Displaying publications 261 - 280 of 322 in total

Abstract:
Sort:
  1. Ortega Pérez P, Wibbelt G, Brinkmann A, Galindo Puentes JA, Tuh FYY, Lakim MB, et al.
    Int J Parasitol Parasites Wildl, 2020 Aug;12:220-231.
    PMID: 32695576 DOI: 10.1016/j.ijppaw.2020.07.003
    Sarcocystis scandentiborneensis sp. nov. was discovered in histological sections of striated musculature of treeshrews (Tupaia minor, T. tana) from Northern Borneo. Sarcocysts were cigar-shaped, 102 μm-545 μm long, and on average 53 μm in diameter. The striated cyst wall varied in thickness (2-10 μm), depending on whether the finger-like, villous protrusions (VP) were bent. Ultrastructurally, sarcocysts were similar to wall type 12 but basal microtubules extended into VPs that tapered off with a unique U-shaped, electron-dense apical structure. In phylogenetic trees of the nuclear 18S rRNA gene, S. scandentiborneensis formed a distinct branch within a monophyletic subclade of Sarcocystis spp. with (colubrid) snake-rodent life cycle. We mapped all intraspecific (two haplotypes) and interspecific nucleotide substitutions to the secondary structure of the 18S rRNA gene: in both cases, the highest variability occurred within helices V2 and V4 but intraspecific variability mostly related to transitions, while transition/transversion ratios between S. scandentiborneensis, S. zuoi, and S. clethrionomyelaphis were skewed towards transversions. Lack of relevant sequences restricted phylogenetic analysis of the mitochondrial Cytochrome C oxidase subunit I (COI) gene to include only one species of Sarcocystis recovered from a snake host (S. pantherophisi) with which the new species formed a sister relationship. We confirm the presence of the functionally important elements of the COI barcode amino acid sequence of S. scandentiborneensis, whereby the frequency of functionally important amino acids (Alanine, Serine) was markedly different to other taxa of the Sarcocystidae. We regard S. scandentiborneensis a new species, highlighting that structurally or functionally important aspects of the 18S rRNA and COI could expand their utility for delineation of species. We also address the question why treeshrews, believed to be close to primates, carry a parasite that is genetically close to a Sarcocystis lineage preferably developing in the Rodentia as intermediate hosts.
    Matched MeSH terms: Amino Acids
  2. Yusoff K, Tan WS, Lau CH, Ng BK, Ibrahim AL
    Avian Pathol, 1996 Dec;25(4):837-44.
    PMID: 18645902
    The nucleotide sequence of the haemagglutinin-neuraminidase (HN) glycoprotein gene of Newcastle disease virus (NDV) variant strain V4(UPM) was determined by direct genomic RNA sequencing and confirmed by cycle sequencing. The gene comprises 1996 nucleotides encoding a 615 amino acid protein of size 67.4 kDa. The nucleotide and amino acid sequences of this strain were compared with those of the parent strain V4(QUE). There are 16 nucleotide substitutions on V4(UPM), eight of which are silent mutations and another eliminated a potential Asn-linked glycosylation site in V4(UPM). In addition, an Arg (403) residue was shown to be absent in the variant strain. This deletion is thought to be significant because of its location in a highly conserved region of the HN protein.
    Matched MeSH terms: Amino Acids
  3. Asgar MA, Fazilah A, Huda N, Bhat R, Karim AA
    Compr Rev Food Sci Food Saf, 2010 Sep;9(5):513-529.
