Displaying publications 241 - 260 of 313 in total

Abstract:
Sort:
  1. Swamy MK, Sinniah UR, Ghasemzadeh A
    Appl Microbiol Biotechnol, 2018 Sep;102(18):7775-7793.
    PMID: 30022261 DOI: 10.1007/s00253-018-9223-y
    Rosmarinic acid (RA) is a highly valued natural phenolic compound that is very commonly found in plants of the families Lamiaceae and Boraginaceae, including Coleus blumei, Heliotropium foertherianum, Rosmarinus officinalis, Perilla frutescens, and Salvia officinalis. RA is also found in other members of higher plant families and in some fern and horned liverwort species. The biosynthesis of RA is catalyzed by the enzymes phenylalanine ammonia lyase and cytochrome P450-dependent hydroxylase using the amino acids tyrosine and phenylalanine. Chemically, RA can be produced via methods involving the esterification of 3,4-dihydroxyphenyllactic acid and caffeic acid. Some of the derivatives of RA include melitric acid, salvianolic acid, lithospermic acid, and yunnaneic acid. In plants, RA is known to have growth-promoting and defensive roles. Studies have elucidated the varied pharmacological potential of RA and its derived molecules, including anticancer, antiangiogenic, anti-inflammatory, antioxidant, and antimicrobial activities. The demand for RA is therefore, very high in the pharmaceutical industry, but this demand cannot be met by plants alone because RA content in plant organs is very low. Further, many plants that synthesize RA are under threat and near extinction owing to biodiversity loss caused by unscientific harvesting, over-collection, environmental changes, and other inherent features. Moreover, the chemical synthesis of RA is complicated and expensive. Alternative approaches using biotechnological methodologies could overcome these problems. This review provides the state of the art information on the chemistry, sources, and biosynthetic pathways of RA, as well as its anticancer properties against different cancer types. Biotechnological methods are also discussed for producing RA using plant cell, tissue, and organ cultures and hairy-root cultures using flasks and bioreactors. The recent developments and applications of the functional genomics approach and heterologous production of RA in microbes are also highlighted. This chapter will be of benefit to readers aiming to design studies on RA and its applicability as an anticancer agent.
    Matched MeSH terms: Organ Culture Techniques
  2. Rengganaten V, Huang CJ, Tsai PH, Wang ML, Yang YP, Lan YT, et al.
    Int J Mol Sci, 2020 Oct 23;21(21).
    PMID: 33114016 DOI: 10.3390/ijms21217864
    Spheroidal cancer cell cultures have been used to enrich cancer stem cells (CSC), which are thought to contribute to important clinical features of tumors. This study aimed to map the regulatory networks driven by circular RNAs (circRNAs) in CSC-enriched colorectal cancer (CRC) spheroid cells. The spheroid cells established from two CRC cell lines acquired stemness properties in pluripotency gene expression and multi-lineage differentiation capacity. Genome-wide sequencing identified 1503 and 636 circRNAs specific to the CRC parental and spheroid cells, respectively. In the CRC spheroids, algorithmic analyses unveiled a core network of mRNAs involved in modulating stemness-associated signaling pathways, driven by a circRNA-microRNA (miRNA)-mRNA axis. The two major circRNAs, hsa_circ_0066631 and hsa_circ_0082096, in this network were significantly up-regulated in expression levels in the spheroid cells. The two circRNAs were predicted to target and were experimentally shown to down-regulate miR-140-3p, miR-224, miR-382, miR-548c-3p and miR-579, confirming circRNA sponging of the targeted miRNAs. Furthermore, the affected miRNAs were demonstrated to inhibit degradation of six mRNA targets, viz. ACVR1C/ALK7, FZD3, IL6ST/GP130, SKIL/SNON, SMAD2 and WNT5, in the CRC spheroid cells. These mRNAs encode proteins that are reported to variously regulate the GP130/Stat, Activin/Nodal, TGF-β/SMAD or Wnt/β-catenin signaling pathways in controlling various aspects of CSC stemness. Using the CRC spheroid cell model, the novel circRNA-miRNA-mRNA axis mapped in this work forms the foundation for the elucidation of the molecular mechanisms of the complex cellular and biochemical processes that determine CSC stemness properties of cancer cells, and possibly for designing therapeutic strategies for CRC treatment by targeting CSC.
    Matched MeSH terms: Cell Culture Techniques
  3. Hasoon MF, Daud HM, Abdullah AA, Arshad SS, Bejo HM
    In Vitro Cell Dev Biol Anim, 2011 Jan;47(1):16-25.
    PMID: 21082288 DOI: 10.1007/s11626-010-9348-5
