Displaying publications 261 - 280 of 297 in total

Abstract:
Sort:
  1. Shehu D, Alias Z
    FEBS Open Bio, 2019 03;9(3):408-419.
    PMID: 30868049 DOI: 10.1002/2211-5463.12405
    A glutathione S-transferase (GST) with a potential dehalogenation function against various organochlorine substrates was identified from a polychlorobiphenyl (PCB)-degrading organism, Acidovorax sp. KKS102. A homolog of the gene BphK (biphenyl upper pathway K), named BphK-KKS, was cloned, purified and biochemically characterized. Bioinformatic analysis indicated several conserved amino acids that participated in the catalytic activity of the enzyme, and site-directed mutagenesis of these conserved amino acids revealed their importance in the enzyme's catalytic activity. The wild-type and mutant (C10F, K107T and A180P) recombinant proteins displayed wider substrate specificity. The wild-type recombinant GST reacted towards 1-chloro-2,4-dinitrobenzene (CDNB), ethacrynic acid, hydrogen peroxide and cumene hydroperoxide. The mutated recombinant proteins, however, showed significant variation in specific activities towards the substrates. A combination of a molecular docking study and a chloride ion detection assay showed potential interaction with and a dechlorination function against 2-, 3- and 4-chlorobenzoates (metabolites generated during PCB biodegradation) in addition to some organochlorine pesticides (dichlorodiphenyltrichloroethane, endosulfan and permethrin). It was demonstrated that the behavior of the dechlorinating activities varied among the wild-type and mutant recombinant proteins. Kinetic studies (using CDNB and glutathione) showed that the kinetic parameters Km, Vmax, Kcat and Km/Kcat were all affected by the mutations. While C10F and A180P mutants displayed an increase in GST activity and the dechlorination function of the enzyme, the K107T mutant displayed variable results, suggesting a functional role of Lys107 in determining substrate specificity of the enzyme. These results demonstrated that the enzyme should be valuable in the bioremediation of metabolites generated during PCB biodegradation.
    Matched MeSH terms: Hydrogen Peroxide
  2. Jaffari ZH, Lam SM, Sin JC, Mohamed AR
    Environ Sci Pollut Res Int, 2019 Apr;26(10):10204-10218.
    PMID: 30758796 DOI: 10.1007/s11356-019-04503-9
    Visible light-responsive Pt-loaded coral-like BiFeO3 (Pt-BFO) nanocomposite at different Pt loadings was synthesized via a two-step hydrothermal synthesis method. The as-synthesized photocatalyst was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and magnetic hysteresis loop (M-H loop) analyses. The FESEM images revealed that Pt nanoparticles were evenly distributed on the coral-like BFO. The UV-vis DRS results indicated that the addition of Pt dopant modified the optical properties of the BFO. The as-synthesized Pt-BFO nanocomposite was effectively applied for the photodegradation of malachite green (MG) dye under visible light irradiation. Specifically, 0.5 wt% Pt-BFO nanocomposite presented boosted photocatalytic performance than those of the pure BFO and commercial TiO2. Such a remarkably improved photoactivity could be mainly attributed to the formation of good interface between Pt and BFO, which not only boosted the separation efficiency of charge carriers but also possessed great redox ability for significant photocatalytic reaction. Moreover, the strong magnetic property of the Pt-BFO nanocomposite was helpful in the particle separation along with its great recyclability. The radical scavenger test indicated that hole (h+), hydroxyl (·OH) radical, and hydrogen peroxide (H2O2) were the main oxidative species for the Pt-BFO photodegradation of MG. Finally, the Pt-BFO nanocomposite was revealed high antibacterial activity towards Bacillus cereus (B. cereus) and Escherichia coli (E. coli) microorganisms, highlighting its potential photocatalytic and antibacterial properties at different industrial and biomedical applications.
    Matched MeSH terms: Hydrogen Peroxide
  3. Arumugam B, Palanisamy UD, Chua KH, Kuppusamy UR
    Mol Vis, 2019;25:47-59.
    PMID: 30820141
    Purpose: Oxidative stress is implicated in the etiology of diabetes and its debilitating complications, such as diabetic retinopathy (DR). Various flavonoids have been reported to be useful in reducing DR progression. Myricetin derivatives (F2) isolated from leaf extract of Syzygium malaccense have the potential to serve as functional food as reported previously. The present study was performed with the aim of determining the antioxidant potential and protective effect of myricetin derivatives (F2) isolated from leaf extract of S. malaccense against glucose oxidase (GO)-induced hydrogen peroxide (H2O2) production that causes oxidative stress in ARPE-19 (RPE) cells.