    PMID: 33467834 DOI: 10.1111/j.1541-4337.2010.00124.x
      The direct consumption of vegetable proteins in food products has been increasing over the years because of animal diseases, global shortage of animal protein, strong demand for wholesome and religious (halal) food, and economic reasons. The increasing importance of legume and oilseed proteins in the manufacturing of various functional food products is due to their high-protein contents. However, the greatest obstacle to utilizing these legumes and oilseeds is the presence of antinutrients; but these antinutrients can be successfully removed or inactivated by employing certain processing methods. In contrast, the potential negative impact of the antinutrients is partially balanced by the fact that they may have a health-promoting role. Legumes and oilseeds provide well-balanced amino acid profiles when consumed with cereals. Soybean proteins, wheat gluten, cottonseed proteins, and other plant proteins have been used for texturization. Texturized vegetable proteins can extend meat products while providing an economical, functional, and high-protein food ingredient or can be consumed directly as a meat analog. Meat analogs are successful because of their healthy image (cholesterol free), meat-like texture, and low cost. Mycoprotein is fungal in origin and is used as a high-protein, low-fat, health-promoting food ingredient. Mycoprotein has a good taste and texture. Texturized vegetable proteins and a number of mycoprotein products are accepted as halal foods. This article summarizes information regarding the molecular, nutritional, and functional properties of alternative protein sources to meat and presents current knowledge to encourage further research to optimize the beneficial effects of alternative protein sources.
    Matched MeSH terms: Amino Acids
  4. Azizi P, Rafii MY, Abdullah SN, Hanafi MM, Maziah M, Sahebi M, et al.
    Front Plant Sci, 2016;7:773.
    PMID: 27379107 DOI: 10.3389/fpls.2016.00773
    Magnaporthe oryzae is a rice blast fungus and plant pathogen that causes a serious rice disease and, therefore, poses a threat to the world's second most important food security crop. Plant transformation technology has become an adaptable system for cultivar improvement and to functionally analyze genes in plants. The objective of this study was to determine the effects (through over-expressing and using the CaMV 35S promoter) of Pikh on MR219 resistance because it is a rice variety that is susceptible to the blast fungus pathotype P7.2. Thus, a full DNA and coding DNA sequence (CDS) of the Pikh gene, 3172 bp, and 1206 bp in length, were obtained through amplifying the gDNA and cDNA template from a PH9-resistant rice variety using a specific primer. Agrobacterium-mediated transformation technology was also used to introduce the Pikh gene into the MR219 callus. Subsequently, transgenic plants were evaluated from the DNA to protein stages using polymerase chain reaction (PCR), semi-quantitative RT-PCR, real-time quantitative PCR and high performance liquid chromatography (HPLC). Transgenic plants were also compared with a control using a real-time quantification technique (to quantify the pathogen population), and transgenic and control plants were challenged with the local most virulent M. oryzae pathotype, P7.2. Based on the results, the Pikh gene encodes a hydrophilic protein with 18 sheets, 4 helixes, and 21 coils. This protein contains 401 amino acids, among which the amino acid sequence from 1 to 376 is a non-cytoplasmic region, that from 377 to 397 is a transmembrane region, and that from 398 to 401 is a cytoplasmic region with no identified disordered regions. The Pikh gene was up-regulated in the transgenic plants compared with the control plants. The quantity of the amino acid leucine in the transgenic rice plants increased significantly from 17.131 in the wild-type to 47.865 mg g(-1) in transgenic plants. The M. oryzae population was constant at 31, 48, and 72 h after inoculation in transgenic plants, while it was increased in the inoculated control plants. This study successfully clarified that over-expression of the Pikh gene in transgenic plants can improve their blast resistance against the M. oryzae pathotype P7.2.
    Matched MeSH terms: Amino Acids
  5. Nadiveedhi MR, Nuthalapati P, Gundluru M, Yanamula MR, Kallimakula SV, Pasupuleti VR, et al.
    ACS Omega, 2021 Feb 02;6(4):2934-2948.
