Displaying publications 241 - 260 of 1878 in total

Abstract:
Sort:
  1. Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, et al.
    Nature, 2023 Sep;621(7980):773-781.
    PMID: 37612513 DOI: 10.1038/s41586-023-06440-7
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
    Matched MeSH terms: Phylogeny
  2. Ge F, Guo R, Liang Y, Chen Y, Shao H, Sung YY, et al.
    Virus Res, 2023 Oct 15;336:199226.
    PMID: 37739268 DOI: 10.1016/j.virusres.2023.199226
    Stutzerimonas stutzeri is an opportunistic pathogenic bacterium belonging to the Gammaproteobacteria, exhibiting wide distribution in the environment and playing significant ecological roles such as nitrogen fixation or pollutant degradation. Despite its ecological importance, only two S. stutzeri phages have been isolated to date. Here, a novel S. stutzeri phage, vB_PstS_ZQG1, was isolated from the surface seawater of Qingdao, China. Transmission electron microscopy analysis indicates that vB_PstS_ZQG1 has a morphology characterized by a long non-contractile tail. The genomic sequence of vB_PstS_ZQG1 contains a linear, double-strand 61,790-bp with the G+C content of 53.24% and encodes 90 putative open reading frames. Two auxiliary metabolic genes encoding TolA protein and nucleotide pyrophosphohydrolase were identified, which are likely involved in host adaptation and phage reproduction. Phylogenetic and comparative genomic analyses demonstrated that vB_PstS_ZQG1 exhibits low similarity with previously isolated phages or uncultured viruses (average nucleotide identity values range from 21.7 to 29.4), suggesting that it represents a novel viral genus by itself, here named as Fuevirus. Biogeographic analysis showed that vB_PstS_ZQG1 was only detected in epipelagic and mesopelagic zone with low abundance. In summary, our findings of the phage vB_PstS_ZQG1 will provide helpful insights for further research on the interactions between S. stutzeri phages and their hosts, and contribute to discovering unknown viral sequences in the metagenomic database.
    Matched MeSH terms: Phylogeny
  3. Srisuka W, Takaoka H, Aupalee K, Saeung A
    Acta Trop, 2023 Aug;244:106947.
    PMID: 37196907 DOI: 10.1016/j.actatropica.2023.106947
    A new black fly species, Simulium (Gomphostilbia) wijiti, is described based on adult females, males, pupal exuviae and mature larvae from Mae Hong Son Province, Thailand. This new species is placed in the Simulium ceylonicum species-group. It is distinguished from four Thai members of the S. ceylonicum species-group [S. (G.) curtatum Jitklang et al., S. (G.) pangsidaense Takaoka, Srisuka & Saeung, S. (G.) sheilae Takaoka & Davies, and S. (G.) trangense Jitklang et al.], in the female by the short to medium long sensory vesicle; in the male by the large number of upper-eye (large) facets in 15 vertical columns and 15 or 16 horizontal rows; in the pupa by the dorsum of abdominal segments darkened; and in the larva by the antenna as long as or slightly shorter than the stem of the labral fan (longer than the stem of the labral fan in four other species). Phylogenetic analysis based on the COI gene sequences revealed that this new species is genetically closely related to S. leparense of the S. ceylonicum species-group, but is clearly separated from the latter species, and also from the three Thai related species (S. curtatum, S. sheilae and S. trangense) of the same species-group with interspecific genetic distances ranging from 9.65% to 12.67%. This is the fifth member of the S. ceylonicum species-group recorded from Thailand.
    Matched MeSH terms: Phylogeny
  4. Vongphayloth K, Randrianambinintsoa FJ, Lakeomany K, Phommavanh N, Mekarnia N, Khadri MS, et al.
    Parasite, 2023;30:21.
    PMID: 37294211 DOI: 10.1051/parasite/2023021