    Methods: Antioxidant properties were assessed through various radical (DPPH, ABTS, and nitric oxide) scavenging assays and determination of total phenolic content and ferric reducing antioxidant power level. ARPE-19 cells were preincubated with samples before the addition of GO (to generate H2O2). Cell viability, change in intracellular reactive oxygen species (ROS), H2O2 levels in cell culture supernatant, and gene expression were assessed.

    Results: F2 showed higher antioxidant levels than the extract when assessed for radical scavenging activities and ferric reducing antioxidant power. F2 protected the ARPE-19 cells against GO-H2O2-induced oxidative stress by reducing the production of H2O2 and intracellular reactive oxygen species. This was achieved by the activation of nuclear factor erythroid 2-related factor 2 (Nrf2/NFE2L2) and superoxide dismutase (SOD2), as well as downregulation of nitric oxide producer (NOS2) at the transcriptional level.

    Conclusions: The results showed that myricetin derivatives from S. malaccense have the capacity to exert considerable exogenous antioxidant activities and stimulate endogenous antioxidant activities. Therefore, these derivatives have excellent potential to be developed as therapeutic agents for managing DR.

    Matched MeSH terms: Hydrogen Peroxide/antagonists & inhibitors; Hydrogen Peroxide/pharmacology; Hydrogen Peroxide/chemistry
  4. Azmi NH, Ismail M, Ismail N, Imam MU, Alitheen NB, Abdullah MA
    PMID: 26858770 DOI: 10.1155/2015/153684
    The pathogenesis of Alzheimer's disease involves complex etiological factors, of which the deposition of beta-amyloid (Aβ) protein and oxidative stress have been strongly implicated. We explored the effects of H2O2, which is a precursor for highly reactive hydroxyl radicals, on neurotoxicity and genes related to AD on neuronal cells. Candidate bioactive compounds responsible for the effects were quantified using HPLC-DAD. Additionally, the effects of germinated brown rice (GBR) on the morphology of Aβ(1-42) were assessed by Transmission Electron Microscopy and its regulatory effects on gene expressions were explored. The results showed that GBR extract had several phenolic compounds and γ-oryzanol and altered the structure of Aβ(1-42) suggesting an antiamyloidogenic effect. GBR was also able to attenuate the oxidative effects of H2O2 as implied by reduced LDH release and intracellular ROS generation. Furthermore, gene expression analyses showed that the neuroprotective effects of GBR were partly mediated through transcriptional regulation of multiple genes including Presenilins, APP, BACE1, BACE2, ADAM10, Neprilysin, and LRP1. Our findings showed that GBR exhibited neuroprotective properties via transcriptional regulation of APP metabolism with potential impact on Aβ aggregation. These findings can have important implications for the management of neurodegenerative diseases like AD and are worth exploring further.
    Matched MeSH terms: Hydrogen Peroxide
  5. Md Zamri ND, Imam MU, Abd Ghafar SA, Ismail M
    PMID: 25431609 DOI: 10.1155/2014/371907
    The antioxidant properties of germinated brown rice (GBR) are likely mediated by multiple bioactives. To test this hypothesis, HepG2 cells pretreated with GBR extracts, rich in acylated steryl glycoside (ASG), gamma amino butyric acid GABA), phenolics or oryzanol, were incubated with hydrogen peroxide (H2O2) and their hydroxyl radical (OH(•)) scavenging capacities and thiobarbituric acid-reactive substances (TBARS) generation were evaluated. Results showed that GBR-extracts increased OH(•) scavenging activities in both cell-free medium and posttreatment culture media, suggesting that the extracts were both direct- and indirect-acting against OH(•). The levels of TBARS in the culture medium after treatment were also reduced by all the extracts. In addition, H2O2 produced transcriptional changes in p53, JNK, p38 MAPK, AKT, BAX, and CDK4 that were inclined towards apoptosis, while GBR-extracts showed some transcriptional changes (upregulation of BAX and p53) that suggested an inclination for apoptosis although other changes (upregulation of antioxidant genes, AKT, JNK, and p38 MAPK) suggested that GBR-extracts favored survival of the HepG2 cells. Our findings show that GBR bioactive-rich extracts reduce oxidative stress through improvement in antioxidant capacity, partly mediated through transcriptional regulation of antioxidant and prosurvival genes.