    PMID: 33553912 DOI: 10.1021/acsomega.0c05302
    A series of novel α-furfuryl-2-alkylaminophosphonates have been efficiently synthesized from the one-pot three-component classical Kabachnik-Fields reaction in a green chemical approach by addition of an in situ generated dialkylphosphite to Schiff's base of aldehydes and amines by using environmental and eco-friendly silica gel supported iodine as a catalyst by microwave irradiation. The advantage of this protocol is simplicity in experimental procedures and products were resulted in high isolated yields. The synthesized α-furfuryl-2-alkylaminophosphonates were screened to in vitro antioxidant and plant growth regulatory activities and some are found to be potent with antioxidant and plant growth regulatory activities. These in vitro studies have been further supported by ADMET (absorption, distribution, metabolism, excretion, and toxicity), quantitative structure-activity relationship, molecular docking, and bioactivity studies and identified that they were potentially bound to the GLN340 amino acid residue in chain C of 1DNU protein and TYR597 amino acid residue in chain A of 4M7E protein, causing potential exhibition of antioxidant and plant growth regulatory activities. Eventually, title compounds are identified as good blood-brain barrier (BBB)-penetrable compounds and are considered as proficient central nervous system active and neuroprotective antioxidant agents as the neuroprotective property is determined with BBB penetration thresholds.
    Matched MeSH terms: Amino Acids
  6. Jaffar FHF, Osman K, Hui CK, Zulkefli AF, Ibrahim SF
    Front Pharmacol, 2021;12:631402.
    PMID: 33986667 DOI: 10.3389/fphar.2021.631402
    Edible bird's nest (EBN) is reported to have a positive in vitro proliferative effect and contain male reproductive hormones. Spermatogonia cells proliferate during spermatogenesis under male reproductive hormones stimulation that include testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Characterization of EBN through liquid chromatography-mass spectrometry (LCMS) has found testosterone as a base peak. Six types of amino acids, estradiol and sialic acid were among the major peaks that have been characterized. Based on the presence of these reproductive components, this study evaluated different doses of EBN on sperm parameters and male reproductive hormones of Sprague Dawley rats. Sixteen Sprague Dawley rats at the age of eight weeks were randomly and equally divided into four groups, which are Control, 10 mg/kg BW/d 50 mg/kg BW/d, and 250 mg/kg BW/d EBN group. The rats were fed with EBN enriched pellet daily and water ad-libitum. Rats were sacrificed and the organ was weighed for organ coefficients after eight weeks of treatment. Sperm concentration, percentage of sperm motility, and sperm viability were evaluated. Meanwhile, ELISA method was used to measure testosterone, FSH, and LH. Findings showed that there were no significant differences in organ coefficient between groups. Supplementation of 250 mg/kg BW/d EBN demonstrated a significant increase in sperm concentration, percentage of sperm motility as well as FSH and LH level compared to 10 mg/kg BW/d group. There was a dose-dependent increase in testosterone level but was not significant between groups. Based on these findings, EBN is concluded to have crucial effects on male reproductive parameters.
    Matched MeSH terms: Amino Acids
  7. Saallah S, Roslan J, Julius FS, Saallah S, Mohamad Razali UH, Pindi W, et al.
    Molecules, 2021 Apr 28;26(9).
    PMID: 33924820 DOI: 10.3390/molecules26092564
    Collagen was extracted from the body wall of sea cucumber (Holothuria scabra) using the pepsin-solubilized collagen method followed by isolation using dialysis and the ultrafiltration membrane. The yield and physicochemical properties of the collagen obtained from both isolation methods, denoted as D-PSC and UF-PSC, were compared. The ultrafiltration method affords a higher yield of collagen (11.39%) than that of the dialysis (5.15%). The isolated collagens have almost the same amino acid composition, while their functional groups, referred to as amide A, B, I, II, and III bands, were in accordance with commercial collagen, as verified by Fourier Transform Infrared (FT-IR) spectroscopy. The UV-Vis absorption peaks at 240 nm and 220 nm, respectively, indicated that the collagens produced are type-I collagen. The D-PSC showed interconnecting sheet-like fibrils, while the UF-PSC exhibited a flaky structure with flat-sheets arranged very close to each other. The higher yield and comparable physicochemical properties of the collagen obtained by ultrafiltration as compared with dialysis indicate that the membrane process has high potential to be used in large-scale collagen production for food and pharmaceutical applications.
    Matched MeSH terms: Amino Acids
  8. Lim SJ, Oslan SN
    PeerJ, 2021;9:e11315.
