Displaying publications 241 - 260 of 552 in total

Abstract:
Sort:
  1. Ashraf K, Halim H, Lim SM, Ramasamy K, Sultan S
    Saudi J Biol Sci, 2020 Jan;27(1):417-432.
    PMID: 31889866 DOI: 10.1016/j.sjbs.2019.11.003
    Background: Medicinal plants are important source of drugs with pharmacological activities. Therefore, there is always rising demands to discover more therapeutic agents from various species. Orthosiphon stamineus, Gynura procumbens and Ficus deltoidea are high valued medicinal plants of Malaysia contain rich source of phenolic and flavonoid compounds. The aims of the present study were to evaluate anti-oxidant, antimicrobial and anti-proliferative effects on A549, HeGP2 and MCF7 cell lines of four different extracts of Orthosiphon stamineus, Gynura procumbens and Ficus deltoidea.

    Methodology: The leaves of all selected plants were extracted with methanol, chloroform, ethyl acetate and butanol separately with simple cold maceration. Antioxidant activity of all crude extracts were quantitatively measured against DPPH and Ferric Reducing Assay. Antimicrobial evaluation was done by Microdilution and MTT assay and antipoliferative activity of all extracts of selected plant were evaluated against A549, HePG2 and MCF7 cell lines.

    Results: Results showed that methanol extract exhibited highest percentage free radical scavenging activity of almost all extracts of selected plants. Antimicrobials results showed chloroform and methanol extracts of O. stamineus extract were the two most active extracts against resistant MRSA but not S. aureus. Only methanol extract of G. procumbens showed antimicrobial activity against the tested pathogens. Chloroform and methanol extracts of F. deltoidea elicited antimicrobial activity against S. aureus but not MRSA. Antiproliferative activity against three tested cell lines results showed that ethyl acetate extract of O. stamineus showed good effect whereas methanol extract of F. deltoidea and G. procumbens exhibited good antiproliferative activity.

    Conclusions: The results of the present investigation demonstrated significant variations in the antioxidant, antimicrobial and antiproliferative effects of different solvent extracts. These data could be helpful in isolation of pure potent compounds with good biological activities from the extracts of plants.

    Matched MeSH terms: Plants, Medicinal
  2. Cyranoski D
    Nat Med, 2005 Sep;11(9):912.
    PMID: 16145563 DOI: 10.1038/nm0905-912a
    Matched MeSH terms: Plants, Medicinal
  3. Alhassan AM, Ahmed QU, Malami I, Zakaria ZA
    Pharm Biol, 2021 Dec;59(1):955-963.
    PMID: 34283002 DOI: 10.1080/13880209.2021.1950776
    CONTEXT: Pseudocedrela kotschyi (Schweinf) Harms (Meliaceae) is an important medicinal plant found in tropical and subtropical countries of Africa. Traditionally, P. kotschyi is used in the treatment of various diseases including diabetes, malaria, abdominal pain and diarrhoea.

    OBJECTIVE: To provide an overview of traditional medicinal claims, pharmacological properties, and phytochemical principles of P. kotschyi as a basis for its clinical applications and further research and development of new drugs.

    METHODS: Through interpreting already published scientific manuscripts retrieved from different scientific search engines, namely, Medline, PubMed, EMBASE, Science Direct and Google scholar databases, an up-to-date review on the medicinal potentials of P. kotschyi from inception until September, 2020 was compiled. 'Pseudocedrela kotschyi', 'traditional uses', 'pharmacological properties' and 'chemical constituents' were used as search words.

    RESULTS: At present, more than 30 chemical constituents have been isolated and identified from the root and stem bark of P. kotschyi, among which limonoids and triterpenes are the main active constituents. Based on prior research, P. kotschyi has been reported to possess anti-inflammatory, analgesic, antipyretic, anthelminthic, antimalaria, anti-leishmaniasis, anti-trypanosomiasis, hepatoprotective, antioxidant, antidiabetic, antidiarrheal, antimicrobial, and anticancer effects.

