Displaying publications 2721 - 2740 of 6724 in total

Abstract:
Sort:
  1. Maidin S, Rajendran TK, Nor Hayati NM, Sheng YY, Ismail S, Muhammad AH
    Heliyon, 2023 Jun;9(6):e17053.
    PMID: 37484304 DOI: 10.1016/j.heliyon.2023.e17053
    Fused deposition modeling (FDM) is an extrusion-based AM process that is widely used due to its cost-effectiveness and user friendly. However, FDM also has some limitations such as the appearance of seam lines between layers and the production of excess material residue leading to poor surface finish, poor bonding between layers and porosity. This paper presents the findings on the application of ultrasonic vibration in an open-source FDM 3D printer to investigate its effect on the mechanical properties and microstructure of acrylonitrile butadiene styrene (ABS) and Polylactic Acid (PLA) samples. Two units of ultrasonic piezoelectric transducer were clamped horizontally on the surface of the 3D printer platform. The ultrasonic vibration was transmitted directly to the platform while the sample received vibration with a specific frequency while the printing process commences. Two process parameters, namely build orientation and ultrasonic vibration were selected to analyze their significance and optimization on the mechanical properties and the microstructure of the printed samples. High compressive and low surface roughness are required to have the best properties for the printed sample. Therefore, the optimization parameters are performed with these settings where the compressive strength is maximized and the surface roughness is minimized. The result shows that the overall compressive strength in ABS and PLA samples created in the Z-axis orientation is higher than in the X-axis orientation. However, the compressive strength of ABS and PLA samples is not much different after the ultrasonic vibration was applied during the printing process. The microstructure analysis shows that bonding between the layers is similar when applying ultrasonic vibration for both ABS and PLA samples. Furthermore, the result indicates that the surface roughness increased at 10 kHz and then decreased or became smoother at 20 kHz for both ABS and PLA material samples. The analysis shows that the build orientation significantly affects the compressive strength in ABS and PLA samples. However, the ultrasonic vibration has no considerable impact. In surface roughness, the build orientation and ultrasonic vibration significantly affect ABS samples. However, the PLA samples are only slightly affected. The optimum parameters for both materials are found where Z-axis orientation and 0 kHz of the ultrasonic vibration samples gave the best compressive strength and surface roughness value.
  2. Mursyidah AK, Hafizzudin-Fedeli M, Nor Muhammad NA, Latiff A, Firdaus-Raih M, Wan KL
    Plant Cell Physiol, 2023 Apr 17;64(4):368-377.
    PMID: 36611267 DOI: 10.1093/pcp/pcad004
    The angiosperm Rafflesia exhibits a unique biology, including a growth strategy that involves endophytic parasitism of a specific host, with only the gigantic flower externally visible. The Rafflesia possesses many unique evolutionary, developmental and morphological features that are rooted in yet-to-be-explained physiological processes. Although studies on the molecular biology of Rafflesia are limited by sampling difficulties due to its rarity in the wild and the short life span of its flower, current advances in high-throughput sequencing technology have allowed for the genome- and transcriptome-level dissection of the molecular mechanisms behind the unique characteristics of this parasitic plant. In this review, we summarize major findings on the cryptic biology of Rafflesia and provide insights into future research directions. The wealth of data obtained can improve our understanding of Rafflesia species and contribute toward the conservation strategy of this endangered plant.
  3. Ayoub MA, Yap PG, Mudgil P, Khan FB, Anwar I, Muhammad K, et al.
    J Dairy Sci, 2023 Sep 12.
    PMID: 37709024 DOI: 10.3168/jds.2023-23733
    In dairy science, camel milk (CM) constitutes a center of interest for scientists due to its known beneficial impact on diabetes as demonstrated in many in vitro, in vivo, and clinical studies and trials. Overall, CM had positive effects on various parameters related to glucose transport and metabolism as well as the structural and functional properties of the pancreatic β-cells and insulin secretion. Thus, CM consumption may help manage diabetes, however, such a recommendation will become rationale and clinically conceivable only if the exact molecular mechanisms and pathways involved at the cellular levels are well understood. Moreover, the application of CM as an alternative antidiabetic tool may first require the identification of the exact bioactive molecule(s) behind such antidiabetic properties. In this review, we describe the advances in our knowledge of the molecular mechanisms reported to be involved in the beneficial effects of CM in managing diabetes using different in vitro and in vivo models. This mainly includes the effects of CM on the different molecular pathways controlling (i) insulin receptor signaling and glucose uptake, (ii) the pancreatic β-cell structure and function, and (iii) the activity of key metabolic enzymes in glucose metabolism. Moreover, we described the current status of the identification of CM-derived bioactive peptides and their structure-activity relationship study and characterization in the context of molecular markers related to diabetes. Such an overview will not only enrich our scientific knowledge of the plausible mode of action of CM in diabetes but should ultimately rationalize the claim of the potential application of CM against diabetes. This will pave the way toward new directions and ideas for developing a new generation of antidiabetic products taking benefits from the chemical composition of CM.
  4. Azahar SN, Sulong S, Wan Zaidi WA, Muhammad N, Kamisah Y, Masbah N
    PMID: 35162102 DOI: 10.3390/ijerph19031078
    BACKGROUND: Stroke has significant direct medical costs, and direct oral anticoagulants (DOACs) are better alternatives to warfarin for stroke prevention in atrial fibrillation (AF). This study aimed to determine the direct medical costs of stroke, with emphasis on AF stroke and the cost-effectiveness of DOACs among stroke patients in a tertiary hospital in Malaysia.