    Phlebotomus betisi was described from Malaysia and classified after its description in the subgenus Larroussius. It was the only species to have a pharyngeal armature composed of dot-like teeth and an annealed spermatheca whose head is carried by a neck in females. Males were characterized by having a style bearing five spines and a simple paramere. The study of sandflies originating from a cave in Laos enabled us to discover and describe two sympatric species close to Ph. betisi Lewis & Wharton, 1963 and new for Science: Ph. breyi Vongphayloth & Depaquit n. sp., and Ph. sinxayarami Vongphayloth & Depaquit n. sp. They were characterized morphologically, morphometrically, geomorphometrically, molecularly, and proteomically (MALDI-TOF). All approaches converged to validate the individualization of these species whose morphological differential characters lay in the two genders by the observation of the interocular suture and by the length of the last two segments of the maxillary palps. In males, the length of the genital filaments discriminates these species. Females are distinguished by the length of the ducts of the spermathecae as well as by the narrow or enlarged shape of the neck bearing their head. Lastly, the particular position of the spines of the gonostyle coupled with molecular phylogeny led us to remove these three species from the subgenus Larroussius Nizulescu, 1931 and to classify them in a new subgenus: Lewisius Depaquit & Vongphayloth n. subg.
    Matched MeSH terms: Phylogeny
  5. Cejp B, Jimi N, Aguado MT
    Zootaxa, 2023 Feb 21;5244(4):341-360.
    PMID: 37044457 DOI: 10.11646/zootaxa.5244.4.2
    The phylogenetic relationships of Syllidae have been analyzed in several studies during the last decades, resulting in highly congruent topologies. Most of the subfamilies were found to be monophyletic, while other groups (Eusyllinae and several genera) have been reorganized attending their phylogenetic relationships. However, there are still several enigmatic genera, which could not be assigned to any of the established subgroups. These enigmatic genera usually show a combination of characters indicating relationships with several different groups, and some show morphological traits unique to Syllidae. One of the most intriguing genera, still unclassified within Syllidae is Clavisyllis Knox. Herein, we provide a complete description of a new species Clavisyllis tenjini n. sp. from Japan. We sequence the complete mitochondrial genome, compare with the available data from other syllids, and perform a phylogenetic analysis of three genes (18S, 16S, COI), traditionally used in previous studies. Clavisyllis shows a unique combination of characters within Syllidae, such as nuchal lappets and large ovoid dorsal cirri. The new species has additional anterior appendages that have not been found in any other syllid. Our results show the genus is a member of Eusyllinae, closely related to Pionosyllis Malmgren. The mitochondrial gene order agrees with the considered plesiomorphic gene order in Annelida, which is present in all members of Eusyllinae investigated so far. Clavisyllis reproduces by epigamy, the reproductive mode of members of Eusyllinae. The present study contributes to the systematics of Syllidae, a complex group with a large number of species and striking reproductive modes.
    Matched MeSH terms: Phylogeny
  6. Noisumdaeng P, Dangsagul W, Sangsiriwut K, Prasertsopon J, Changsom D, Yoksan S, et al.
    Int J Infect Dis, 2023 Nov;136:5-10.
    PMID: 37652092 DOI: 10.1016/j.ijid.2023.08.023
    OBJECTIVES: We conducted molecular characterization, demonstrated the geographical distribution of Zika virus (ZIKV) circulating worldwide from 1947 to 2022 and explored the potential genetic recombination site in the Thailand ZIKV genomes.