    Matched MeSH terms: Hydrogen Peroxide
  6. Kanagasabapathy G, Malek SN, Mahmood AA, Chua KH, Vikineswary S, Kuppusamy UR
    PMID: 23737819 DOI: 10.1155/2013/185259
    Mushrooms have been used in folk medicine for thousands of years. In this study, the effect of β -glucan-rich extract of P. sajor-caju (GE) on lipid lowering and antioxidant potential was assessed in C57BL/6J mice fed on a high-fat diet. Obesity was induced in C57BL/6J mice by feeding a high-fat diet. The control groups in this study were ND (for normal diet) and HFD (for high-fat diet). The treated groups were ND240 (for normal diet) (240 mg/kg b.w) and HFD60, HFD120, and HFD240 (for high-fat diet), where the mice were administrated with three dosages of GE (60, 120, and 240 mg GE/kg b.w). Metformin (2 mg/kg b.w) served as positive control. GE-treated groups showed significantly reduced body weight, serum lipid, and liver enzymes levels. GE also attenuated protein carbonyl and lipid hydroperoxide levels by increasing the enzymic antioxidants (SOD, CAT, and GPx) activities in the mice. GE-treated groups induced the expression of hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) while downregulated the expression of peroxisome proliferator-activated receptor gamma (PPAR- γ ), sterol regulatory binding protein-1c (SREBP-1c), and lipoprotein lipase (LPL). Hence, GE prevented weight gain in the mice by inducing lipolysis and may be valuable in the formulation of adjuvant therapy for obesity.
    Matched MeSH terms: Hydrogen Peroxide
  7. Ansar S, Iqbal M, AlJameil N
    Hum Exp Toxicol, 2014 Dec;33(12):1209-16.
    PMID: 24596035 DOI: 10.1177/0960327114524237
    Ferric nitrilotriacetate (Fe-NTA) induces tissue necrosis as a result of lipid peroxidation (LPO) and oxidative damage that leads to high incidence of renal carcinomas. The present study was undertaken to evaluate the effect of diallyl sulphide (DAS) against Fe-NTA-induced nephrotoxicity. A total of 30 healthy male rats were randomly divided into 5 groups of 6 rats each: (1) control, (2) DAS (200 mg kg(-1)), (3) Fe-NTA (9 g Fe kg(-1)), (4) DAS (100 mg kg(-1)) + Fe-NTA (9 mg Fe kg(-1)) and (5) DAS (200 mg kg(-1)) + Fe-NTA (9 mg Fe kg(-1)). Fe-NTA + DAS-treated groups were given DAS for a period of 1 week before Fe-NTA administration. The intraperitoneal administration of Fe-NTA enhanced blood urea nitrogen and creatinine levels with reduction in levels of antioxidant enzymes. However, significant restoration of depleted renal glutathione and its dependent enzymes (glutathione reductase and glutathione-S-transferase) was observed in DAS pretreated groups. DAS also attenuated Fe-NTA-induced increase in LPO, hydrogen peroxide generation and protein carbonyl formation (p < 0.05). The results indicate that DAS may be beneficial in ameliorating the Fe-NTA-induced renal oxidative damage in rats.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  8. Khoo HE, Azlan A, Ismail A, Abas F, Hamid M
    PLoS One, 2014;9(1):e81447.
    PMID: 24416130 DOI: 10.1371/journal.pone.0081447
    Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD(+) and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection.
    Matched MeSH terms: Hydrogen Peroxide/toxicity
  9. Yuen CW, Ong EB, Mohamad S, Manaf UA, Najimudin N
    J Microbiol Biotechnol, 2012 Oct;22(10):1336-42.
    PMID: 23075783
    In Burkholderia pseudomallei, the pathogen that causes melioidosis, the gene cluster encoding the capsular polysaccharide, is located on chromosome 1. Among the 19 capsular genes in this cluster, wzm has not been thoroughly studied. To study the function of wzm, we generated a deletion mutant and compared it with the wild-type strain. The mutant produced less biofilm in minimal media and was more sensitive to desiccation and oxidative stress compared with the wild-type strain, indicating that wzm is involved in biofilm formation and membrane integrity. Scanning electron microscopy showed that the bacterial cells of the mutant strain have more defined surfaces with indentations, whereas cells of the wild-type strain do not.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  10. Wong DZ, Kadir HA, Ling SK
    J Ethnopharmacol, 2012 Jan 6;139(1):256-64.