    METHODS: This study utilised in-patient data from the case mix unit of Universiti Kebangsaan Malaysia Medical Centre (UKMMC) between 2011 and 2018. Direct medical costs of stroke were determined using a top-down costing approach and factors associated with costs were identified. Incremental cost effectiveness ratio (ICER) was calculated to compare the cost-effectiveness between DOACs and warfarin.

    RESULTS: The direct medical cost of stroke was MYR 11,669,414.83 (n = 3689). AF-related stroke cases had higher median cost of MYR 2839.73 (IQR 2269.79-3101.52). Regression analysis showed that stroke type (AF versus non-AF stroke) (p = 0.013), stroke severity (p = 0.010) and discharge status (p < 0.001) significantly influenced stroke costs. DOACs were cost-effective compared to warfarin with an ICER of MYR 19.25.

    CONCLUSIONS: The direct medical cost of stroke is substantial, with AF-stroke having a higher median cost per stroke care. DOACs were cost effective in the treatment of AF-related stroke in UKMMC.

  5. Andriani Y, Hanifah W, Kholieqoh AH, Abdul Majid FA, Hermansyah H, Amir H, et al.
    J Adv Pharm Technol Res, 2023;14(3):220-225.
    PMID: 37692002 DOI: 10.4103/JAPTR.JAPTR_183_23
    Besides adenovirus, pneumonia can also be caused by bacteria. One of the most common bacteria causing the pneumonia is Klebsiella pneumoniae. Currently, treatment by antibiotics has been widely used. Nevertheless, the increasing failure of existing antibiotics because of antibiotic resistance resulted by bacterial pathogens has become a serious problem to human health. Hence, there is a need for a new antibacterial potential agent against K. pneumoniae as an alternative treatment to the pneumonia to prevent the risk of a severe pneumonia for both healthy people and those already infected with the pneumonia. This study, therefore, investigated the antibacterial activity of some selected plants (Pandanus tectorius, Nypa fruticans, Sonneratia alba, Phaleria macrocarpa, Hibiscus tiliaceus, and Pongamia pinnata) against K. pneumoniae. In this study, samples were extracted successively by cold maceration using hexane and methanol. Antibacterial activity was determined by well and disc diffusion methods. Each fraction was prepared by two-fold dilutions from 20 mg/mL to 0.156 mg/mL. All data were analyzed in triplicate replication and presented as mean values ± standard deviation. Results showed that all methanol fractions of selected plants had antibacterial activity against K. pneumoniae, and well-diffusion method showed better antibacterial results compared to the agar well-diffusion method. The strongest activity was obtained by methanol fraction of S. alba leaf, followed by P. pinnata leaf, Nypa fruticans bark, H. tiliaceus leaf, P. macrocarpa leaf, and P. tectorius leaf with the minimum inhibitory concentrations (MICs) value between 0.625 and 5.0 mg/mL. Phytochemical screening revealed that all methanol fractions were rich in flavonoid content, which could have contributed to their antibacterial activity.
  6. Tharmathurai S, Muhammad-Ikmal MK, Razak AA, Che-Hamzah J, Azhany Y, Fazilawati Q, et al.
    J Glaucoma, 2021 May 01;30(5):e205-e212.
    PMID: 33710066 DOI: 10.1097/IJG.0000000000001830
    PRCIS: Depression increases with severity of visual field defect in older adults with primary open-angle glaucoma (POAG).