    METHODS: We constructed phylogenetic trees based on ZIKV coding sequences (CDS) and determined the geographical distribution of the representative viruses by genetic relationship and timeline. We determined genetic recombination among ZIKV and between ZIKV and other flaviviruses using similarity plot and bootscan analyzes, together with the phylogeny encompassing the CDS and eight subgenomic regions.

    RESULTS: The phylogenetic trees comprising 717 CDS showed two distinct African and Asian lineages. ZIKV in the African lineage formed two sublineages, and ZIKV in the Asian lineage diversified into the Asian and American sublineages. The 1966 Malaysian isolate was designated the prototype of the Asian sublineage and formed a node of only one member, while the newer viruses formed a distinct node. We detected no genetic recombination in the Thailand ZIKV.

    CONCLUSION: Five Thailand isolates discovered in 2006 were the second oldest ZIKV after the Malaysian prototype. Our result suggested two independent routes of ZIKV spread from Southeast Asia to Micronesia in 2007 and French Polynesia in 2013 before further spreading to South American countries.

    Matched MeSH terms: Phylogeny
  7. Aupalee K, Srisuka W, Taai K, Takaoka H, Saeung A
    J Med Entomol, 2023 Nov 14;60(6):1330-1342.
    PMID: 37669777 DOI: 10.1093/jme/tjad118
    Simulium (Asiosimulium) khongchiamense sp. nov. is described based on females, males, pupae, and mature larvae collected from Khong Chiam District, Ubon Ratchathani Province, northeastern Thailand. It is characterized in the female by the medium-long sensory vesicle, scutum with 3 dark longitudinal vittae and elongate cercus; in the male by the number of upper-eye (large) facets in 17 or 18 vertical rows and 18 or 19 horizontal rows, hind basitarsus moderately enlarged and ventral plate with the posterior margin moderately concave medially; in the pupa by the head and thoracic integument sparsely covered with tubercles and gill of arborescent type with 32 or 33 filaments; and in the larva by the postgenal cleft deep, reaching the posterior margin of the hypostoma and sheath of the subesophageal ganglion dark pigmented. DNA analysis based on COI gene of all known species of the subgenus Asiosimulium, except for S. shanense and S. suchitrae, indicated that this new species can be clearly differentiated from all other related species (S. phurueaense, S. oblongum, S. saeungae, S. furvum, and S. wanchaii) with interspecific genetic distances ranging between 4.79% and 19.18%. This is the eighth species of the subgenus Asiosimulium. Taxonomic notes are given to distinguish this new species from the 7 known species members in its same subgenus. Additionally, keys to species of all members in the subgenus Asiosimulium are provided.
    Matched MeSH terms: Phylogeny
  8. Liu H, Zheng Y, Zhu B, Tong Y, Xin W, Yang H, et al.
    Sci Adv, 2023 Jun 23;9(25):eadg4011.
    PMID: 37352347 DOI: 10.1126/sciadv.adg4011
    Marine-terrestrial transition represents an important aspect of organismal evolution that requires numerous morphological and genetic innovations and has been hypothesized to be caused by geological changes. We used talitrid crustaceans with marine-coastal-montane extant species at a global scale to investigate the marine origination and terrestrial adaptation. Using genomic data, we demonstrated that marine ancestors repeatedly colonized montane terrestrial habitats during the Oligocene to Miocene. Biological transitions were well correlated with plate collisions or volcanic island formation, and top-down cladogenesis was observed on the basis of a positive relationship between ancestral habitat elevation and divergence time for montane lineages. We detected convergent variations of convoluted gills and convergent evolution of SMC3 associated with montane transitions. Moreover, using CRISPR-Cas9 mutagenesis, we proposed that SMC3 potentially regulates the development of exites, such as talitrid gills. Our results provide a living model for understanding biological innovations and related genetic regulatory mechanisms associated with marine-terrestrial transitions.
    Matched MeSH terms: Phylogeny
  9. Bizhanova N, Nanova O, Fadakar D, Grachev A, Hong Z, Mohd Sah SA, et al.
    Sci Rep, 2024 Mar 02;14(1):5186.
    PMID: 38431728 DOI: 10.1038/s41598-024-55807-x