    CONCLUSIONS: P. kotschyi is reported to be effective in treating a variety of diseases. Current phytochemical and pharmacological studies mainly focus on antimalaria, anti-leishmaniasis, anti-trypanosomiasis and anticancer potential of the root and stem bark of P. kotschyi. Although experimental data support the beneficial medicinal properties of this plant, there is still a paucity of information on its toxicity profile. Nonetheless, this review provides the basis for future research work.

    Matched MeSH terms: Plants, Medicinal
  4. Razali NNM, Ng CT, Fong LY
    Planta Med, 2019 Nov;85(16):1203-1215.
    PMID: 31539918 DOI: 10.1055/a-1008-6138
    Centella asiatica, a triterpene-rich medicinal herb, is traditionally used to treat various types of diseases including neurological, dermatological, and metabolic diseases. A few articles have previously reviewed a broad range of pharmacological activities of C. asiatica, but none of these reviews focuses on the use of C. asiatica in cardiovascular diseases. This review aims to summarize recent findings on protective effects of C. asiatica and its active constituents (asiatic acid, asiaticoside, madecassic acid, and madecassoside) in cardiovascular diseases. In addition, their beneficial effects on conditions associated with cardiovascular diseases were also reviewed. Articles were retrieved from electronic databases such as PubMed and Google Scholar using keywords "Centella asiatica," "asiatic acid," "asiaticoside," "madecassic acid," and "madecassoside." The articles published between 2004 and 2018 that are related to the aforementioned topics were selected. A few clinical studies published beyond this period were also included. The results showed that C. asiatica and its active compounds possess potential therapeutic effects in cardiovascular diseases and cardiovascular disease-related conditions, as evidenced by numerous in silico, in vitro, in vivo, and clinical studies. C. asiatica and its triterpenes have been reported to exhibit cardioprotective, anti-atherosclerotic, antihypertensive, antihyperlipidemic, antidiabetic, antioxidant, and anti-inflammatory activities. In conclusion, more clinical and pharmacokinetic studies are needed to support the use of C. asiatica and its triterpenes as therapeutic agents for cardiovascular diseases. Besides, elucidation of the molecular pathways modulated by C. asiatica and its active constituents will help to understand the mechanisms underlying the cardioprotective action of C. asiatica.
    Matched MeSH terms: Plants, Medicinal
  5. Mohd Bukhari DA, Siddiqui MJ, Shamsudin SH, Rahman MM, So'ad SZM
    J Pharm Bioallied Sci, 2017 Jul-Sep;9(3):164-170.
    PMID: 28979070 DOI: 10.4103/jpbs.JPBS_35_17
    Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs) from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.
    Matched MeSH terms: Plants, Medicinal
  6. Thu HE, Mohamed IN, Hussain Z, Shuid AN
    J Ayurveda Integr Med, 2017 11 13;9(4):272-280.
    PMID: 29146110 DOI: 10.1016/j.jaim.2017.04.005
    BACKGROUND: Among the numerous well-documented medicinal herbs, Eurycoma longifolia (EL) has gained remarkable recognition due to its promising efficacy of stimulating bone formation in androgen-deficient osteoporosis. Though numerous animal studies have explored the bone-forming capacity of EL, the exact mechanism was yet to be explored.

    OBJECTIVE(S): The present study was aimed to investigate the mechanism of bone-forming capacity of EL using MC3T3-E1 as an in vitro osteoblastic model.

    MATERIALS AND METHODS: The cell differentiation capacity of EL was investigated by evaluating cell growth, alkaline phosphatase (ALP) activity, collagen deposition and mineralization. Taken together, time-mannered expression of bone-related mediators which include bone morphogenic protein-2 (BMP-2), ALP, runt-related transcription factor-2 (Runx-2), osteocalcin (OCN), type I collagen, osteopontin (OPN), transforming growth factor-β1 (TGF-β1) and androgen receptor (AR) were measured to comprehend bone-forming mechanism of EL.