    PURPOSE: This study aimed to determine the prevalence of depression among patients with POAG and examine the relationship between depression and the severity of POAG in older adults.

    MATERIALS AND METHODS: Three hundred and sixty patients with POAG aged 60 years or above were recruited from 2 tertiary centers located in an urban and suburban area. The participants were stratified according to the severity of their glaucoma based on the scores from the modified Advanced Glaucoma Intervention Study (AGIS) to mild, moderate, severe, and end stage. Face-to-face interviews were performed using the Malay Version Geriatric Depression Scale 14 (mGDS-14) questionnaire. Depression is diagnosed when the score is ≥8. One-way analysis of variance was used to compare the subscores between the groups. Multifactorial analysis of variance was also applied with relevant confounding factors.

    RESULTS: Depression was detected in 16% of older adults with POAG; a higher percentage of depression was seen in those with end stage disease. There was a significant increase in the mean score of mGDS-14 according to the severity of POAG. There was evidence of an association between depression and severity of visual field defect (P<0.001). There was a significant difference in mGDS-14 score between the pairing of severity of POAG [mild-severe (P=0.003), mild-end stage (P<0.001), moderate-severe (P<0.001), and moderate-end stage (P<0.001)] after adjustment to living conditions, systemic disease, and visual acuity.

    CONCLUSION: Ophthalmologists should be aware that older adults with advanced visual field defects in POAG may have depression. The detection of depression is important to ensure adherence and persistence to the treatment of glaucoma.