    PMID: 34046253 DOI: 10.7717/peerj.11315
    Background: -amylases catalyze the endo-hydrolysis of -1,4-D-glycosidic bonds in starch into smaller moieties. While industrial processes are usually performed at harsh conditions, -amylases from mainly the bacteria, fungi and yeasts are preferred for their stabilities (thermal, pH and oxidative) and specificities (substrate and product). Microbial -amylases can be purified and characterized for industrial applications. While exploring novel enzymes with these properties in the nature is time-costly, the advancements in protein engineering techniques including rational design, directed evolution and others have privileged their modifications to exhibit industrially ideal traits. However, the commentary on the strategies and preferably mutated residues are lacking, hindering the design of new mutants especially for enhanced substrate specificity and oxidative stability. Thus, our review ensures wider accessibility of the previously reported experimental findings to facilitate the future engineering work.

    Survey methodology and objectives: A traditional review approach was taken to focus on the engineering of microbial -amylases to enhance industrially favoured characteristics. The action mechanisms of - and -amylases were compared to avoid any bias in the research background. This review aimed to discuss the advances in modifying microbial -amylases via protein engineering to achieve longer half-life in high temperature, improved resistance (acidic, alkaline and oxidative) and enhanced specificities (substrate and product). Captivating results were discussed in depth, including the extended half-life at 100C, pH 3.5 and 10, 1.8 M hydrogen peroxide as well as enhanced substrate (65.3%) and product (42.4%) specificities. These shed light to the future microbial -amylase engineering in achieving paramount biochemical traits ameliorations to apt in the industries.

    Conclusions: Microbial -amylases can be tailored for specific industrial applications through protein engineering (rational design and directed evolution). While the critical mutation points are dependent on respective enzymes, formation of disulfide bridge between cysteine residues after mutations is crucial for elevated thermostability. Amino acids conversion to basic residues was reported for enhanced acidic resistance while hydrophobic interaction resulted from mutated hydrophobic residues in carbohydrate-binding module or surface-binding sites is pivotal for improved substrate specificity. Substitution of oxidation-prone methionine residues with non-polar residues increases the enzyme oxidative stability. Hence, this review provides conceptual advances for the future microbial -amylases designs to exhibit industrially significant characteristics. However, more attention is needed to enhance substrate specificity and oxidative stability since they are least reported.

    Matched MeSH terms: Amino Acids
  9. Kannan M, Mohamad Saad M, Zainal Z, Kassim H, Ismail I, Talip N, et al.
    Iran J Biotechnol, 2020 Oct;18(4):e2566.
    PMID: 34056024 DOI: 10.30498/IJB.2020.2566
    Background: Rice tungro disease (RTD) is a viral disease mainly affecting rice in Asia. RTD caused by Rice tungro bacilliform virus and Rice tungro spherical virus. To date, there are only 5 RTSV isolates have been reported.

    Objectives: In this study, we aimed to report the complete nucleotide sequence of Malaysian isolate of Rice tungro spherical virus Seberang Perai (RTSV-SP) for the first time. RTSV-SP was characterized and its evolutionary relationship with previously reported Indian and Philippines isolates were elucidated.

    Materials and Methods: RTSV-SP isolate was isolated from a recent outbreak in a paddy field in Seberang Perai zone of Malaysia. Its complete genome was amplified by RT-PCR, cloned and sequenced.

    Results: Sequence analysis indicated that the genome of RTSV-SP consisted of 12,173 nucleotides (nt). Comparative analysis of 6 complete genome sequences using Clustal Omega showed that Seberang Perai isolate shared the highest nucleotide identity (96.04%) with Philippine-A isolate, except that the sORF-2 of RTSV-SP is shorter than RTSV Philippine-A by 27 amino acid residues. RTSV-SP found to cluster in Southeast Asia (SEA) group based on the whole genome sequence phylogenetic analysis using MEGA X software.

    Conclusions: Phylogenetic classification of RTSV isolates based on the complete nucleotide sequences showed more distinctive clustering pattern with the addition of RTSV-SP whole genome to the available isolates. Present study described the isolation and molecular characterization of RTSV-SP.