    The Eurasian lynx (Lynx lynx) exhibits geographic variability and phylogenetic intraspecific relationships. Previous morphological studies have suggested the existence of multiple lynx subspecies, but recent genetic research has questioned this classification, particularly in Central Asia. In this study, we aimed to analyse the geographic and genetic variation in Central Asian lynx populations, particularly the Turkestan lynx and Altai lynx populations, using morphometric data and mtDNA sequences to contribute to their taxonomic classification. The comparative analysis of morphometric data revealed limited clinal variability between lynx samples from the Altai and Tien Shan regions. By examining mtDNA fragments (control region and cytochrome b) obtained from Kazakhstani lynx populations, two subspecies were identified: L. l. isabellinus (represented by a unique haplotype of the South clade, H46) and L. l. wrangeli (represented by haplotypes H36, H45, and H47 of the East clade). L. l. isabellinus was recognized only in Tien Shan Mountain, while Altai lynx was likely identical to L. l. wrangeli and found in northern Kazakhstan, Altai Mountain, Saur and Tarbagatai Mountains, and Tien Shan Mountain. The morphological and mtDNA evidence presented in this study, although limited in sample size and number of genetic markers, renders the differentiation of the two subspecies challenging. Further sampling and compilation of whole-genome sequencing data are necessary to confirm whether the proposed subspecies warrant taxonomic standing.
    Matched MeSH terms: Phylogeny
  10. Liu M, Chen YY, Twu NC, Wu MC, Fang ZS, Dubruel A, et al.
    Poult Sci, 2024 Feb;103(2):103332.
    PMID: 38128459 DOI: 10.1016/j.psj.2023.103332
    In late 2020, an outbreak of Tembusu virus (TMUV)-associated disease occurred in a 45-day-old white Roman geese flock in Taiwan. Here, we present the identification and isolation of a novel goose-origin TMUV strain designated as NTU/C225/2020. The virus was successfully isolated using minimal-pathogen-free duck embryos. Phylogenetic analysis of the polyprotein gene showed that NTU/C225/2020 clustered together with the earliest isolates from Malaysia and was most closely related to the first Taiwanese TMUV strain, TP1906. Genomic analysis revealed significant amino acid variations among TMUV isolates in NS1 and NS2A protein regions. In the present study, we characterized the NTU/C225/2020 culture in duck embryos, chicken embryos, primary duck embryonated fibroblasts, and DF-1 cells. All host systems were susceptible to NTU/C225/2020 infection, with observable lesions. In addition, animal experiments showed that the intramuscular inoculation of NTU/C225/2020 resulted in growth retardation and hyperthermia in day-old chicks. Gross lesions in the infected chicks included hepatomegaly, hyperemic thymus, and splenomegaly. Viral loads and histopathological damage were displayed in various tissues of both inoculated and naïve co-housed chicks, confirming the direct chick-to-chick contact transmission of TMUV. This is the first in vivo study of a local TMUV strain in Taiwan. Our findings provide essential information for TMUV propagation and suggest a potential risk of disease outbreak in chicken populations.
    Matched MeSH terms: Phylogeny
  11. Wei J, Xiao Y, Liu J, Herrera-Ulloa A, Loh KH, Xu K
    Sci Data, 2024 Feb 23;11(1):234.
    PMID: 38395996 DOI: 10.1038/s41597-024-03070-0
    Pampus argenteus (Euphrasen, 1788) is one of the major fishery species in coastal China. Pampus argenteus has a highly specialized morphology, and its declining fishery resources have encouraged massive research efforts on its aquacultural biology. In this study, we reported the first high-quality chromosome-level genome of P. argenteus obtained by integrating Illumina, PacBio HiFi, and Hi-C sequencing techniques. The final size of the genome was 518.06 Mb, with contig and scaffold N50 values of 20.47 and 22.86 Mb, respectively. The sequences were anchored and oriented onto 24 pseudochromosomes based on Hi-C data corresponding to the 24-chromatid karyotype of P. argenteus. A colinear relationship was observed between the P. argenteus genome and that of a closely related species (Scomber japonicus). A total of 24,696 protein-coding genes were identified from the genome, 98.9% of which were complete BUSCOs. This report represents the first case of high-quality chromosome-level genome assembly for P. argenteus and can provide valuable information for future evolutionary, conservation, and aquacultural research.
    Matched MeSH terms: Phylogeny
  12. Vlasova AN, Diaz A, Damtie D, Xiu L, Toh TH, Lee JS, et al.
    Clin Infect Dis, 2022 Feb 11;74(3):446-454.
    PMID: 34013321 DOI: 10.1093/cid/ciab456
    BACKGROUND: During the validation of a highly sensitive panspecies coronavirus (CoV) seminested reverse-transcription polymerase chain reaction (RT-PCR) assay, we found canine CoV (CCoV) RNA in nasopharyngeal swab samples from 8 of 301 patients (2.5%) hospitalized with pneumonia during 2017-2018 in Sarawak, Malaysia. Most patients were children living in rural areas with frequent exposure to domesticated animals and wildlife.