  7. Nevara GA, Giwa Ibrahim S, Syed Muhammad SK, Zawawi N, Mustapha NA, Karim R
    Crit Rev Food Sci Nutr, 2023;63(23):6330-6343.
    PMID: 35089825 DOI: 10.1080/10408398.2022.2031092
    The excellent health benefits of oil extracted from seeds have increased its application in foods, pharmaceutical and cosmetic industries. This trend leads to a growing research area on their by-products, oilseed meals, to minimize environmental and economic issues. Examples of these by-products are soybean, peanut, kenaf seed, hemp, sesame, and chia seed meals. It is well known that soybean meals have wide applications in food and non-food industries, while other seed meals are not well established. Most oilseed meals are rich in health beneficial compounds and are potential sources of plant protein, dietary fiber, and antioxidants. Many studies have reported on the valorization of these by-products into value-added food products such as bakery and meat products to increase their nutritional and functional properties. These efforts contribute to the sustainability, development of novel functional food and support the zero-waste concept for the environment. This review aims to provide information on the composition of selected oilseed meals from soybean, peanut, hemp, kenaf, sesame and chia seeds, their potential applications in the bakery, meat, beverage, pasta, and other food products, and to highlight the issues and challenges associated with the utilization of oilseed meals into various food products.
  8. Muhamad SA, Muhammad NS, Ismail NDA, Mohamud R, Safuan S, Nurul AA
    Exp Ther Med, 2019 May;17(5):3867-3876.
    PMID: 30988772 DOI: 10.3892/etm.2019.7416
    Asthma is a chronic inflammatory disorder in the airways that involves the activation of cells and mediators. Lignosus rhinocerotis (Cooke) Ryvardan or Tiger Milk mushroom is a medicinal mushroom that is traditionally used to treat inflammatory diseases including asthma. In this study, the protective effects of intranasal administration of L. rhinocerotis extract (LRE) in ovalbumin (OVA)-induced airway inflammation mouse model were investigated. Mice were sensitized by intraperitoneal (i.p) injection on days 0 and 14, followed by a daily challenge with 1% OVA from days 21 to 27. Following OVA challenge, LRE and dexamethasone were administered via intranasal and i.p. injection respectively. On day 28, the level of serum immunoglobulin (Ig)E, differential cell counts and T-helper (Th) 2 cytokines in bronchoalveolar lavage fluid (BALF) fluid, cell subset population in lung-draining lymph nodes (LNs), leukocytes infiltration and mucus production in the lungs of the animals was measured. Results demonstrated that intranasal administration of LRE significantly suppressed the level of inflammatory cell counts in BALF as well as populations of CD4+ T-cells in lung draining LNs. Apart from that, LRE also significantly reduced the level of Th2 cytokines in BALF and IgE in the serum in OVA-induced asthma. Histological analysis also demonstrated the amelioration of leukocytes infiltration and mucus production in the lungs. Overall, these findings demonstrated the attenuation of airway inflammation in the LRE-treated mice therefore suggesting a promising alternative for the management of allergic airway inflammation.
  9. Noruddin NAA, Hamzah MF, Rosman Z, Salin NH, Shu-Chien AC, Muhammad TST
    Molecules, 2021 May 03;26(9).
    PMID: 34063700 DOI: 10.3390/molecules26092682
    Momordica charantia is a popular vegetable associated with effective complementary and alternative diabetes management in some parts of the world. However, the molecular mechanism is less commonly investigated. In this study, we investigated the association between a major cucurbitane triterpenoid isolated from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (THCB) and peroxisome proliferator activated receptor gamma (PPARγ) activation and its related activities using cell culture and molecular biology techniques. In this study, we report on both M. charantia fruit crude extract and THCB in driving the luciferase activity of Peroxisome Proliferator Response Element, associated with PPARγ activation. Other than that, THCB also induced adipocyte differentiation at far less intensity as compared to the full agonist rosiglitazone. In conjunction, THCB treatment on adipocytes also resulted in upregulation of PPAR gamma target genes expression; AP2, adiponectin, LPL and CD34 at a lower magnitude compared to rosiglitazone's induction. THCB also induced glucose uptake into muscle cells and the mechanism is via Glut4 translocation to the cell membrane. In conclusion, THCB acts as one of the many components in M. charantia to induce hypoglycaemic effect by acting as PPARγ ligand and inducing glucose uptake activity in the muscles by means of Glut4 translocation.
  10. Azman NA, Skowyra M, Muhammad K, Gallego MG, Almajano MP
    Pharm Biol, 2017 Dec;55(1):912-919.
    PMID: 28152668 DOI: 10.1080/13880209.2017.1282528
    CONTEXT: Betula pendula Roth (Betulaceae) exhibits many pharmacological activities in humans including anticancer, antibacterial, and antiviral effects. However, the antioxidant activity of BP towards lipid degradation has not been fully determined.

    OBJECTIVE: The BP ethanol and methanol extracts were evaluated to determine antioxidant activity by an in vitro method and lyophilized extract of BP was added to beef patties to study oxidative stability.

    MATERIALS AND METHODS: Antioxidant activities of extracts of BP were determined by measuring scavenging radical activity against methoxy radical generated by Fenton reaction 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (TEAC) radical cation, the oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP) assays. The lipid deterioration in beef patties containing 0.1% and 0.3% (w/w) of lyophilized extract of BP stored in 80:20 (v/v) O2:CO2 modified atmosphere (MAP) at 4 °C for 10 days was determined using thiobarbituric acid reacting substances (TBARS), % metmyoglobin and colour value.

    RESULTS: The BP methanol extract revealed the presence of catechin, myricetin, quercetin, naringenin, and p-coumaric acid. The BP ethanol (50% w/w) extract showed scavenging activity in TEAC, ORAC and FRAP assays with values of 1.45, 2.81, 1.52 mmol Trolox equivalents (TE)/g DW, respectively. Reductions in lipid oxidation were found in samples treated with lyophilized BP extract (0.1% and 0.3% w/w) as manifested by the changes of colour and metmyoglobin concentration. A preliminary study film with BP showed retard degradation of lipid in muscle food.

    CONCLUSION: The present results indicated that the BP extracts can be used as natural food antioxidants.