    RESULTS: Results demonstrated a superior cell differentiation efficacy of EL (particularly at a dose of 25 μg/mL) that was evidenced by dramatically increased cell growth, higher ALP activity, collagen deposition and mineralization compared to the testosterone. Results analysis of the bone-related protein biomarkers indicated that the expression of these mediators was well-regulated in EL-treated cell cultures compared to the control groups. These findings revealed potential molecular mechanism of EL for the prevention and treatment of male osteoporosis.

    CONCLUSION: The resulting data suggested that EL exhibited superior efficacy in stimulating bone formation via up-regulating the expression of various mitogenic proteins and thus can be considered as a potential natural alternative therapy for the treatment of osteoporosis.

    Matched MeSH terms: Plants, Medicinal
  7. Tewari D, Mocan A, Parvanov ED, Sah AN, Nabavi SM, Huminiecki L, et al.
    Front Pharmacol, 2017;8:518.
    PMID: 28860989 DOI: 10.3389/fphar.2017.00518
    Jaundice is a very common symptom especially in the developing countries. It is associated with several hepatic diseases which are still major causes of death. There are many different approaches to jaundice treatment and the growing number of ethnomedicinal studies shows the plant pharmacology as very promising direction. Many medicinal plants are used for the treatment of jaundice, however a comprehensive review on this subject has not been published. The use of medicinal plants in drug discovery is highly emphasized (based on their traditional and safe uses in different folk medicine systems from ancient times). Many sophisticated analytical techniques are emerging in the pharmaceutical field to validate and discover new biologically active chemical entities derived from plants. Here, we aim to classify and categorize medicinal plants relevant for the treatment of jaundice according to their origin, geographical location, and usage. Our search included various databases like Pubmed, ScienceDirect, Google Scholar. Keywords and phrases used for these searches included: "jaundice," "hyperbilirubinemia," "serum glutamate," "bilirubin," "Ayurveda." The first part of the review focuses on the variety of medicinal plant used for the treatment of jaundice (a total of 207 medicinal plants). In the second part, possible mechanisms of action of biologically active secondary metabolites of plants from five families for jaundice treatment are discussed.
    Matched MeSH terms: Plants, Medicinal
  8. Abd Rani NZ, Husain K, Kumolosasi E
    Front Pharmacol, 2018;9:108.
    PMID: 29503616 DOI: 10.3389/fphar.2018.00108
    Moringa
    is a genus of medicinal plants that has been used traditionally to cure wounds and various diseases such as colds and diabetes. In addition, the genus is also consumed as a source of nutrients and widely used for purifying water. The genus consists of 13 species that have been widely cultivated throughout Asia and Africa for their multiple uses. The purpose of this review is to provide updated and categorized information on the traditional uses, phytochemistry, biological activities, and toxicological research ofMoringaspecies in order to explore their therapeutic potential and evaluate future research opportunities. The literature reviewed for this paper was obtained from PubMed, ScienceDirect, and Google Scholar journal papers published from 1983 to March 2017.Moringaspecies are well-known for their antioxidant, anti-inflammatory, anticancer, and antihyperglycemic activities. Most of their biological activity is caused by their high content of flavonoids, glucosides, and glucosinolates. By documenting the traditional uses and biological activities ofMoringaspecies, we hope to support new research on these plants, especially on those species whose biological properties have not been studied to date.
    Matched MeSH terms: Plants, Medicinal
  9. Ismail NZ, Arsad H, Samian MR, Hamdan MR, Othman AS
    3 Biotech, 2018 Jan;8(1):62.
    PMID: 29354373 DOI: 10.1007/s13205-018-1092-7