    A new cell line, Asian sea bass brain (ASBB), was derived from the brain tissue of Asian sea bass Lates calcarifer. This cell line was maintained in Leibovitz L-15 media supplemented with 10% fetal bovine serum (FBS). The ASBB cell line was subcultured more than 60 times over a period of 15 mo. The ASBB cell line consists predominantly of fibroblastic-like cells and was able to grow at temperatures between 20°C and 30°C with an optimum temperature of 25°C. The growth rate of these cells increased as the proportion of FBS increased from 2% to 20% at 25°C with optimum growth at the concentrations of 10% or 15% FBS. Polymerase chain reaction products were obtained from ASBB cells and tissues of sea bass with primer sets of microsatellite markers of sea bass. An isolate of piscine nodavirus from juveniles of marine fish species tested positive by IQ2000 kit for viral nervous necrosis detection and was examined for its infectivity to a fish cell line of ASBB. A marine fish betanodavirus was tested to determine the susceptibility of this new cell line in comparison with commercial highly permissive SSN-1 cells. The ASBB cell line was found to be susceptible to nodavirus (RGNNV genotype), and the infection was confirmed by comparison cytopathic effect (CPE) with commercial SSN-1 and reverse transcriptase-polymerase chain reaction. A nodavirus was further elucidated by electron microscopy, and the virus tested was shown to induce CPE on ASBB cells with significant high titer. This suggests that the ASBB cell line has good potential for the isolation of fish viruses.
    Matched MeSH terms: Cell Culture Techniques
  4. Hena S, Znad H, Heong KT, Judd S
    Water Res, 2018 01 01;128:267-277.
    PMID: 29107911 DOI: 10.1016/j.watres.2017.10.057
    Dairy cattle treated wastewaters are potential resources for production of microalgae biofuels. A study was conducted to evaluate the capability of Arthrospira platensis cultivated in dairy farm wastewater for biodiesel production. The biomass of Arthrospira platensis was found to be 4.98 g L-1 and produced 30.23 wt% lipids to dry biomass cultivated in wastewater which was found nitrogen stressed in photo bioreactor. The extracted lipid displayed a suitable fatty acid profile for biodiesel, although the content of linolenic acid was found a little higher than the standard EN14214. It was found that nitrogen stressed medium increase the total lipid content but temperature and intensities of light were the most important factors to control the quantity of linolenic acid and hence the quality of biodiesel, while the optimum CO2 helped to achieve maximum biomass and triacylglycerols. The Arthrospira platensis offer a good option for the treatment of wastewater before final discharge.
    Matched MeSH terms: Culture Techniques
  5. Wan Afifudeen CL, Loh SH, Aziz A, Takahashi K, Effendy AWM, Cha TS
    Sci Rep, 2021 01 11;11(1):381.
    PMID: 33431982 DOI: 10.1038/s41598-020-79711-2
    Bioprospecting for biodiesel potential in microalgae primarily involves a few model species of microalgae and rarely on non-model microalgae species. Therefore, the present study determined changes in physiology, oil accumulation, fatty acid composition and biodiesel properties of a non-model microalga Messastrum gracile SE-MC4 in response to 12 continuous days of nitrate-starve (NS) and nitrate-replete (NR) conditions respectively. Under NS, the highest oil content (57.9%) was achieved despite reductions in chlorophyll content, biomass productivity and lipid productivity. However, under both NS and NR, palmitic acid and oleic acid remained as dominant fatty acids thus suggesting high potential of M. gracile for biodiesel feedstock consideration. Biodiesel properties analysis returned high values of cetane number (CN 61.9-64.4) and degree of unsaturation (DU 45.3-57.4) in both treatments. The current findings show the possibility of a non-model microalga to inherit superior ability over model species in oil accumulation for biodiesel development.
    Matched MeSH terms: Cell Culture Techniques
  6. Leont'eva NA, Fadeeva LL
    Vopr. Virusol., 1969 Jul-Aug;14(4):464-8.
    PMID: 4982330
    Matched MeSH terms: Culture Techniques
  7. Tan CS, Ch'ng YS, Loh YC, Zaini Asmawi M, Ahmad M, Yam MF
    J Ethnopharmacol, 2017 Mar 06;199:149-160.
    PMID: 28161542 DOI: 10.1016/j.jep.2017.02.001
    ETHNOPHARMACOLOGICAL RELEVANCE: Glycyrrhiza uralensis (G. uralensis) is one of the herbs used in traditional Chinese medicine (TCM) and serves as an envoy medicinal. Since G. uralensis plays a major role in the anti-hypertensive TCM formulae, we believe that G. uralensis might possess vasorelaxation activity.