  11. Liau CJ, Liew SK, Arsad SR, Muhammad Nawawi RF, Silvanathan JP
    Cureus, 2023 Sep;15(9):e45067.
    PMID: 37842372 DOI: 10.7759/cureus.45067
    Introduction Treatment of scaphoid fracture is challenging due to its unique blood supply and geometry. Traditionally, a headless compression screw is the standard treatment for unstable scaphoid fracture. Some fractures are complex, for example, comminution with bone loss. A scaphoid plate is an option in these difficult fractures providing adequate rotational stability. Aim To share our experience in using scaphoid plates in complex wrist trauma and comminuted fractures. Method and material Complex wrist trauma involving scaphoid fractures that were comminuted and multi-fragmentary fractures treated with plate osteosynthesis were retrospectively reviewed between July 2019 and September 2021. Patient demographic data, preoperative radiographs, CT scans, pain, wrist range of motion, and fracture union rate to union were reviewed. Quick Disabilities of the Arm, Shoulder, and Hand (QuickDASH®) score was recorded at 1-year postoperative follow-up.  Results Nine patients associated with complex wrist trauma were included in this case series. The mean follow-up was 2.5 years (13-30 months). The union rate was 100%. The mean arc of motion was 105° (95-110°). QuickDASH® score was 19.96 at 1-year postoperative follow-up. Four patients had good outcomes, four satisfactory, and one poor outcome. One hardware complication was observed which was the impingement of the plate proximally over the articular surface of the distal radius. Conclusion A scaphoid plate is a reliable option for treating complex and difficult fractures. It provides adequate stability, especially in comminution, bone loss, or multi-fragmentary fractures which are not amendable using other fixation methods. We recommend the expansion of plate osteosynthesis beyond scaphoid nonunion into complex wrist trauma.
  12. Minggu MM, Naseron NAH, Shaberi HSA, Muhammad NAN, Baharum SN, Ramzi AB
    MethodsX, 2023 Dec;11:102434.
    PMID: 37846354 DOI: 10.1016/j.mex.2023.102434
    Polyhydroxyalkanoate (PHA)-producing bacteria represent a powerful synthetic biology chassis for waste bioconversion and bio-upcycling where PHAs can be produced as the final products. In this study, we present a seamless plasmid construction for orthogonal expression of recombinant PET hydrolase (PETase) in model PHA-producing bacteria P. putida and C. necator. To this end, this study described seamless cloning and expression methods utilizing SureVector (SV) system for generating pSV-Ortho-PHA (pSVOP) expression platform in bioengineered P. putida and C. necator. Genetic parts specifically Trc promoter, pBBR1 origin of replication, anchoring proteins and signal sequences were utilized for the transformation of pSVOP-based plasmid in electrocompetent cells and orthogonal expression of PETase in both P. putida and C. necator. Validation steps in confirming functional expression of PETase activity in corresponding PETase-expressing strains were also described to demonstrate seamless and detailed methods in establishing bioengineered P. putida and C. necator as whole-cell biocatalysts tailored for plastic bio-upcycling.•Seamless plasmid construction for orthogonal expression in PHA-producing bacteria.•Step-by-step guide for high-efficiency generation of electrotransformants of P. putida and C. necator.•Adaptable methods for rapid strain development (Design, Build, Test and Learn) for whole-cell biocatalysis.
  13. Nashihah AK, Muhammad Firdaus FI, Fauzi MB, Mobarak NN, Lokanathan Y
    Int J Mol Sci, 2023 Oct 05;24(19).
    PMID: 37834382 DOI: 10.3390/ijms241914935
    Respiratory diseases have a major impact on global health. The airway epithelium, which acts as a frontline defence, is one of the most common targets for inhaled allergens, irritants, or micro-organisms to enter the respiratory system. In the tissue engineering field, biomaterials play a crucial role. Due to the continuing high impact of respiratory diseases on society and the emergence of new respiratory viruses, in vitro airway epithelial models with high microphysiological similarities that are also easily adjustable to replicate disease models are urgently needed to better understand those diseases. Thus, the development of biomaterial scaffolds for the airway epithelium is important due to their function as a cell-support device in which cells are seeded in vitro and then are encouraged to lay down a matrix to form the foundations of a tissue for transplantation. Studies conducted in in vitro models are necessary because they accelerate the development of new treatments. Moreover, in comparatively controlled conditions, in vitro models allow for the stimulation of complex interactions between cells, scaffolds, and growth factors. Based on recent studies, the biomaterial scaffolds that have been tested in in vitro models appear to be viable options for repairing the airway epithelium and avoiding any complications. This review discusses the role of biomaterial scaffolds in in vitro airway epithelium models. The effects of scaffold, physicochemical, and mechanical properties in recent studies were also discussed.
  14. Fathilah SN, Mohamed N, Muhammad N, Mohamed IN, Soelaiman IN, Shuid AN
    BMC Complement Altern Med, 2013 Sep 05;13:217.
    PMID: 24007208 DOI: 10.1186/1472-6882-13-217
    BACKGROUND: Labisia Pumila var. alata (LPva) has shown potential as an alternative to estrogen replacement therapy (ERT) in prevention of estrogen-deficient osteoporosis. In earlier studies using postmenopausal model, LPva was able to reverse the ovariectomy-induced changes in biochemical markers, bone calcium, bone histomorphometric parameters and biomechanical strength. The mechanism behind these protective effects is unclear but LPva may have regulated factors that regulate bone remodeling. The aim of this study is to determine the bone-protective mechanism of LPva by measuring the expressions of several factors involved in bone formative and resorptive activities namely Osteoprotegerin (OPG), Receptor Activator of Nuclear Factor kappa-B Ligand (RANKL), Macrophage-Colony Stimulating Factor (MCSF) and Bone Morphogenetic Protein-2 (BMP-2).