    This study was conducted to determine the feasibility of using three plastid DNA regions (matK, trnH-psbA, and rbcL) as DNA barcodes to identify the medicinal plant Clinacanthus nutans. In this study, C. nutans was collected at several different locations. Total genomic DNA was extracted, amplified by polymerase chain reaction (PCR), and sequenced using matK, trnH-psbA, and rbcL, primers. DNA sequences generated from PCR were submitted to the National Center for Biotechnology Information's (NCBI) GenBank. Identification of C. nutans was carried out using NCBI's Basic Local Alignment Search Tool (BLAST). The rbcL and trnH-psbA regions successfully identified C. nutans with sequencing rates of 100% through BLAST identification. Molecular Evolutionary Genetics Analysis (MEGA) 6.0 was used to analyze interspecific and intraspecific divergence of plastid DNA sequences. rbcL and matK exhibited the lowest average interspecific distance (0.0487 and 0.0963, respectively), whereas trnH-psbA exhibited the highest average interspecific distance (0.2029). The R package Spider revealed that trnH-psbA correctly identified Barcode of Life Data System (BOLD) 96%, best close match 79%, and near neighbor 100% of the species, compared to matK (BOLD 72%; best close match 64%; near neighbor 78%) and rbcL (BOLD 77%; best close match 62%; near neighbor 88%). These results indicate that trnH-psbA is very effective at identifying C. nutans, as it performed well in discriminating species in Acanthaceae.
    Matched MeSH terms: Plants, Medicinal
  10. Nallathamby N, Phan CW, Seow SL, Baskaran A, Lakshmanan H, Abd Malek SN, et al.
    Front Pharmacol, 2017;8:998.
    PMID: 29379443 DOI: 10.3389/fphar.2017.00998
    Edible and medicinal mushrooms are regularly used in natural medicines and home remedies since antiquity for ailments like fever, inflammation, and respiratory disorders. Lignosus rhinocerotis (Cooke) Ryvarden is a polypore found in Malaysia and other regions in South East Asia. It can be located on a spot where a tigress drips milk while feeding, hence the name "tiger's milk mushroom." The sclerotium of L. rhinocerotis is highly sought after by the native communities in Malaysia to stave off hunger, relieve cough and asthma, and provide stamina. The genomic features of L. rhinocerotis have been described. The pharmacological and toxicity effects, if any, of L. rhinocerotis sclerotium have been scientifically verified in recent years. In this review, the validated investigations including the cognitive function, neuroprotection, immune modulation, anti-asthmatic, anti-coagulation, anti-inflammatory, anti-microbial/ anti-viral, anti-obesity, anti-cancer/ anti-tumor, and antioxidant properties are highlighted. These findings suggest that L. rhinocerotis can be considered as an alternative and natural medicine in the management of non-communicable diseases. However, there is a paucity of validation studies including human clinical trials of the mycochemicals of L. rhinocerotis.
    Matched MeSH terms: Plants, Medicinal
  11. Kundap UP, Bhuvanendran S, Kumari Y, Othman I, Shaikh MF
    Front Pharmacol, 2017;8:76.
    PMID: 28289385 DOI: 10.3389/fphar.2017.00076
    A Central nervous system (CNS) disease is the one which affects either the spinal cord or brain and causing neurological or psychiatric complications. During the nineteenth century, modern medicines have occupied the therapy for many ailments and are widely used these days. Herbal medicines have often maintained popularity for historical and cultural reasons and also considered safer as they originate from natural sources. Embelin is a plant-based benzoquinone which is the major active constituent of the fruits of Embelia ribes Burm. It is an Indo-Malaysian species, extensively used in various traditional medicine systems for treating various diseases. Several natural products including quinone derivatives, which are considered to possess better safety and efficacy profile, are known for their CNS related activity. The bright orange hydroxybenzoquinone embelin-rich fruits of E. ribes have become popular in ethnomedicine. The present systematic review summarizes the effects of embelin on central nervous system and related diseases. A PRISMA model for systematic review was utilized for search. Various electronic databases such as Pubmed, Springer, Scopus, ScienceDirect, and Google Scholar were searched between January 2000 and February 2016. Based on the search criteria for the literature, 13 qualified articles were selected and discussed in this review. The results of the report showed that there is a lack of translational research and not a single study was found in human. This report gives embelin a further way to be explored in clinical trials for its safety and efficacy.