    AIM OF THE STUDY: This study is designed to investigate the vasorelaxation effect of G. uralensis from various extracts and to study its pharmacology effect.

    MATERIALS AND METHODS: The vasorelaxation effect of G. uralensis extracts were evaluated on thoracic aortic rings isolated from Sprague Dawley rats.

    RESULTS: Among these three extracts of G. uralensis, 50% ethanolic extract (EFG) showed the strongest vasorelaxation activity. EFG caused the relaxation of the aortic rings pre-contracted with phenylephrine either in the presence or absence of endothelium and pre-contracted with potassium chloride in endothelium-intact aortic ring. Nω-nitro-L-arginine methyl ester, methylene blue, or 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one inhibit the vasorelaxation effect of EFG in the presence of endothelium. On the other hand, in the presence of the potassium channel blockers (tetraethylammonium and barium chloride), the vasorelaxation effect of EFG was not affected, but glibenclamide and 4-aminopyridine did inhibit the vasorelaxation effect of EFG. With indomethacin, atropine and propranolol, the vasorelaxation effect by EFG was significantly reduced. EFG was also found to be effective in reducing Ca(2+) release from sarcoplasmic reticulum and the blocking of calcium channels.

    CONCLUSIONS: The results obtained suggest that EFG is involved in the NO/sGC/cGMP pathway.

    Matched MeSH terms: Organ Culture Techniques
  8. Phyu WK, Ong KC, Kong CK, Alizan AK, Ramanujam TM, Wong KT
    Sci Rep, 2017 03 21;7:45069.
    PMID: 28322333 DOI: 10.1038/srep45069
    Hand-foot-and-mouth disease is a self-limiting paediatric infectious disease commonly caused by Enterovirus A71 (Genus: Enterovirus, Family: Picornaviridae). Typical lesions in and around the hands, feet, oral cavity and other places may rarely be complicated by acute flaccid paralysis and acute encephalomyelitis. Although virus is readily cultured from skin vesicles and oral secretions, the cellular target/s of Enterovirus A71 in human skin and oral mucosa are unknown. In Enterovirus A71-infected human skin and oral mucosa organotypic cultures derived from the prepuce and lip biopsies, focal viral antigens and viral RNA were localized to cytoplasm of epidermal and mucosal squamous cells as early as 2 days post-infection. Viral antigens/RNA were associated with cytoplasmic vacuolation and cellular necrosis. Infected primary prepuce epidermal keratinocyte cultures showed cytopathic effects with concomitant detection of viral antigens from 2 days post-infection. Supernatant and/or tissue homogenates from prepuce skin organotypic cultures and primary prepuce keratinocyte cultures showed viral titres consistent with active viral replication. Our data strongly support Enterovirus A71 squamous epitheliotropism in the human epidermis and oral mucosa, and suggest that these organs are important primary and/or secondary viral replication sites that contribute significantly to oral and cutaneous viral shedding resulting in person-to-person transmission, and viraemia, which could lead to neuroinvasion.
    Matched MeSH terms: Organ Culture Techniques
  9. Al-Haddawi MH, Jasni S, Zamri-Saad M, Mutalib AR, Zulkifli I, Son R, et al.
    Vet J, 2000 May;159(3):274-81.
    PMID: 10775473
    In vitro experiments were undertaken to study the adhesion and colonization to tracheal mucosa, lung and aorta explants from freshly killed rabbits of two different strains of Pasteurella multocida. Serotype A:3 (capsulated, fimbriae +, haemagglutination -, dermonecrotic toxin -) isolated from a rabbit with rhinitis, and serotype D:1 (non-capsulated, fimbriae +, haemagglutination +, dermonecrotic toxin +) isolated from a dead rabbit with septicaemia, were used. When the explants were observed under the scanning electron microscope, the type D strain was highly adherent to trachea and aorta explants compared to the type A strain. Adhesion to lung explants was best achieved by the type A strain after 45 min incubation, but after 2 h incubation no significant difference was observed between the strains. Our data indicate that the presence of fimbriae and the absence of capsule seem to enhance the adherence of P. multocida type D strain to tracheal tissue. The capsular material of P. multocida type A strain and the toxin of the type D strain seem to influence the adherence to lung tissue in rabbit. Adhesion of strain D to aorta may indicate the expression of receptors on the endothelium to that strain and may also explain the ability of certain strains to cause septicaemia.
    Matched MeSH terms: Culture Techniques
  10. Ch'ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al.
    Pharm Biol, 2017 Dec;55(1):2083-2094.
    PMID: 28832263 DOI: 10.1080/13880209.2017.1357735
    CONTEXT: Vernonia amygdalina Del. (VA) (Asteraceae) is commonly used to treat hypertension in Malaysia.