    Matched MeSH terms: Amino Acids
  10. Phillips MJ, Shazwani Zakaria S
    Mol Phylogenet Evol, 2021 05;158:107082.
    PMID: 33482383 DOI: 10.1016/j.ympev.2021.107082
    Mitochondrial genomes provided the first widely used sequences that were sufficiently informative to resolve relationships among animals across a wide taxonomic domain, from within species to between phyla. However, mitogenome studies supported several anomalous relationships and fell partly out of favour as sequencing multiple, independent nuclear loci proved to be highly effective. A tendency to blame mitochondrial DNA (mtDNA) has overshadowed efforts to understand and ameliorate underlying model misspecification. Here we find that influential assessments of the infidelity of mitogenome phylogenies have often been overstated, but nevertheless, substitution saturation and compositional non-stationarity substantially mislead reconstruction. We show that RY coding the mtDNA, excluding protein-coding 3rd codon sites, partitioning models based on amino acid hydrophobicity and enhanced taxon sampling improve the accuracy of mitogenomic phylogeny reconstruction for placental mammals, almost to the level of multi-gene nuclear datasets. Indeed, combined analysis of mtDNA with 3-fold longer nuclear sequence data either maintained or improved upon the nuclear support for all generally accepted clades, even those that mtDNA alone did not favour, thus indicating "hidden support". Confident mtDNA phylogeny reconstruction is especially important for understanding the evolutionary dynamics of mitochondria themselves, and for merging extinct taxa into the tree of life, with ancient DNA often only accessible as mtDNA. Our ancient mtDNA analyses lend confidence to the relationships of three extinct megafaunal taxa: glyptodonts are nested within armadillos, the South American ungulate, Macrauchenia is sister to horses and rhinoceroses, and sabre-toothed and scimitar cats are the monophyletic sister-group of modern cats.
    Matched MeSH terms: Amino Acids
  11. Arsad H, Sudesh K, Nazalan N, Muhammad TS, Wahab H, Razip Samian M
    Trop Life Sci Res, 2009 Dec;20(2):1-14.
    PMID: 24575175 MyJurnal
    The (R)-3-hydroxyacyl-ACP-CoA transferase catalyses the conversion of (R)-3-hydroxyacyl-ACP to (R)-3-hydroxyacyl-CoA derivatives, which serves as the ultimate precursor for polyhydroxyalkanoate (PHA) polymerisation from unrelated substrates in pseudomonads. PhaG was found to be responsible for channelling precursors for polyhydroxyalkanoate (PHA) synthase from a de novo fatty acid biosynthesis pathway when cultured on carbohydrates, such as glucose or gluconate. The phaG gene was cloned from Pseudomonas sp. USM 4-55 using a homologous probe. The gene was located in a 3660 bp Sal I fragment (GenBank accession number EU305558). The open reading frame (ORF) was 885 bp long and encoded a 295 amino acid protein. The predicted molecular weight was 33251 Da, and it showed a 62% identity to the PhaG of Pseudomonas aeruginosa. The function of the cloned phaG of Pseudomonas sp. USM 4-55 was confirmed by complementation studies. Plasmid pBCS39, which harboured the 3660 bp Sal I fragment, was found to complement the PhaG-mutant heterologous host cell, Pseudomonas putida PhaGN-21. P. putida PhaGN-21, which harboured pBCS39, accumulated PHA that accounted for up to 18% of its cellular dry weight (CDW). P. putida PhaGN-21, which harboured the vector alone (PBBR1MCS-2), accumulated only 0.6% CDW of PHA.
    Matched MeSH terms: Amino Acids
  12. Idris ZHC, Abidin AAZ, Subki A, Yusof ZNB
    Trop Life Sci Res, 2018 Mar;29(1):71-85.