    METHODS: Thirty-two female Wistar rats were randomly divided into four groups: Sham-operated (Sham), ovariectomized control (OVXC), ovariectomized with Labisia pumila var. alata (LPva) and ovariectomized with ERT (Premarin) (ERT). The LPva and ERT were administered via daily oral gavages at doses of 17.5 mg/kg and 64.5 μg/kg, respectively. Following two months of treatment, the rats were euthanized and the gene expressions of BMP-2, OPG, RANKL and MCSF in the femoral bones were measured using a branch - DNA technique.

    RESULTS: The RANKL gene expression was increased while the OPG and BMP-2 gene expressions were reduced in the OVXC group compared to the SHAM group. There were no significant changes in the MCSF gene expressions among the groups. Treatment with either LPva or ERT was able to prevent these ovariectomy-induced changes in the gene expressions in ovariectomized rats with similar efficacy.

    CONCLUSION: LPva may protect bone against estrogen deficiency-induced changes by regulating the RANKL, OPG and BMP-2 gene expressions.

  15. Muhammad FF, Karim Sangawi AW, Hashim S, Ghoshal SK, Abdullah IK, Hameed SS
    PLoS One, 2019;14(5):e0216201.
    PMID: 31048867 DOI: 10.1371/journal.pone.0216201
    The behavior of solar cells and modules under various operational conditions can be determined effectively when their intrinsic parameters are accurately estimated and used to simulate the current-voltage (I-V) characteristics. This work proposed a new computational approach based on approximation and correction technique (ACT) for simple and efficient extraction of solar cells and modules parameters from the single-diode model. In this technique, an approximated value of series resistance (Rs) was first derived and used to determine the initial value of parallel resistance (Rp). Later, the final corrected values of Rs and Rp were obtained by resubstituting their approximated values in a five-loop iteration using the manipulated equations. For rapid evaluation and validation of the proposed technique, a software application was also created using MATLAB program. The correctness and robustness of the proposed technique was validated on five types of solar cells and modules operated at varied temperatures and irradiances. The lowest RMSE value was achieved for RTC France (7.78937E-4) and PVM 752 GaAs (2.10497E-4) solar cell. The legitimacy of ACT extracted parameters was established using a simple yet competitive implementation approach wherein the performance of the developed technique was compared with several state-of-the-art methods recently reported in the literature.
  16. Zhang Y, Abdullah MRTL, Khan NHBAL, Javaid MU, Nazri M, Shah MU
    Front Psychol, 2022;13:834361.
    PMID: 35529576 DOI: 10.3389/fpsyg.2022.834361
    BACKGROUND: The complexities of the workplace environment in the downstream oil and gas industry contain several safety-risk factors. In particular, instituting stringent safety standards and management procedures are considered insufficient to address workplace safety risks. Most accident cases attribute to unsafe actions and human behaviors on the job, which raises serious concerns for safety professionals from physical to psychological particularly when the world is facing a life-threatening Pandemic situation, i.e., COVID-19. It is imperative to re-examine the safety management of facilities and employees' well-being in the downstream oil and gas production sector to establish a sustainable governance system. Understanding the inherent factors better that contribute to safety behavior management could significantly improve workplace safety features.