    OBJECTIVE: This study investigates the vasorelaxant mechanism of VA ethanol extract (VAE) and analyzes its tri-step FTIR spectroscopy fingerprint.

    MATERIALS AND METHODS: Dried VA leaves were extracted with ethanol through maceration and concentrated using rotary evaporator before freeze-dried. The vasorelaxant activity and the underlying mechanisms of VAE using the cumulative concentration (0.01-2.55 mg/mL at 20-min intervals) were evaluated on aortic rings isolated from Sprague Dawley rats in the presence of antagonists.

    RESULTS: The tri-step FTIR spectroscopy showed that VAE contains alkaloids, flavonoids, and saponins. VAE caused the relaxation of pre-contracted aortic rings in the presence and absence of endothelium with EC50 of 0.057 ± 0.006 and 0.430 ± 0.196 mg/mL, respectively. In the presence of Nω-nitro-l-arginine methyl ester (EC50 0.971 ± 0.459 mg/mL), methylene blue (EC50 1.203 ± 0.426 mg/mL), indomethacin (EC50 2.128 ± 1.218 mg/mL), atropine (EC50 0.470 ± 0.325 mg/mL), and propranolol (EC50 0.314 ± 0.032 mg/mL), relaxation stimulated by VAE was significantly reduced. VAE acted on potassium channels, with its vasorelaxation effects significantly reduced by tetraethylammonium, 4-aminopyridine, barium chloride, and glibenclamide (EC50 0.548 ± 0.184, 0.158 ± 0.012, 0.847 ± 0.342, and 0.304 ± 0.075 mg/mL, respectively). VAE was also found to be active in reducing Ca2+ released from the sarcoplasmic reticulum and blocking calcium channels.

    CONCLUSIONS: The vasorelaxation effect of VAE involves upregulation of NO/cGMP and PGI2 signalling pathways, and modulation of calcium/potassium channels, and muscarinic and β2-adrenergic receptor levels.