    PMID: 29644016 MyJurnal DOI: 10.21315/tlsr2018.29.1.5
    Thiamine is known to be an important compound in human diet and it is a cofactor required for vital metabolic processes such as acetyl-CoA biosynthesis, amino acid biosynthesis, Krebs and Calvin cycle. Besides that, thiamine has been shown to be involved in plant protection against stress. In this study, the level of expression of THIC and THI1/THI4, the genes for the first two enzymes in the thiamine biosynthesis pathway were observed when oil palm (Elaeis guineensis) was subjected to oxidative stress. Primers were designed based on the consensus sequence of thiamine biosynthesis genes obtained from Arabidopsis thaliana, Zea mays, Oryza sativa, and Alnus glutinosa. Oxidative stress were induced with various concentrations of paraquat and samplings were done at various time points post-stress induction. The expression of THIC and THI1/THI4 genes were observed via RT-PCR and qPCR analysis. The expression of THIC was increased 2-fold, while THI1/THI4 gene transcript was increased 4-fold upon induction of oxidative stress. These findings showed that oil palm responded to oxidative stress by over-expressing the genes involved in thiamine biosynthesis. These findings support the suggestion that thiamine may play an important role in plant protection against stress.
    Matched MeSH terms: Amino Acids
  13. Leow BL, Khoo CK, Syamsiah Aini S, Roslina H, Faizah Hanim MS
    Trop Biomed, 2021 Jun 01;38(2):72-78.
    PMID: 33973576 DOI: 10.47665/tb.38.2.043
    Rabies is a fatal zoonotic disease caused by rabies virus (RABV) and remains a public health problem in Malaysia. Malaysia was declared rabies-free in 2012, however rabies outbreaks occurred at few states in Peninsular Malaysia three years later; and for the first time, in Sarawak (East Malaysia) in 2017 which has caused more than 20 human deaths. This study describes the phylogenetic analysis of the complete nucleoprotein (N) gene of RABV from animal samples in Malaysia from year 2015 to 2018. The N gene of 17 RABVs from Perlis, Kedah and Sarawak were amplified and sequenced. The nucleotide and deduced amino acid similarities of N gene analysis indicated that there is high similarity among the local RABVs. Phylogenetic analysis of the N gene revealed that all Malaysia RABVs belonged to the Asian clade. Among these, RABVs from Peninsular Malaysia were clustered together with RABVs from Thailand, Vietnam and other Southeast Asia countries except Indonesia. However, RABVs from Sarawak were grouped together with Indonesian strains from Kalimantan. Our study provides baseline genetic information of the potential origins of the circulating RABVs in Malaysia. This crucial information helped the authority in policies making and strategies to be taken in outbreak control. Continuous surveillance program to monitor the disease trend, strict border control, vaccination of dog and cat population and public awareness are important steps to control the spread of the RABV.
    Matched MeSH terms: Amino Acids
  14. Rashidah, S., Jinap, S., Nazamid, S., Jamilah, B.
    MyJurnal
    This study was carried out to extract and compare the characteristic ability of globulins from cottonseed, alfalfa seed, pea seed, mung bean and French bean with cocoa seeds to produce cocoa-specific aroma precursors. The extracted globulins were compared through SDS PAGE, amino acid and oligopeptide profiles. A very low recovery was obtained during globulin extraction from different seeds ranging from 0.5% to 2.7%. Cottonseed produced the highest total protein (13.90 mg/g), followed by cocoa seed (11.91 mg/g), whereas alfalfa seed, mung bean, pea seed and French bean produced 7.86, 4.77, 4.59 and 3.89 mg/g respectively. Two distinctive bands of 51.1 and 33.0 kDa were observed for cocoa vicilin-class globulin (VCG) from SDS PAGE. More than three bands were shown for other seed globulins. Comparative HPLC analyses of the obtained peptide mixtures revealed different and complex patterns of predominantly hydrophobic peptides. A similar high content of amides (glutamic acids-glutamine, aspartic acid- asparagine and arginine) and low concentrations of lysine were observed in all seeds globulin.