    OBJECTIVE: This study investigates employees' safety behavior management model for the downstream oil and gas industry to consolidate the safety, health and wellbeing of employees in times of COVID-19.

    METHODS: Nominal Group Technique (NGT) was first employed to screen primary behavioral factors from 10 workplace health and safety experts from Malaysia's downstream oil and gas industry. Consequently, 18 significant factors were identified for further inquiry. Next, the interpretive structural modeling technique was used to ascertain the complex interrelationships between these factors and proposed a Safety Behavioral Management Model for cleaner production.

    RESULTS: This model shows that management commitment, employee knowledge and training, leadership, and regulations contribute significantly to several latent factors. Our findings support the Social Cognitive Theory, where employees, their environment, and their behaviors are related reciprocally.

    CONCLUSION: It is postulated that identifying safety factors and utilizing the proposed model guides various stakeholder groups in this industry, including practitioners and policymakers, for achieving long-term sustainability.

  17. Khan Y, Zafar A, Rehman MF, Javed MF, Iftikhar B, Gamil Y
    Heliyon, 2023 Nov;9(11):e21601.
    PMID: 38027981 DOI: 10.1016/j.heliyon.2023.e21601
    A recently introduced bendable concrete having hundred times greater strain capacity provides promising results in repair of engineering structures, known as strain hardening cementitious composites (SHHCs). The current research creates new empirical prediction models to assess the mechanical properties of strain-hardening cementitious composites (SHCCs) i.e., compressive strength (CS), first crack tensile stress (TS), and first crack flexural stress (FS), using gene expression programming (GEP). Wide-ranging records were considered with twelve variables i.e., cement percentage by weight (C%), fine aggregate percentage by weight (Fagg%), fly-ash percentage by weight (FA%), Water-to-binder ratio (W/B), super-plasticizer percentage by weight (SP%), fiber amount percentage by weight (Fib%), length to diameter ratio (L/D), fiber tensile strength (FTS), fiber elastic modulus (FEM), environment temperature (ET), and curing time (CT). The performance of the models was deduced using correlation coefficient (R) and slope of regression line. The established models were also assessed using relative root mean square error (RRMSE), Mean absolute error (MAE), Root squared error (RSE), root mean square error (RMSE), objective function (OBF), performance index (PI) and Nash-Sutcliffe efficiency (NSE). The resulting mathematical GP-based equations are easy to understand and are consistent disclosing the originality of GEP model with R in the testing phase equals to 0.8623, 0.9269, and 0.8645 for CS, TS and FS respectively. The PI and OBF are both less than 0.2 and are in line with the literature, showing that the models are free from overfitting. Consequently, all proposed models have high generalization with less error measures. The sensitivity analysis showed that C%, Fagg%, and ET are the most significant variables for all three models developed with sensitiveness index higher than 10 %. The result of the research can assist researchers, practitioners, and designers to assess SHCC and will lead to sustainable, faster, and safer construction from environment-friendly waste management point of view.
  18. Mohd FN, Said AH, Ahmad MS, Ridzwan AN, Muhammad AI, Mat Naji AS
    J Int Soc Prev Community Dent, 2023;13(6):477-484.
    PMID: 38304533 DOI: 10.4103/jispcd.JISPCD_89_23
    BACKGROUNDS: People with intellectual disabilities (PWID) are often characterized by challenges in learning and difficulties in performing daily activities. These difficulties can have an impact not only on the individuals themselves but also on the people around them, especially their parents, caregivers, and healthcare workers. Therefore, establishing a positive relationship between parents or caregivers and individuals with disabilities is crucial as a key factor in promoting positive healthcare experiences and outcomes.

    AIM: This study aims to explore the barriers and perceptions toward healthcare services among parents or caretakers of people with intellectual disability, including the challenges and their expectations toward healthcare services.

    MATERIALS AND METHODS: This was a qualitative study using purposive sampling. Thirty participants were contacted at the initial stage and invited to participate in the study. Semi-structured in-depth interviews were done among parents and caretakers of PWID who attended Special Care Dentistry and Paediatric Dentistry clinics in Sultan Ahmad Shah Medical Centre, Kuantan, Pahang. Topic guides were generated from literature review and expert opinions, followed by pilot interviews to refine them. However, after the interviews were done for the first 13 participants, we have reached data saturation, and no new themes emerged. The interviews were recorded, verbatim transcribed, and analyzed using Braun and Clarke's guidelines for thematic analysis.