    Matched MeSH terms: Organ Culture Techniques
  11. Nasrullah A, Bhat AH, Naeem A, Isa MH, Danish M
    Int J Biol Macromol, 2018 Feb;107(Pt B):1792-1799.
    PMID: 29032214 DOI: 10.1016/j.ijbiomac.2017.10.045
    High surface area mesoporous activated carbon-alginate (AC-alginate) beads were successfully synthesized by entrapping activated carbon powder derived from Mangosteen fruit peel into calcium-alginate beads for methylene blue (MB) removal from aqueous solution. The structure and surface characteristics of AC-alginate beads were analyzed using Fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and surface area analysis (SBET), while thermal properties were tested using thermogravimetric analysis (TGA). The effect of AC-alginate dose, pH of solution, contact time, initial concentration of MB solution and temperature on MB removal was elucidated. The results showed that the maximum adsorption capacity of 230mg/g was achieved for 100mg/L of MB solution at pH 9.5 and temperature 25°C. Furthermore, the adsorption of MB on AC-alginate beads followed well pseudo-second order equation and equilibrium adsorption data were better fitted by the Freundlich isotherm model. The findings reveal the feasibility of AC-alginate beads composite to be used as a potential and low cost adsorbent for removal of cationic dyes.
    Matched MeSH terms: Batch Cell Culture Techniques
  12. Chia LL, Jantan I, Chua KH
    Curr Pharm Biotechnol, 2017;18(7):560-568.
    PMID: 28786357 DOI: 10.2174/1389201018666170808144703
    BACKGROUND: Tocotrienols (T3) are the naturally occurring vitamin E derivatives that possess antioxidant properties and therapeutic potential in diabetic complications. The bioactivities of the derivatives are determined by the number and arrangement of methyl substitution on the structure.

    OBJECTIVE: The objective of this study was to determine the effects of T3 derivatives, σ-T3, γ-T3 and α-T3 on insulin secretion of rat pancreatic islets in a dynamic culture.

    METHOD: Pancreatic islets isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation that provided a stable cell culture environment. Glucose (2.8 mM and 16.7 mM, as basal and stimulant, respectively) and potassium chloride (KCl) (30 mM) were added to the treatment in calcium free medium. The supernatant was collected for insulin measurements.

    RESULTS: Short-term exposure (1 h) of σ-T3 to β cells in the stimulant glucose condition significantly potentiated insulin secretion in a dose-dependent manner. γ-T3 and α-T3 also displayed dosedependent effect but were less effective in the activation of insulin secretion. Essentially, KCl, a pancreatic β cell membrane depolarizing agent, added into the treatment further enhanced the insulin secretion of σ-T3, γ-T3 and α-T3 with ED50 values of 504, 511 and 588 µM, respectively.

    CONCLUSION: The findings suggest the potential of σ-T3 in regulating glucose-stimulated insulin secretion (GSIS) in response to the intracellular calcium especially in the presence of KCl.