    Matched MeSH terms: Amino Acids
  15. Tan, B.H., Azhar, M.E.
    MyJurnal
    Channa striatus (“haruan”) fish destined for fillet preparation was subjected to two freezing treatments, freezing with distilled water (FW) or freezing directly without distilled water (DF). Fish that was freshly processed without freezing served as control (C). Fillet yield (%) was in the range 33.8% to 35.3% and the highest yield was recorded in FW samples. Whole Fillet Powder (WFP) was prepared from the fillets through low temperature vacuum oven drying (50°C) and its composition and physicochemical properties were assessed. There was no significant difference in moisture and protein contents of all samples (p > 0.05). All WFP were generally dark in colour with whiteness indices ranging from 55.23 - 63.98. The redness (a*) values were 4.33, 11.12, 8.83 whilst the yellowness (b*) were 19.31, 23.04, 21.20 for C, WFP-FW and WFP-DF respectively. WFPs were generally high in histidine, arginine, threonine and tyrosine when compared to egg whites and these (except histidine) and other amino acids (serine, glycine, methionine and phenylalanine) were significantly higher (p < 0.05) in WFP-FW compared to other samples. Overall, freezing treatments affected the composition and physicochemical properties of WFPs.
    Matched MeSH terms: Amino Acids
  16. Voon, H.C., Bhat, Rajeev, Karim, A.A., Rosma, A.
    MyJurnal
    Traditionally, in Chinese medicine, tree peony and apple flower buds are used to prepare herbal decoctions to cure various ailments. As both of these flowers are popular and used regularly, providing scientific evidence on their basic composition is a necessity. Hence, in the present study, we report the chemical composition of these two flower buds. Results revealed tree peony and apple flower buds to have high crude protein (15.73 and 26.30%), fibre (13.11 and 16.51%), and carbohydrate (57.84 and 40.63%) contents. Both the flowers had significant amounts of essential amino acids and unsaturated fatty acids. Essential minerals present in tree peony and apple flowers were potassium (1540.37 and 1125.60 mg/100 g), calcium (462.46 and 449.98 mg/100 g), magnesium (241.51 and 164.23 mg/100 g), sodium (12.75 and 20.06 mg/100 g), and phosphorus (420.00 and 590.00 mg/100 g), respectively. Heavy metals (cadmium, nickel, mercury, lead, and arsenic) were detected in trace amounts (< 0.50 mg/100 g) in both the flower buds. Results obtained indicate that both flowers could be exploited as an additional source of nutraceutical for the development of new functional foods.
    Matched MeSH terms: Amino Acids, Essential
  17. Abedinia A, Ariffin F, Huda N, Nafchi AM
    Int J Biol Macromol, 2017 May;98:586-594.
    PMID: 28174080 DOI: 10.1016/j.ijbiomac.2017.01.139
    The effects of different pretreatments on yield and composition of extraction, physicochemical, and rheological properties of duck feet gelatin (DFG) were investigated. Gelatins were extracted from the whole feet of Pekin duck with an average yield of 4.09%, 3.65%, and 5.75% for acidic (Ac-DFG), alkaline (Al-DFG), and enzymatic (En-DFG) pretreatment on a wet weight basis, respectively. Proteins at 81.38%, 79.41%, 82.55%, and 87.38% were the major composition for Ac-DFG, Al-DFG, En-DFG, and bovine, respectively. Amino acid analysis showed glycine as the predominant amino acid in Ac-DFG, followed by hydroxyproline, proline, and alanine for Ac-DFG, Al-DFG, and En-DFG, respectively. Rheological analysis indicated that the maximum elastic modulus (9972.25Pa) and loss modulus (4956.28Pa) for Ac-DFG gelatin were significantly higher than those of other gelatins. Extracted gelatins contained α1 and α2 chains as the predominant components, and enzymatic gelatin had low molecular weight peptides. Fourier transform infrared spectroscopy showed that the peak of the gelatins was mainly positioned in the amide band region (amides I, II, and III). A considerable loss of molecular-order triple helical structure was also observed after pepsin treatment. In summary, duck feet gelatin has potential to replace as mammalian gelatin in food and pharmaceutical industry.
