MATERIALS AND METHODS: About 20 quails were divided into three groups (n=8 for Groups A and B; n=4 for the control group). The quails in the Groups A and B were infected via intraocular route with 0.03 ml of 103.5 ELD50 and 107.0 ELD50 of NDV strain IBS 002, respectively, while the control group received 1× phosphate-buffered saline. Cloacal swabs and necropsy were taken on day 7 post-infection for all quails were subjected to one-step reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) for detection of virus and examination for gross pathological lesion, respectively. Blood serums of infected quails were taken on day 10, 14, and 21 post-day infections and were subjected for hemagglutination inhibition (HI) assay.
RESULTS: Depression and ruffled feathers, trachea rales, leg paralysis, and torticollis were shown in some of the quails in both infected groups. Based on statistical analysis, there was no significant difference (p>0.05) in clinical signs between the infected groups. The results for RT-qPCR were found to be negative for all groups, and no gross pathological lesions of organs observed for quails in both infected groups. Trachea, proventriculus, and cecal tonsil were taken for the detection of NDV by RT-qPCR, and some of the organ samples showed positive detection of virus in both infected groups. HI assay showed an increase in mean titers of antibody across time and between infected groups.
CONCLUSION: In summary, Japanese quails are susceptible to genotype VII NDV based on parameters assessed.
METHODS: 93 patients and 78 spousal/sibling controls underwent comprehensive assessment of diet, clinical status, muscle strength/performance, frailty, body composition (using dual-energy X-ray absorptiometry), and serum levels of neurogastrointestinal hormones and inflammatory markers.
RESULTS: PD patients were older than controls (66.0 ± 8.5 vs. 62.4 ± 8.4years, P = 0.003). Mean body mass index (24.0 ± 0.4 vs. 25.6 ± 0.5kg/m2, Padjusted = 0.016), fat mass index (7.4 ± 0.3 vs. 9.0 ± 0.3kg/m2, Padjusted<0.001), and whole-body fat percentage (30.7 ± 0.8 vs. 35.7 ± 0.9%, Padjusted<0.001) were lower in patients, even after controlling for age and gender. There were no between-group differences in skeletal muscle mass index and whole-body bone mineral density. Body composition parameters did not correlate with disease duration or motor severity. Reduced whole-body fat percentage was associated with higher risk of motor response complications as well as higher levels of insulin-growth factor-1 and inflammatory markers. PD patients had a higher prevalence of sarcopenia (17.2% vs. 10.3%, Padjusted = 0.340) and frailty (69.4% vs. 24.2%, Padjusted = 0.010). Older age and worse PD motor severity were predictors of frailty in PD.
CONCLUSIONS: We found reduced body fat with relatively preserved skeletal muscle mass, and a high prevalence of frailty, in PD. Further studies are needed to understand the patho-mechanisms underlying these alterations.
METHODS: Consecutive participants aged 18 years or older with a primary diagnosis of asthma, allergic rhinitis, chronic obstructive pulmonary disease, or rhinosinusitis were enrolled. Participants completed a survey detailing respiratory symptoms, HCRU, work productivity and activity impairment, and HRQOL. Locally sourced unit costs for each country were used in the calculation of total costs.
RESULTS: The study enrolled 5250 patients. Overall, the mean annual cost for patients with a respiratory disease was US $4191 (SGD 8489) per patient. For patients who reported impairment at work, the mean annual cost was US $7315 (SGD 10,244), with productivity loss being the highest cost component for all four diseases (US $6310 [SGD 9100]). On average, patients were impaired for one-third of their time at work and 5% of their work time missed because of respiratory disease, which resulted in a 36% reduction in productivity. Patients with a primary diagnosis of chronic obstructive pulmonary disease had the greatest impact on HRQOL.
CONCLUSIONS: In the Asia-Pacific, respiratory diseases have a significant impact on HCRU and associated costs, along with work productivity. Timely and effective management of these diseases has the potential to reduce disease burden and health care costs and improve work productivity and HRQOL.