    Matched MeSH terms: Tissue Culture Techniques
  13. Daud N, Taha RM
    Pak J Biol Sci, 2008 Apr 01;11(7):1055-8.
    PMID: 18810979
    Intact immature flower buds of African violet (Saintpaulia ionantha H. Wendl.) were used as explant sources for in vitro studies. The effect of exogenous hormones, NAA and BAP on the indirect organogenesis of this species was observed. Callus was formed on the cut end (base) of pedicels of floral buds where they were in contact with the medium. When maintained on the same medium, callus was differentiated into adventitious shoots after 10 weeks in culture. MS media supplemented with 2.0 mg L(-1) NAA and 1.0 mg L(-1) BAP gave the highest number of sterile or vegetative floral buds from the surface of callus of the explants, but these buds failed to develop further. The floral buds were expanded as abnormal flowers. The floral structures were smaller in size compared to intact flowers. Petals (corolla) were white to purple in colour but did not form any reproductive organs, i.e., stamens or pistils. All sterile or vegetative floral buds and abnormal flowers survived for 3 months in culture but failed to reach anthesis.
    Matched MeSH terms: Tissue Culture Techniques
  14. Baharara J, Namvar F, Ramezani T, Hosseini N, Mohamad R
    Molecules, 2014 Apr 15;19(4):4624-34.
    PMID: 24739926 DOI: 10.3390/molecules19044624
    Silver nanoparticles display unique physical and biological properties which have attracted intensive research interest because of their important medical applications. In this study silver nanoparticles (Ab.Ag-NPs) were synthesized for biomedical applications using a completely green biosynthetic method using Achillea biebersteinii flowers extract. The structure and properties of Ab.Ag-NPs were investigated using UV-visible spectroscopic techniques, transmission electron microscopy (TEM), zeta potential and energy dispersive X-ray spectrometers (EDS). The UV-visible spectroscopic analysis showed the absorbance peak at 460 nm, which indicates the synthesis of silver nanoparticles. The average particle diameter as determined by TEM was found to be 12±2 nm. The zeta potential analysis indicated that Ab.Ag-NPs have good stability EDX analysis also exhibits presentation of silver element. As angiogenesis is an important phenomenon and as growth factors imbalance in this process causes the acceleration of several diseases including cancer, the anti-angiogenic properties of Ab.Ag-NPs were evaluated using the rat aortic ring model. The results showed that Ab.Ag-NPs (200 μg/mL) lead to a 50% reduction in the length and number of vessel-like structures. The synthesized silver nanoparticles from the Achillea biebersteinii flowers extract, which do not involve any harmful chemicals were well-dispersed and stabilized through this green method and showed potential therapeutic benefits against angiogenesis.
    Matched MeSH terms: Tissue Culture Techniques
  15. Mohamad Zuldin NN, Said IM, Mohd Noor N, Zainal Z, Jin Kiat C, Ismail I
    ScientificWorldJournal, 2013;2013:209434.
    PMID: 24065873 DOI: 10.1155/2013/209434
    This study aimed to determine the effects of different concentrations and combinations of the phytohormones 2,4-dichlorophenoxy acetic acid (2,4-D), kinetin, 6-benzylaminopurine (BAP), and 1-naphthaleneacetic acid (NAA) on callus induction and to demonstrate the role of elicitors and exogenous precursors on the production of mitragynine in a Mitragyna speciosa suspension culture. The best callus induction was achieved from petiole explants cultured on WPM that was supplemented with 4 mg L⁻¹ 2,4-D (70.83%). Calli were transferred to liquid media and agitated on rotary shakers to establish Mitragyna speciosa cell suspension cultures. The optimum settled cell volume was achieved in the presence of WPM that contained 3 mg L⁻¹ 2,4-D and 3% sucrose (9.47 ± 0.4667 mL). The treatment of cultures with different concentrations of yeast extract and salicylic acid for different inoculation periods revealed that the highest mitragynine content as determined by HPLC was achieved from the culture treated with 250 mg L⁻¹ yeast extract (9.275 ± 0.082 mg L⁻¹) that was harvested on day 6 of culturing; salicylic acid showed low mitragynine content in all concentrations used. Tryptophan and loganin were used as exogenous precursors; the highest level of mitragynine production was achieved in cultures treated with 3  μM tryptophan and harvested at 6 days (13.226 ± 1.98 mg L⁻¹).
    Matched MeSH terms: Tissue Culture Techniques
  16. Mohd Zainal Abidin R, Luddin N, Shamsuria Omar N, Mohamed Aly Ahmed H
    J Clin Pediatr Dent, 2015;39(3):235-40.
    PMID: 26208068 DOI: 10.17796/1053-4628-39.3.235
    To compare the cytotoxicity of conventional GIC and Resin Modified GIC (RMGIC) polymerized at 2 different times on stem cells from human exfoliated deciduous teeth (SHED).
    Matched MeSH terms: Cell Culture Techniques
  17. Jamal J, Mustafa MR, Wong PF
    J Ethnopharmacol, 2014 Jun 11;154(2):428-36.
    PMID: 24768807 DOI: 10.1016/j.jep.2014.04.025
    Paeonol is a phenolic compound isolated mainly from Moutan cortex, root bark of Chinese Peony tree. Moutan cortex holds a significant value in traditional Chinese medicine for alleviating various oxidative stress-related diseases mainly atherosclerosis and myocardial infarction. The present study seeks to identify the protective mechanisms of paeonol in oxidative stress-induced premature senescence in endothelial cells.