    PMID: 22107836 DOI: 10.1016/j.jep.2011.11.010
    A parasite plant, Loranthus parasiticus (Loranthaceae), which is generally known as benalu teh (in Malay), Sang Ji Sheng (in Chinese), and baso-kisei (in Japan) distributed in south and southwest part of China, has been used as a folk medicine for the treatment of schizophrenia in southwest China. Loranthus parasiticus has various uses in folk and traditional medicines for bone, brain, kidney, liver, expels wind-damp, and prevents miscarriage.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  11. Chan KM, Rajab NF, Siegel D, Din LB, Ross D, Inayat-Hussain SH
    Toxicol. Sci., 2010 Aug;116(2):533-48.
    PMID: 20498002 DOI: 10.1093/toxsci/kfq151
    Goniothalamin (GN), a styryl-lactone isolated from Goniothalamus andersonii, has been demonstrated to possess antirestenostic properties by inducing apoptosis on coronary artery smooth muscle cells (CASMCs). In this study, the molecular mechanisms of GN-induced CASMCs apoptosis were further elucidated. Apoptosis assessment based on the externalization of phosphatidylserine demonstrated that GN induces CASMCs apoptosis in a concentration-dependent manner. The GN-induced DNA damage occurred with concomitant elevation of p53 as early as 2 h, demonstrating an upstream signal for apoptosis. However, the p53 elevation in GN-treated CASMCs was independent of NAD(P)H: quinone oxidoreductase 1 and Mdm-2 expression. An increase in hydrogen peroxide and reduction in free thiols confirmed the role for oxidative stress in GN treatment. Pretreatment with the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-FMK) that significantly abrogated GN-induced CASMCs apoptosis suggested the involvement of caspase(s). The role of apical caspase-2, -8, and -9 was then investigated, and sequential activation of caspase-2 and -9 but not caspase-8 leading to downstream caspase-3 cleavage was observed in GN-treated CASMCs. Reduction of ATP level and decrease in oxygen consumption further confirmed the role of mitochondria in GN-induced apoptosis in CASMCs. The mitochondrial release of cytochrome c was seen without mitochondrial membrane potential loss and was independent of cardiolipin. These data provide insight into the mechanisms of GN-induced apoptosis, which may have important implications in the development of drug-eluting stents.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  12. Seng HL, Von ST, Tan KW, Maah MJ, Ng SW, Rahman RN, et al.
    Biometals, 2010 Feb;23(1):99-118.
    PMID: 19787298 DOI: 10.1007/s10534-009-9271-y
    Crystal structure analysis of the zinc complex establishes it as a distorted octahedral complex, bis(3-methylpicolinato-kappa(2) N,O)(2)(1,10-phenanthroline-kappa(2) N,N)-zinc(II) pentahydrate, [Zn(3-Me-pic)(2)(phen)]x5H(2)O. The trans-configuration of carbonyl oxygen atoms of the carboxylate moieties and orientation of the two planar picolinate ligands above and before the phen ligand plane seems to confer DNA sequence recognition to the complex. It cannot cleave DNA under hydrolytic condition but can slightly be activated by hydrogen peroxide or sodium ascorbate. Circular Dichroism and Fluorescence spectroscopic analysis of its interaction with various duplex polynucleotides reveals its binding mode as mainly intercalation. It shows distinct DNA sequence binding selectivity and the order of decreasing selectivity is ATAT > AATT > CGCG. Docking studies lead to the same conclusion on this sequence selectivity. It binds strongly with G-quadruplex with human tolemeric sequence 5'-AG(3)(T(2)AG(3))(3)-3', can inhibit topoisomerase I efficiently and is cytotoxic against MCF-7 cell line.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  13. Ansar S, Iqbal M
    Hum Exp Toxicol, 2016 Mar;35(3):259-66.