    METHODS: Specimens were further studied with universal and species-specific CoV and CCoV 1-step RT-PCR assays, and viral isolation was performed in A72 canine cells. Complete genome sequencing was conducted using the Sanger method.

    RESULTS: Two of 8 specimens contained sufficient amounts of CCoVs as confirmed by less-sensitive single-step RT-PCR assays, and 1 specimen demonstrated cytopathic effects in A72 cells. Complete genome sequencing of the virus causing cytopathic effects identified it as a novel canine-feline recombinant alphacoronavirus (genotype II) that we named CCoV-human pneumonia (HuPn)-2018. Most of the CCoV-HuPn-2018 genome is more closely related to a CCoV TN-449, while its S gene shared significantly higher sequence identity with CCoV-UCD-1 (S1 domain) and a feline CoV WSU 79-1683 (S2 domain). CCoV-HuPn-2018 is unique for a 36-nucleotide (12-amino acid) deletion in the N protein and the presence of full-length and truncated 7b nonstructural protein, which may have clinical relevance.

    CONCLUSIONS: This is the first report of a novel canine-feline recombinant alphacoronavirus isolated from a human patient with pneumonia. If confirmed as a pathogen, it may represent the eighth unique coronavirus known to cause disease in humans. Our findings underscore the public health threat of animal CoVs and a need to conduct better surveillance for them.

    Matched MeSH terms: Phylogeny
  13. Noni V, Tan CS
    BMC Vet Res, 2023 Apr 20;19(1):66.
    PMID: 37081458 DOI: 10.1186/s12917-023-03619-y
    BACKGROUND: Plasmodium, Haemoproteus and Leucocytozoon are three mainly studied blood parasites known to cause malarial and pseudomalarial infections in avian worldwide. Although Sarawak is a biodiversity hotspot, molecular data on blood parasite diversity in birds are absent. The objective of the study is to determine the prevalence of blood parasite in Asian Glossy Starlings (AGS), an urban bird with high population density in Sarawak and to elucidate the phylogenetic relationship with other blood parasite.

    METHODS: Twenty-nine carcasses of juvenile AGS that were succumbed to death due to window collision were collected around the vicinity of Universiti Malaysia Sarawak. Nested-multiplex and nested PCR targeting the Cytochrome B gene were used to detect Plasmodium and Haemoproteus, and Leucocytozoon respectively. Two primer sets were used for Haemoproteus detection to increase detection sensitivity, with one being a genus-specific primer.

    RESULTS: Fourteen samples (prevalence rate: 48.28%) were found positive for avian Plasmodium. Phylogenetic analysis divided our sequences into five lineages, pFANTAIL01, pCOLL4, pACCBAD01, pALPSIS01 and pALPSIS02, with two lineages being novel. No Haemoproteus and Leucocytozoon was found in this study. However, Haemoproteus-specific primer used amplified our Plasmodium samples, making the primer non-specific to Haemoproteus only.