    Matched MeSH terms: Cell Culture Techniques
  18. Lee SY, Kamarul T
    Int J Biol Macromol, 2014 Mar;64:115-22.
    PMID: 24325858 DOI: 10.1016/j.ijbiomac.2013.11.039
    In this study, a chitosan co-polymer scaffold was prepared by mixing poly(vinyl alcohol) (PVA), NO, carboxymethyl chitosan (NOCC) and polyethylene glycol (PEG) solutions to obtain desirable properties for chondrocyte cultivation. Electron beam (e-beam) radiation was used to physically cross-link these polymers at different doses (30 kGy and 50 kGy). The co-polymers were then lyophilized to form macroporous three-dimensional (3-D) matrix. Scaffold morphology, porosity, swelling properties, biocompatibility, expression of glycosaminoglycan (GAG) and type II collagen following the seeding of primary chondrocytes were studied up to 28 days. The results demonstrate that irradiation of e-beam at 50 kGy increased scaffold porosity and pore sizes subsequently enhanced cell attachment and proliferation. Scanning electron microscopy and transmission electron microscopy revealed extensive interconnected microstructure of PVA-PEG-NOCC, demonstrated cellular activities on the scaffolds and their ability to maintain chondrocyte phenotype. In addition, the produced PVA-PEG-NOCC scaffolds showed superior swelling properties, and increased GAG and type II collagen secreted by the seeded chondrocytes. In conclusion, the results suggest that by adding NOCC and irradiation cross-linking at 50 kGy, the physical and biological properties of PVA-PEG blend can be further enhanced thereby making PVA-PEG-NOCC a potential scaffold for chondrocytes.
    Matched MeSH terms: Cell Culture Techniques
  19. Cheah SX, Tay JW, Chan LK, Jaal Z
    Parasitol Res, 2013 Sep;112(9):3275-82.
    PMID: 23835922 DOI: 10.1007/s00436-013-3506-0
    This study focuses on the larvicidal, oviposition, and ovicidal effects of a crude extract of Artemisia annua against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus. Dried cells of Artemisia annua from cell suspension cultures were extracted using hexane. The extract showed moderate larvicidal effects against mosquitoes. At 24-h post treatment, the LC50 values for Anopheles sinensis, Aedes aegypti, and Culex quinquefasciatus were recorded as 244.55, 276.14, and 374.99 ppm, respectively. The percentage mortality of larvae was directly proportional to the tested concentration. Anopheles sinensis was found to be the most susceptible species, whereas Culex quinquefasciatus was the most tolerant to the Artemisia annua extract. The results indicated that the Artemisia annua extract showed concentration-dependent oviposition deterrent activity and had a strong deterrent effect. At 500 ppm, the percentage effective repellency was more than 85% compared with the control group for all the species, with oviposition activity index values of -0.94, -0.95, and -0.78 for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. In the ovicidal assay, the percentage hatchability of eggs after treatment with 500 ppm of Artemisia annua extract was significantly lower than the control, with values of 48.84 ± 4.08, 38.42 ± 3.67, and 79.35 ± 2.09% for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. Artemisia annua was found to be more effective against Aedes aegypti and Anopheles sinensis compared with Culex quinquefasciatus. This study indicated that crude extract of A. annua could be a potential alternative for use in vector management programs.
    Matched MeSH terms: Cell Culture Techniques
  20. Ramasamy S, Abdul Wahab N, Zainal Abidin N, Manickam S
    Exp. Toxicol. Pathol., 2013 Mar;65(3):341-9.
    PMID: 22217449 DOI: 10.1016/j.etp.2011.11.005
    Species of Phyllanthus have traditionally been used for hundreds of years for treating many ailments including diabetes, anemia, bronchitis and hepatitis. The present study aims to investigate the cytotoxic and apoptotic effects of methanol (PWM), hexane (PWH) and ethyl acetate (PWE) extracts from the leaves of the endemic plant Phyllanthus watsonii Airy Shaw (Phyllanthaceae) on MCF-7 human breast cancer cells. We observed that the PWM, PWH and PWE extracts were cytotoxic and selectively inhibited the growth and proliferation of MCF-7 cells compared to untreated control in a dose dependent manner with an IC(50) of 12.7 ± 4.65, 7.9 ± 0.60 and 7.7 ± 0.29 μg/ml, respectively. However, the extracts were not toxic at these concentrations to normal human lung fibroblast MRC-5 cells. Cell death induced by PWM, PWH and PWE extracts were mainly due to apoptosis which was characterized by apoptotic morphological changes and a nuclear DNA fragmentation. Caspase-3 activation following P. watsonii extracts treatment was also evident for apoptotic cell death which was preceded by an S phase cell cycle perturbation. The results suggested that the cytotoxic activity of P. watsonii extracts was related to an early event of cell cycle perturbation and a later event of apoptosis. Hence, P. watsonii displays potential to be further exploited in the discovery and development of new anticancer agents.
    Matched MeSH terms: Cell Culture Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links