    PMID: 25904316 DOI: 10.1177/0960327115583362
    Garlic contains diallylsulfide (DAS) and other structurally related compounds that are widely believed to be active agents in preventing cancer. This study shows the effect of DAS (a phenolic antioxidant used in foods, cosmetics, and pharmaceutical products) on ferric nitrilotriacetate (Fe-NTA)-induced hepatotoxicity in rats. Male albino rats of Wistar strain weighing 125-150 g were given a single dose of Fe-NTA (9 mg kg(-1) body weight, intraperitoneally) after 1 week of treatment with 100 and 200 mg kg(-1) DAS in corn oil respectively administered through the gavage. Fe-NTA administration led to 2.5-fold increase in the values of both alanine transaminase and aspartate aminotransferase, respectively, and 3.2-fold increase in the activity of lactate dehydrogenase, microsomal lipid peroxidation to approximately 2.0-fold compared to saline-treated control. The activities of glutathione (GSH) and other antioxidant enzymes decreased to a range of 2.2-2.5-fold. These changes were reversed significantly (p < 0.001) in animals receiving a pretreatment of DAS. DAS protected against hepatic lipid peroxidation, hydrogen peroxide generation, preserved GSH levels, and GSH metabolizing enzymes to 60-80% as compared to Fe-NTA alone-treated group. Present data suggest that DAS can ameliorate the toxic effects of Fe-NTA and suppress oxidant-induced tissue injury and hepatotoxicity in rats.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  14. Gao X, Yanan J, Santhanam RK, Wang Y, Lu Y, Zhang M, et al.
    J Food Sci, 2021 Feb;86(2):366-375.
    PMID: 33448034 DOI: 10.1111/1750-3841.15599
    Liver damage is a common liver disorder, which could induce liver cancer. Oral antioxidant is one of the effective treatments to prevent and alleviate liver damage. In this study, three flavonoids namely myricetin, isoquercitrin, and isorhamnetin were isolated and identified from Laba garlic. The isolated compounds were investigated on the protective effects against H2 O2 -induced oxidative damages in hepatic L02 cells and apoptosis inducing mechanism in hepatic cancer cells HepG2 by using MTT assay, flow cytometry and western blotting analysis. Myricetin, isoquercitrin, and isorhamnetin showed proliferation inhibition on HepG2 cells with IC50 value of 44.32 ± 0.213 µM, 49.68 ± 0.192 µM, and 54.32 ± 0.176 µM, respectively. While they showed low toxicity on normal cell lines L02. They could significantly alleviate the oxidative damage towards L02 cells (P < 0.05), via inhibiting the morphological changes in mitochondria and upholding the integrity of mitochondrial structure and function. The fluorescence intensity of L02 cells pre-treated with myricetin, isoquercitrin, and isorhamnetin (100 µM) was 89.23 ± 1.26%, 89.35 ± 1.43% and 88.97 ± 0.79%, respectively. Moreover, the flavonoids could induce apoptosis in HepG2 cells via Bcl-2/Caspase pathways, where it could up-regulate the expression of Bax and down-regulate the expression of Bcl-2, Bcl-xL, pro-Caspase-3, and pro-Caspase-9 proteins in a dose dependent manner. Overall, the results suggested that the flavonoids from Laba garlic might be a promising candidate for the treatment of various liver disorders. PRACTICAL APPLICATION: Flavonoids from Laba garlic showed selective toxicity towards HepG2 cells in comparison to L02 cells via regulating Bcl-2/caspase pathway. Additionally, the isolated flavonoids expressively barred the oxidative damage induced by H2 O2 in L02 cells. These results suggested that the flavonoids from laba garlic could be a promising agent towards the development of functional foods.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology*
  15. Jaafaru MS, Nordin N, Shaari K, Rosli R, Abdull Razis AF
    PLoS One, 2018;13(5):e0196403.