    CONCLUSION: This is the first blood parasite detection study on AGS using carcasses and blood clot as sample source in Sarawak. Due to the scarcity of longer sequences from regions with high genetic plasticity, usage of genus-specific primers should be validated with sequencing to ensure correct prevalence interpretation.

    Matched MeSH terms: Phylogeny
  14. Al Yafei Z, Hajjej A, Alvares M, Al Mahri A, Nasr A, Mirghani R, et al.
    Genes (Basel), 2023 May 26;14(6).
    PMID: 37372339 DOI: 10.3390/genes14061159
    In this study, we investigated HLA class I and class II allele and haplotype frequencies in Emiratis and compared them to those of Asian, Mediterranean, and Sub-Saharan African populations.

    METHODS: Two-hundred unrelated Emirati parents of patients selected for bone marrow transplantation were genotyped for HLA class I (A, B, C) and class II (DRB1, DQB1) genes using reverse sequence specific oligonucleotide bead-based multiplexing. HLA haplotypes were assigned with certainty by segregation (pedigree) analysis, and haplotype frequencies were obtained by direct counting. HLA class I and class II frequencies in Emiratis were compared to data from other populations using standard genetic distances (SGD), Neighbor-Joining (NJ) phylogenetic dendrograms, and correspondence analysis.

    RESULTS: The studied HLA loci were in Hardy-Weinberg Equilibrium. We identified 17 HLA-A, 28 HLA-B, 14 HLA-C, 13 HLA-DRB1, and 5 HLA-DQB1 alleles, of which HLA-A*02 (22.2%), -B*51 (19.5%), -C*07 (20.0%), -DRB1*03 (22.2%), and -DQB1*02 (32.8%) were the most frequent allele lineages. DRB1*03~DQB1*02 (21.2%), DRB1*16~DQB1*05 (17.3%), B*35~C*04 (11.7%), B*08~DRB1*03 (9.7%), A*02~B*51 (7.5%), and A*26~C*07~B*08~DRB1*03~DQB1*02 (4.2%) were the most frequent two- and five-locus HLA haplotypes. Correspondence analysis and dendrograms showed that Emiratis were clustered with the Arabian Peninsula populations (Saudis, Omanis and Kuwaitis), West Mediterranean populations (North Africans, Iberians) and Pakistanis, but were distant from East Mediterranean (Turks, Albanians, Greek), Levantine (Syrians, Palestinians, Lebanese), Iranian, Iraqi Kurdish, and Sub-Saharan populations.

    CONCLUSIONS: Emiratis were closely related to Arabian Peninsula populations, West Mediterranean populations and Pakistanis. However, the contribution of East Mediterranean, Levantine Arab, Iranian, and Sub-Saharan populations to the Emiratis' gene pool appears to be minor.