    Matched MeSH terms: Plants, Medicinal
  12. Mourya A, Shubhra, Bajwa N, Baldi A, Singh KK, Pandey M, et al.
    Mini Rev Med Chem, 2023;23(9):992-1032.
    PMID: 35546778 DOI: 10.2174/1389557522666220511140527
    Osteoarthritis (OA), a chronic degenerative musculoskeletal disorder, progressively increases with age. It is characterized by progressive loss of hyaline cartilage followed by subchondral bone remodeling and inflammaging. To counteract the inflammation, synovium releases various inflammatory and immune mediators along with metabolic intermediates, which further worsens the condition. However, even after recognizing the key molecular and cellular factors involved in the progression of OA, only disease-modifying therapies are available such as oral and topical NSAIDs, opioids, SNRIs, etc., providing symptomatic treatment and functional improvement instead of suppressing OA progression. Long-term use of these therapies leads to various life-threatening complications. Interestingly, mother nature has numerous medicinal plants containing active phytochemicals that can act on various targets involved in the development and progression of OA. Phytochemicals have been used for millennia in traditional medicine and are promising alternatives to conventional drugs with a lower rate of adverse events and efficiency frequently comparable to synthetic molecules. Nevertheless, their mechanism of action in many cases is elusive and uncertain. Even though many in vitro and in vivo studies show promising results, clinical evidence is scarce. Studies suggest that the presence of carbonyl group in the 2nd position, chloro in the 6th and an electron- withdrawing group at the 7th position exhibit enhanced COX-2 inhibition activity in OA. On the other hand, the presence of a double bond at the C2-C3 position of C ring in flavonoids plays an important role in Nrf2 activation. Moreover, with the advancements in the understanding of OA progression, SARs (structure-activity relationships) of phytochemicals and integration with nanotechnology have provided great opportunities for developing phytopharmaceuticals. Therefore, in the present review, we have discussed various promising phytomolecules, SAR as well as their nano-based delivery systems for the treatment of OA to motivate the future investigation of phytochemical-based drug therapy.
    Matched MeSH terms: Plants, Medicinal
  13. Jamalis J, Yusof FSM, Chander S, Wahab RA, P Bhagwat D, Sankaranarayanan M, et al.
    PMID: 31241020 DOI: 10.2174/1871523018666190625170802
    Psoralen or furocoumarin is a linear three ring heterocyclic compound. Psoralens are planar, tricyclic compounds, consisting of a furan ring fused to a coumarin moiety. Psoralen has been known for a wide spectrum of biological activities, spanning from cytotoxic, photosensitizing, insecticidal, antibacterial to antifungal effect. Thus, several structural changes were introduced to explore the role of specific positions with respect to the biological activity. Convenient approaches utilized for the synthesis of psoralen skeleton can be categorized into two parts: (i) the preparation of the tricyclic ring system from resorcinol, (ii) the exocyclic modification of the intact ring system. Furthermore, although psoralens have been used in diverse ways, we mainly focus in this work on their clinical utility for the treatment of psioraisis, vitiligo and skin-related disorder.
    Matched MeSH terms: Plants, Medicinal
  14. Rastogi S, Kulshreshtha DK, Rawat AK
    Evid Based Complement Alternat Med, 2006 Jun;3(2):217-22.
    PMID: 16786051
    Streblus asper Lour is a small tree found in tropical countries, such as India, Sri Lanka, Malaysia, the Philippines and Thailand. Various parts of this plant are used in Ayurveda and other folk medicines for the treatment of different ailments such as filariasis, leprosy, toothache, diarrhea, dysentery and cancer. Research carried out using different in vitro and in vivo techniques of biological evaluation support most of these claims. This review presents the botany, chemistry, traditional uses and pharmacology of this medicinal plant.
    Matched MeSH terms: Plants, Medicinal