    PMID: 29723199 DOI: 10.1371/journal.pone.0196403
    Reactive oxygen species are well known for induction of oxidative stress conditions through oxidation of vital biomarkers leading to cellular death via apoptosis and other process, thereby causing devastative effects on the host organs. This effect is believed to be linked with pathological alterations seen in several neurodegenerative disease conditions. Many phytochemical compounds proved to have robust antioxidant activities that deterred cells against cytotoxic stress environment, thus protect apoptotic cell death. In view of that we studied the potential of glucomoringin-isothiocyanate (GMG-ITC) or moringin to mitigate the process that lead to neurodegeneration in various ways. Neuroprotective effect of GMG-ITC was performed on retinoic acid (RA) induced differentiated neuroblastoma cells (SHSY5Y) via cell viability assay, flow cytometry analysis and fluorescence microscopy by means of acridine orange and propidium iodide double staining, to evaluate the anti-apoptotic activity and morphology conservation ability of the compound. Additionally, neurite surface integrity and ultrastructural analysis were carried out by means of scanning and transmission electron microscopy to assess the orientation of surface and internal features of the treated neuronal cells. GMG-ITC pre-treated neuron cells showed significant resistance to H2O2-induced apoptotic cell death, revealing high level of protection by the compound. Increase of intracellular oxidative stress induced by H2O2 was mitigated by GMG-ITC. Thus, pre-treatment with the compound conferred significant protection to cytoskeleton and cytoplasmic inclusion coupled with conservation of surface morphological features and general integrity of neuronal cells. Therefore, the collective findings in the presence study indicated the potentials of GMG-ITC to protect the integrity of neuron cells against induced oxidative-stress related cytotoxic processes, the hallmark of neurodegenerative diseases.
    Matched MeSH terms: Hydrogen Peroxide/toxicity*
  16. Hamdan M, Jones KT, Cheong Y, Lane SI
    Sci Rep, 2016 11 14;6:36994.
    PMID: 27841311 DOI: 10.1038/srep36994
    Mouse oocytes respond to DNA damage by arresting in meiosis I through activity of the Spindle Assembly Checkpoint (SAC) and DNA Damage Response (DDR) pathways. It is currently not known if DNA damage is the primary trigger for arrest, or if the pathway is sensitive to levels of DNA damage experienced physiologically. Here, using follicular fluid from patients with the disease endometriosis, which affects 10% of women and is associated with reduced fertility, we find raised levels of Reactive Oxygen Species (ROS), which generate DNA damage and turn on the DDR-SAC pathway. Only follicular fluid from patients with endometriosis, and not controls, produced ROS and damaged DNA in the oocyte. This activated ATM kinase, leading to SAC mediated metaphase I arrest. Completion of meiosis I could be restored by ROS scavengers, showing this is the primary trigger for arrest and offering a novel clinical therapeutic treatment. This study establishes a clinical relevance to the DDR induced SAC in oocytes. It helps explain how oocytes respond to a highly prevalent human disease and the reduced fertility associated with endometriosis.
    Matched MeSH terms: Hydrogen Peroxide/toxicity
  17. Abba Y, Hassim H, Hamzah H, Ibrahim OE, Mohd Lila MA, Noordin MM
    Microb Pathog, 2017 Mar;104:17-27.
    PMID: 28062291 DOI: 10.1016/j.micpath.2017.01.003
    Boid inclusion body disease (BIBD) is a viral disease of boid snakes believed to be caused by reptarenavirus belonging to the family Arenaviridae. Unlike most mammalian arenaviruses, the reservoir host for reptarenavirus is still unknown. In this study, the pathological responses were evaluated in a mouse model for a period of 28 days. Blood and tissue samples (lung, liver, spleen, heart, kidney and brain) were collected for evaluation of hematology, biochemistry, histopathology and oxidative enzyme levels at six time points (1, 3, 7, 14, 21 and 28 days), after viral infection (2.0 × 10(6) pfu/mL) in the infected and normal saline in the control groups. An initial increase (p hydrogen peroxide, total antioxidant capacity (TAC), superoxide dismutase (SOD) activity and catalase activity (CAT) were frequently observed on different days in the infected group. The MDA activity was increased (p 
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  18. Gao X, Santhanam RK, Xue Z, Jia Y, Wang Y, Lu Y, et al.
    J Food Sci, 2020 Apr;85(4):1060-1069.