    Matched MeSH terms: Phylogeny
  15. Daza JD, Stanley EL, Heinicke MP, Leah C, Doucet DS, Fenner KL, et al.
    Sci Rep, 2024 Jul 08;14(1):15662.
    PMID: 38977836 DOI: 10.1038/s41598-024-66451-w
    Scincidae is one of the most species-rich and cosmopolitan clades of squamate reptiles. Abundant disarticulated fossil material has also been attributed to this group, however, no complete pre-Cenozoic crown-scincid specimens have been found. A specimen in Burmite (99 MYA) is the first fossil that can be unambiguously referred to this clade. Our analyses place it as nested within extant skinks, supported by the presence of compound osteoderms formed by articulated small ostedermites. The specimen has a combination of dorsal and ventral compound osteoderms and overlapping cycloid scales that is limited to skinks. We propose that this type of osteoderm evolved as a response to an increased overlap of scales, and to reduced stiffness of the dermal armour. Compound osteoderms could be a key innovation that facilitated diversification in this megadiverse family.
    Matched MeSH terms: Phylogeny
  16. Hasan MM, Das R, Rasheduzzaman M, Hussain MH, Muzahid NH, Salauddin A, et al.
    Virus Res, 2021 May;297:198390.
    PMID: 33737154 DOI: 10.1016/j.virusres.2021.198390
    Coronavirus Disease 2019 (COVID-19) warrants comprehensive investigations of publicly available Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) genomes to gain new insight about their epidemiology, mutations, and pathogenesis. Nearly 0.4 million mutations have been identified so far among the ∼60,000 SARS-CoV-2 genomic sequences. In this study, we compared a total of 371 SARS-CoV-2 published whole genomes reported from different parts of Bangladesh with 467 sequences reported globally to understand the origin of viruses, possible patterns of mutations, and availability of unique mutations. Phylogenetic analyses indicated that SARS-CoV-2 viruses might have transmitted through infected travelers from European countries, and the GR clade was found as predominant in Bangladesh. Our analyses revealed 4604 mutations at the RNA level including 2862 missense mutations, 1192 synonymous mutations, 25 insertions and deletions and 525 other types of mutation. In line with the global trend, D614G mutation in spike glycoprotein was predominantly high (98 %) in Bangladeshi isolates. Interestingly, we found the average number of mutations in ORF1ab, S, ORF3a, M, and N were significantly higher (p < 0.001) for sequences containing the G614 variant compared to those having D614. Previously reported frequent mutations, such as R203K, D614G, G204R, P4715L and I300F at protein levels were also prevalent in Bangladeshi isolates. Additionally, 34 unique amino acid changes were revealed and categorized as originating from different cities. These analyses may increase our understanding of variations in SARS-CoV-2 virus genomes, circulating in Bangladesh and elsewhere.
    Matched MeSH terms: Phylogeny
  17. Davis HR, Sanford HT, Das I, Nashriq I, Leaché AD
    Biol Lett, 2024 Aug;20(8):20240157.
    PMID: 39140204 DOI: 10.1098/rsbl.2024.0157
    Species delimitation using mitochondrial DNA (mtDNA) remains an important and accessible approach for discovering and delimiting species. However, delimiting species with a single locus (e.g. DNA barcoding) is biased towards overestimating species diversity. The highly diverse gecko genus Cyrtodactylus is one such group where delimitation using mtDNA remains the paradigm. In this study, we use genomic data to test putative species boundaries established using mtDNA within three recognized species of Cyrtodactylus on the island of Borneo. We predict that multi-locus genomic data will estimate fewer species than mtDNA, which could have important ramifications for the species diversity within the genus. We aim to (i) investigate the correspondence between species delimitations using mtDNA and genomic data, (ii) infer species trees for each target species, and (iii) quantify gene flow and identify migration patterns to assess population connectivity. We find that species diversity is overestimated and that species boundaries differ between mtDNA and nuclear data. This underscores the value of using genomic data to reassess mtDNA-based species delimitations for taxa lacking clear species boundaries. We expect the number of recognized species within Cyrtodactylus to continue increasing, but, when possible, genomic data should be included to inform more accurate species boundaries.
    Matched MeSH terms: Phylogeny
  18. Pramual P, Khamluea S, Butlun P, Promdungdee A