  15. Wong YH, Abdul Kadir H, Ling SK
    PMID: 22203865 DOI: 10.1155/2012/164689
    Leea indica is a medicinal plant used traditionally to cure cancer. In this study, the cytotoxic compounds of L. indica were isolated using bioassay-guided approach. Two cycloartane triterpenoid glycosides, mollic acid arabinoside (MAA) and mollic acid xyloside (MAX), were firstly isolated from L. indica. They inhibited the growth of Ca Ski cervical cancer cells with IC(50) of 19.21 μM (MAA) and 33.33 μM (MAX). MRC5 normal cell line was used to calculate selectivity index. MAA and MAX were about 8 and 4 times more cytotoxic to Ca Ski cells compared to MRC5. The cytotoxicity of MAA was characterized by both cytostatic and cytocidal effects. MAA decreased the expression of proliferative cell nuclear antigen, increased sub-G1 cells, and arrested cells in S and G2/M phases. This study provides the evidence for the ethnomedicinal use of L. indica and paves the way for future mechanism studies on the anticancer effects of MAA.
    Matched MeSH terms: Plants, Medicinal
  16. Alshawsh MA, Abdulla MA, Ismail S, Amin ZA
    PMID: 21647311 DOI: 10.1155/2011/103039
    Orthosiphon stamineus as medicinal plant is commonly used in Malaysia for treatment of hepatitis and jaundice; in this study, the ethanol extracts were applied to evaluate the hepatoprotective effects in a thioacetamide-induced hepatotoxic model in Sprague Dawley rats. Five groups of adult rats were arranged as follows: Group 1 (normal control group), Group 2 Thioacetamide (TAA) as positive control (hepatotoxic group), Group 3 Silymarin as a well-known standard drug (hepatoprotective group), and Groups 4 and 5 as high and low dose (treatment groups). After 60-day treatment, all rats were sacrificed. The hepatotoxic group showed a coarse granulation on the liver surface when compared to the smooth aspect observed on the liver surface of the other groups. Histopathological study confirmed the result; moreover, there was a significant increase in serum liver biochemical parameters (ALT, AST, ALP, and Bilirubin) and the level of liver Malondialdehyde (MDA), accompanied by a significant decrease in the level of total protein and Albumin in the TAA control group when compared with that of the normal group. The high-dose treatment group (200 mg/kg) significantly restored the elevated liver function enzymes near to normal. This study revealed that 200 mg/kg extracts of O. stamineus exerted a hepatoprotective effect.
    Matched MeSH terms: Plants, Medicinal
  17. Mohd Effendy N, Mohamed N, Muhammad N, Naina Mohamad I, Shuid AN
    PMID: 22844328 DOI: 10.1155/2012/125761
    Osteoporosis in elderly men is now becoming an alarming health issue due to its relation with a higher mortality rate compared to osteoporosis in women. Androgen deficiency (hypogonadism) is one of the major factors of male osteoporosis and it can be treated with testosterone replacement therapy (TRT). However, one medicinal plant, Eurycoma longifolia Jack (EL), can be used as an alternative treatment to prevent and treat male osteoporosis without causing the side effects associated with TRT. EL exerts proandrogenic effects that enhance testosterone level, as well as stimulate osteoblast proliferation and osteoclast apoptosis. This will maintain bone remodelling activity and reduce bone loss. Phytochemical components of EL may also prevent osteoporosis via its antioxidative property. Hence, EL has the potential as a complementary treatment for male osteoporosis.
    Matched MeSH terms: Plants, Medicinal
  18. Alafiatayo AA, Lai KS, Syahida A, Mahmood M, Shaharuddin NA
    PMID: 30949217 DOI: 10.1155/2019/3807207
    Curcuma longa L. is a rhizome plant often used as traditional medicinal preparations in Southeast Asia. The dried powder is commonly known as cure-all herbal medicine with a wider spectrum of pharmaceutical activities. In spite of the widely reported therapeutic applications of C. longa, research on its safety and teratogenic effects on zebrafish embryos and larvae is still limited. Hence, this research aimed to assess the toxicity of C. longa extract on zebrafish. Using a reflux flask, methanol extract of C. longa was extracted and the identification and quantification of total flavonoids were carried out with HPLC. Twelve fertilized embryos were selected to test the embryotoxicity and