    PMID: 32147838 DOI: 10.1111/1750-3841.15084
    Inonotus obliquus is a traditional mushroom well known for its therapeutic value. In this study, various solvent fractions of I. obliquus were preliminarily screened for their antioxidant, α-amylase and α-glucosidase inhibition properties. To improve the drug delivery, the active fraction (ethyl acetate fraction) of I. obliquus was synthesized into fungisome (ethyl acetate phophotidyl choline complex, EAPC) and its physical parameters were assessed using Fourier transform infrared spectroscopy (FTIR), High performance liquid chromatography (HPLC), Scanning electron microscope (SEM), and ς potential analysis. Then normal human hepatic L02 cells was used to evaluate the cytotoxicity of EAPC. The results showed that EA fraction possesses significant free radical scavenging, α-amylase and α-glucosidase inhibition properties. FTIR, SEM, and HPLC analysis confirmed the fungisome formation. The particle size of EAPC was 102.80 ± 0.42 nm and the ς potential was -54.30 ± 0.61 mV. The percentage of drug entrapment efficiency was 97.13% and the drug release rates of EAPC in simulated gastric fluid and simulated intestinal fluid were 75.04 ± 0.29% and 93.03 ± 0.36%, respectively. EAPC was nontoxic to L02 cells, however it could selectively fight against the H2 O2 induced oxidative damage in L02 cells. This is the first study to provide scientific information to utilize the active fraction of I. obliquus as fungisome. PRACTICAL APPLICATIONS: Inonotus obliquus (IO) is a traditional medicinal fungus. The extracts of IO have obvious antioxidant and hypoglycemic activities. Ethyl acetate (EA) fraction of IO was encapsulated in liposomes to form EAPC. EAPC has a sustained-release effect. It has nontoxic to L02 cells and could protect L02 cells from oxidative damage caused by hydrogen peroxide. This study could provide new ideas for the treatment of diabetes.
    Matched MeSH terms: Hydrogen Peroxide/toxicity*
  19. Li H, Zhao L, Lau YS, Zhang C, Han R
    Oncogene, 2021 01;40(1):177-188.
    PMID: 33110234 DOI: 10.1038/s41388-020-01523-5
    Colorectal cancer is the third leading cause of cancer-related deaths in the United States and the third most common cancer in men and women. Around 20% colon cancer cases are closely linked with colitis. Both environmental and genetic factors are thought to contribute to colon inflammation and tumor development. However, the genetic factors regulating colitis and colon tumorigenesis remain elusive. Since reactive oxygen species (ROS) is vitally involved in tissue inflammation and tumorigenesis, here we employed a genome-wide CRISPR knockout screening approach to systemically identify the genetic factors involved in the regulation of oxidative stress. Next generation sequencing (NGS) showed that over 600 gRNAs including the ones targeting LGALS2 were highly enriched in cells survived after sublethal H2O2 challenge. LGALS2 encodes the glycan-binding protein Galectin 2 (Gal2), which is predominantly expressed in the gastrointestinal tract and downregulated in human colon tumors. To examine the role of Gal2 in colitis, we employed the dextran sodium sulfate (DSS)-induced acute colitis model in mice with (WT) or without Lgals2 (Gal2-KO) and showed that Gal2 deficiency ameliorated DSS-induced colitis. We further demonstrated that Gal2-KO mice developed significantly larger tumors than WT mice using Azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colorectal cancer model. We found that STAT3 phosphorylation was significantly increased in Gal2-deficient tumors as compared to those in WT mice. Gal2 overexpression decreased the proliferation of human colon tumor epithelial cells and blunted H2O2-induced STAT3 phosphorylation. Overall, our results demonstrate that Gal2 plays a suppressive role in colon tumor growth and highlights the therapeutic potential of Gal2 in colon cancer.
    Matched MeSH terms: Hydrogen Peroxide/adverse effects
  20. Yeap SK, Abu N, Akthar N, Ho WY, Ky H, Tan SW, et al.
    Integr Cancer Ther, 2017 09;16(3):373-384.
    PMID: 27458249 DOI: 10.1177/1534735416660383
    Flavokawain B (FKB) is known to possess promising anticancer abilities. This is demonstrated in various cancer cell lines including HeLa cells. Cervical cancer is among the most widely diagnosed cancer among women today. Though FKB has been shown to be effective in treating cancer cells, the exact molecular mechanism is still unknown. This study is aimed at understanding the effects of FKB on HeLa cells using a microarray-based mRNA expression profiling and proteome profiling of stress-related proteins. The results of this study suggest that FKB induced cell death through p21-mediated cell cycle arrest and activation of p38. However, concurrent activation of antioxidant-related pathways and iron sequestration pathway followed by activation of ER-resident stress proteins clearly indicate that FKB failed to induce apoptosis in HeLa cells via oxidative stress. This effect implies that the protection of HeLa cells by FKB from H2O2-induced cell death is via neutralization of reactive oxygen species.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links