    RESULTS: The satisfaction of parents or caretakers toward healthcare services for PWID and positive experiences in receiving healthcare services were noted. However, the results revealed several barrier themes in seeking healthcare services: lack of availability of parking, longer waiting time, appointment time, crowded environment, limited information on the availability of the services, and longer travel duration. Furthermore, expectation themes emerged from this study: continuous follow-up, accessibility to healthcare services, and staff attitude.

  19. Azlan Azizan K, Izzairy Zamani A, Azlan Nor Muhammad N, Khairudin K, Yusoff N, Firdaus Nawawi M
    Chem Biodivers, 2022 Mar;19(3):e202100833.
    PMID: 34962057 DOI: 10.1002/cbdv.202100833
    Understanding metabolite changes and underlying metabolic pathways that may be affected in target plants following essential oils (EOs) exposure is of great importance. In this study, a gas chromatography-mass spectrometry (GC/MS) based metabolomics approach was used to determine the metabolite changes in lettuce (Lactuca sativa L.) shoot and root after exposure to different concentrations of W. trilobata EO. Multivariate analyses of principal component analysis (PCA) and orthogonal partial least-discriminant analysis (OPLS-DA) corroborated that shoot and root of lettuce responded differently to W. trilobata EO. In EO-exposed shoot samples, an increase in the levels of malic acid, glutamine, serine, lactose and α-glucopyranose affected important metabolism pathways such as glycolysis, fructose and mannose metabolism and galactose metabolism. The findings suggest that lettuce may be up-regulating these metabolites to increase tolerance against W. trilobata EO. In EO-exposed root samples, changes in fatty acid biosynthesis, elongation, degradation, phenylalanine, tyrosine and tryptophan metabolism were linked to a decrease in lyxose, palmitic acid, octadecanoic acid, aspartic acid, phenylalanine and myo-inositol. These results indicate that W. trilobata EO could cause alterations in fatty acid compositions and lead to inhibition of roots growth. Together, these findings provide insight into the metabolic responses of lettuce upon W. trilobata EO exposure, as well as potential mechanisms of action of W. trilobata EO as bio-herbicides.
  20. Leisner JJ, Rusul G, Wee BW, Boo HC, Muhammad K
    J Food Prot, 1997 Oct;60(10):1235-1240.
    PMID: 31207722 DOI: 10.4315/0362-028X-60.10.1235
    The predominant microbial flora of a specific Malaysian food ingredient, chili bo (containing 9% ground dried chilies, 0.6% acetic acid, and 5 to 10% cornstarch, wt/vol) stored for up to 25 days at 28°C without added benzoic acid (product A) and with 7,000 ppm of added benzoic acid (product B) was examined. Aerobic plate counts for both products were initially 6.2 to 6.5 log CFU/g increasing to 8.5 log CFU/g for product A after 4 days. Aerobic plate counts for product B did not increase during storage. Lactic acid bacteria (LAB) counts increased in product A from 4.8 log CFU/g to 8.3 log CFU/g and in product B from 2.1 log CFU/g to 7 .6 log CFU/g after 17 days. Growth of yeast occurred in product A. Both products exhibited spoilage after 1 to 2 days of storage at 28°C indicated as accumulation of gas bubbles. In addition surface growth of molds (product A) or whitish discoloration (product B) was observed later in storage. For product A the predominant isolates were LAB, Bacillus pumilus , Bacillus subtilis , Staphylococcus spp., and yeasts. B. pumilus and B. subtilis predominated initially whereas the other types of microorganisms predominated after 25 days of storage. B. pumilus and B. subtilis were also predominant in product B, but after 25 days of storage a homofermentative LAB was found in higher numbers (7.6 log CFU/g). Isolates of heterofermentative LAB but not homofermentative LAB or B. pumilus or B. subtilis were able to produce gas during growth in chili bo sterilized by autoclaving at l2l°C for 15 min. Growth of heterofermentative LAB, B. pumilus , and B. subtilis was inhibited by acidifying agents, a nisin-containing supernatant, or incubation at low temperatures.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links