parameter be determined. The results of ANN modeling showed that ANN with a structure of 5-3 and employing the transfer functions tansig-logsig demonstrated the highest level of accuracy. This was evidenced by the obtained values of coefficient (R2) = 0.998, R = 0.999, mean squared error (MAE) = 0.0856, and mean square error (MSE) = 0.143. The ANN model, characterized by a 5-5 structure and employing the tansig-logsig transfer function, demonstrates superior accuracy when predicting the concentration of NO3-N and pH. This is evidenced by the high values of R2 (0.996), R (0.998), MAE (0.00162), and MSE (0.0262). The RSM was afterward employed to maximize the performance of algal film biomass, pH levels, and NO3-N concentrations. The optimal conditions for the algal biomass film were a concentration of 2.884 mg/L and a duration of 6.589 days. Similarly, the most favorable conditions for the NO3-N concentration and pH were 2.984 mg/L and 6.787 days, respectively. Therefore, this research uses non-dominated sorting genetic algorithm II (NSGA II) to find the optimal NO3-N concentration, algal biomass film, and pH for product or process quality. The region has the greatest alkaline pH and lowest NO3-N content.
    Matched MeSH terms: Biomass
  20. Ao S, Rashid U, Shi D, Rokhum SL, Tg Thuy L, Awad Alahmadi T, et al.
    Environ Res, 2024 Mar 15;245:118025.
    PMID: 38151153 DOI: 10.1016/j.envres.2023.118025
    The study investigates the potential of utilizing banana trunk-derived porous activated biochar enriched with SO3H- as a catalyst for eco-friendly biodiesel production from the microalga Chlorella vulgaris. An extensive analysis, employing advanced techniques such as XRD, FTIR, TGA, XPS, NH3-TPD, BET, SEM-EDX, and TEM, was conducted to elucidate the physicochemical properties of BT-SO3H catalysts. The synthesized catalyst demonstrated its efficiency in converting the total lipids of Chlorella vulgaris into biodiesel, with varying concentrations of 3%, 5%, and 7%. Notably, using a 5% BT-SO3H concentration resulted in remarkably higher biodiesel production about 58.29%. Additionally, the fatty acid profile of C. vulgaris biodiesel indicated that C16:0 was the predominant fatty acid at 24.31%, followed by C18:1 (19.68%), C18:3 (11.45%), and C16:1 (7.56%). Furthermore, the biodiesel produced via 5% BT-SO3H was estimated to have higher levels of saturated fatty acids (SFAs) at 34.28%, monounsaturated fatty acids (MUFAs) at 30.70%, and polyunsaturated fatty acids (PUFAs) at 24.24%. These findings highlight the promising potential of BT-SO3H catalysts for efficient and environmentally friendly biodiesel production from microalgal species.
    Matched MeSH terms: Biomass
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links