    Trop Biomed, 2023 Jun 01;40(2):188-193.
    PMID: 37650406 DOI: 10.47665/tb.40.2.010
    Culicoides Latreille biting midges are important blood feeding insects. Many species are pests and vectors of the disease causing agents including viruses, protozoa and filarial nematodes which can be transmitted to humans and other animals. However, knowledge of the role of Culicoides as vectors of filarial nematodes is limited, particular in Thailand, where at least 100 species of the genus Culicoides have been reported. In this study, a molecular approach using the 12S rRNA gene sequence was used to detecting the filarial nematode in four common biting midge species, C. actoni Smith, C. oxystoma Kieffer, C. peregrinus Kieffer and C. mahasarakhamense Pramual, Jomkumsing, Piraonapicha & Jumpato in animal shelters from northeastern Thailand. A total of 1,721 specimens were used for molecular screening. An unidentified Onchocercidae sp. was detected in a specimen of C. mahasarakhamense collected from Maha Sarakham province. This filarial species shows 93% sequence similarity with an unidentified Onchocercidae sp. isolated from Culex mosquitoes. Phylogenetic analyses revealed that Onchocercidae sp. from C. mahasarakhamense formed a clade with strong bootstrap support (100%) with filarial species detected in birds. Thus, it is very likely that the Onchocercidae sp. found in this study employes birds as vertebrate hosts which agrees with feeding behavior of C. mahasarakhamense which is known to feed on chicken. Further study is requiring to examine whether this biting midge species is a competent vector of this Onchocercidae sp.
    Matched MeSH terms: Phylogeny
  19. Chen Y, Guo R, Liang Y, Luo L, Han Y, Wang H, et al.
    Virus Res, 2023 Sep;334:199183.
    PMID: 37499764 DOI: 10.1016/j.virusres.2023.199183
    Stutzerimonas stutzeri is an opportunistic pathogen widely distributed in the environment and displays diverse metabolic capabilities. In this study, a novel lytic S. stutzeri phage, named vB_PstM_ZRG1, was isolated from the seawater in the East China Sea (29°09'N, 123°39'E). vB_PstM_ZRG1 was stable at temperatures ranging from -20°C to 65°C and across a wide range of pH values from 3 to 10. The genome of vB_PstM_ZRG1 was determined to be a double-stranded DNA with a genome size of 52,767 bp, containing 78 putative open reading frames (ORFs). Three auxiliary metabolic genes encoded by phage vB_PstM_ZRG1 were predicted, including Toll/interleukin-1 receptor (TIR) domain, proline-alanine-alanine-arginine (PAAR) protein and SGNH (Ser-Gly-Asn-His) family hydrolase, especially TIR domain is not common in isolated phages. Phylogenic and network analysis showed that vB_PstM_ZRG1 has low similarity to other phage genomes in the GenBank and IMG/VR database, and might represent a novel viral genus, named Elithevirus. Additionally, the distribution map results indicated that vB_PstM_ZRG1 could infect both extreme colds- and warm-type hosts in the marine environment. In summary, our finding provided basic information for further research on the relationship between S. stutzeri and their phages, and expanded our understanding of genomic characteristics, phylogenetic diversity and distribution of Elithevirus.
    Matched MeSH terms: Phylogeny
  20. Siew ZY, Lai ZJ, Ho QY, Ter HC, Ho SH, Wong ST, et al.
    Trop Biomed, 2023 Dec 01;40(4):462-470.
    PMID: 38308834 DOI: 10.47665/tb.40.4.012
    Bats are flying mammals with unique immune systems that allow them to hold many pathogens. Hence, they are recognised as the reservoir of many zoonotic pathogens. In this study, we performed molecular detection to detect coronaviruses, paramyxoviruses, pteropine orthoreoviruses and dengue viruses from samples collected from insectivorous bats in Krau Reserve Forest. One faecal sample from Rhinolophus spp. was detected positive for coronavirus. Based on BLASTN, phylogenetic analysis and pairwise alignment-based sequence identity calculation, the detected bat coronavirus is most likely to be a bat betacoronavirus lineage slightly different from coronavirus from China, Philippines, Thailand and Luxembourg. In summary, continuous surveillance of bat virome should be encouraged, as Krau Reserve Forest reported a wide spectrum of biodiversity of insectivorous and fruit bats. Moreover, the usage of primers for the broad detection of viruses should be reconsidered because geographical variations might possibly affect the sensitivity of primers in a molecular approach.
    Matched MeSH terms: Phylogeny
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links