    Matched MeSH terms: Amino Acids
  18. Candlish J, Chandra N
    Biochem. J., 1967 Mar;102(3):767-73.
    PMID: 16742493
    1. A skin lesion was made in rats by dorsal incision and the insertion of a polythene tube. 2. Over a period of 25 days after wounding, assays were performed for ascorbic acid, DNA, hydroxyproline, methionine, tryptophan, tyrosine and free amino acids in the lesion tissue. 3. The neutral-salt-soluble proteins of the lesion tissue were fractionated on DEAE-Sephadex, with the separation of fibrinogen and gamma-globulin from a serum protein fraction. 4. Over a period of 20 days after wounding, in wounded rats and in controls, assays were conducted for: ascorbic acid in lens and liver, hydroxyproline, soluble protein, methionine and water in muscle and tendon, and free amino acids in muscle. 5. Relative to controls there was a decrease in lens and liver ascorbic acid, a rise in tendon hydroxyproline, a rise in muscle free amino acids, a fall in muscle protein and a rise in tendon and muscle water.
    Matched MeSH terms: Amino Acids
  19. Lee, H.M., Fan, S.H., Say, Y.H.
    MyJurnal
    The pandemic of obesity is of great concern as its associated co-morbidities are devastating; causing lifelong burden to individual’s health and is economically costly to a country. Factors that lead to obesity are a combination of environmental and genetic factors. The Pro-opiomelanocortin (POMC) gene resides in chromosome 2p23.3, and its protein is composed of 241 amino acids which is responsible for the production of polyhormones that regulate appetite and food intake. The study aimed to investigate the prevalence of the RsaI single nucleotide polymorphism (SNP) site in the 5’-untranslated region (UTR) of POMC and its possible association with obesity among 302 multi-ethnic Malaysian subjects (142 obese, 160 non-obese; 120 males, 182 females) from the Kampar Health Clinic. Subjects were recruited by convenience sampling with informed consent and socio-demographic data as well as anthropometric measurements were taken. Subjects were genotyped by polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) analysis using DNA extracted from blood. The distribution of the RsaI genotypes was significantly different among the different ethnicities, but the mutated RsaI (- / -) genotype was rare as it only occurred in 8.9% of the subjects. With the frequency of the RsaI (-) allele of 0.31, it was associated with the percentage of skeletal muscles (p
    Matched MeSH terms: Amino Acids
  20. Karim KMR, Husaini A, Sing NN, Sinang FM, Roslan HA, Hussain H
    3 Biotech, 2018 Apr;8(4):204.
    PMID: 29607285 DOI: 10.1007/s13205-018-1225-z
    In this study, an alpha-amylase enzyme from a locally isolated Aspergillus flavus NSH9 was purified and characterized. The extracellular α-amylase was purified by ammonium sulfate precipitation and anion-exchange chromatography at a final yield of 2.55-fold and recovery of 11.73%. The molecular mass of the purified α-amylase was estimated to be 54 kDa using SDS-PAGE and the enzyme exhibited optimal catalytic activity at pH 5.0 and temperature of 50 °C. The enzyme was also thermally stable at 50 °C, with 87% residual activity after 60 min. As a metalloenzymes containing calcium, the purified α-amylase showed significantly increased enzyme activity in the presence of Ca2+ ions. Further gene isolation and characterization shows that the α-amylase gene of A. flavus NSH9 contained eight introns and an open reading frame that encodes for 499 amino acids with the first 21 amino acids presumed to be a signal peptide. Analysis of the deduced peptide sequence showed the presence of three conserved catalytic residues of α-amylase, two Ca2+-binding sites, seven conserved peptide sequences, and several other properties that indicates the protein belongs to glycosyl hydrolase family 13 capable of acting on α-1,4-bonds only. Based on sequence similarity, the deduced peptide sequence of A. flavus NSH9 α-amylase was also found to carry two potential surface/secondary-binding site (SBS) residues (Trp 237 and Tyr 409) that might be playing crucial roles in both the enzyme activity and also the binding of starch granules.
    Matched MeSH terms: Amino Acids
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links