teratogenicity at different concentration points. The embryos were exposed to the extract in the E3M medium while the control was only exposed to E3M and different developmental endpoints were recorded with the therapeutic index calculated using the ratio of LC50/EC50. C. longa extract was detected to be highly rich in flavonoids with catechin, epicatechin, and naringenin as the 3 most abundant with concentrations of 3,531.34, 688.70, and 523.83μg/mL, respectively. The toxicity effects were discovered to be dose-dependent at dosage above 62.50μg/mL, while, at 125.0μg/mL, mortality of embryos was observed and physical body deformities of larvae were recorded among the hatched embryos at higher concentrations. Teratogenic effect of the extract was severe at higher concentrations producing physical body deformities such as kink tail, bend trunk, and enlarged yolk sac edema. Finally, the therapeutic index (TI) values calculated were approximately the same for different concentration points tested. Overall, the result revealed that plants having therapeutic potential could also pose threats when consumed at higher doses especially on the embryos. Therefore, detailed toxicity analysis should be carried out on medicinal plants to ascertain their safety on the embryos and its development.
    Matched MeSH terms: Plants, Medicinal
  19. Muniandy K, Gothai S, Tan WS, Kumar SS, Mohd Esa N, Chandramohan G, et al.
    PMID: 29670658 DOI: 10.1155/2018/3142073
    Impaired wound healing is one of the serious problems among the diabetic patients. Currently, available treatments are limited due to side effects and cost effectiveness. In line with that, we attempted to use a natural source to study its potential towards the wound healing process. Therefore, Alternanthera sessilis (A. sessilis), an edible and medicinal plant, was chosen as the target sample for the study. During this investigation, the wound closure properties using stem extract of A. sessilis were analyzed. Accordingly, we analyzed the extract on free radical scavenging capacity and the cell migration of two most prominent cell types on the skin, human dermal fibroblast (NHDF), keratinocytes (HaCaT), and diabetic human dermal fibroblast (HDF-D) to mimic the wound healing in diabetic patients. The bioactive compounds were identified using gas chromatography-mass spectrometry (GC-MS). We discovered that the analysis exhibited a remarkable antioxidant, proliferative, and migratory rate in NHDF, HaCaT, and HDF-D in dose-dependent manner, which supports wound healing process, due to the presence of wound healing associated phytocompounds such as Hexadecanoic acid. This study suggested that the stem extract of A. sessilis might be a potential therapeutic agent for skin wound healing, supporting its traditional medicinal uses.
    Matched MeSH terms: Plants, Medicinal
  20. Yahaya N, Mohd Dom NS, Adam Z, Hamid M
    PMID: 30046337 DOI: 10.1155/2018/3769874
    Ficus deltoidea is a traditional medicinal plant that has been proven to show antidiabetic effects. This study focus is to assess the insulin secretion activity of Ficus deltoidea standardized methanolic extracts from seven independent varieties and mechanisms that underlie the insulin secretion action of the extracts. The cytotoxicity of Ficus deltoidea extracts was tested using viability assay. The insulin secretion assay was carried out by treating clonal BRIN BD11 cell line with standardized methanolic Ficus deltoidea extracts or glybenclamide. The clonal BRIN BD11 cell was also treated with insulin agonist and antagonist to elucidate the insulin secretion mechanism. Only the viability percentage for Ficus deltoidea var. kunstleri and intermedia was identified to be toxic at 500 and 1000 μg/ml (P<0.001). The insulin secretion for Ficus deltoidea var. deltoidea, angustifolia, and motleyana was dose-dependent; further evaluation suggested that Ficus deltoidea var. trengganuensis was involved in KATP-independent pathway. This study suggests that standardized methanolic extracts of Ficus deltoidea varieties have an insulinotropic effect on clonal BRIN BD11 cell line and can be utilized as a modern candidate of antidiabetic agents targeting the escalation for insulin secretion from pancreatic beta cells.
    Matched MeSH terms: Plants, Medicinal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links