Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Singh S, Numan A, Khalid M, Bello I, Panza E, Cinti S
    Small, 2023 Dec;19(51):e2208209.
    PMID: 37096900 DOI: 10.1002/smll.202208209
    Hydrogen peroxide (H2 O2 ) is a primary reactive oxygen species (ROS) that can act as a chemical signal in developing and progressing serious and life-threatening diseases like cancer. Due to the stressful nature of H2 O2 , there is an urgent need to develop sensitive analytical approaches to be applied to various biological matrices. Herein, a portable point-of-care electrochemical system based on MXene-Co3 O4 nanocomposites to detect H2 O2 in different cancer cell-lines is presented. The developed sensor is affordable, disposable, and highly selective for H2 O2 detection. This approach achieves a dynamic linear range of 75 µm with a LOD of 0.5 µm and a LOQ of 1.6 µm. To improve the practical application, the level of ROS is evaluated both in cancer cell lines MDA-MB-231 and DU145, respectively, to breast and prostate cancers, and in healthy HaCat cells. Moreover, the same cancer cells are treated with transforming growth factor-β1, and MXene-Co3 O4 modified strip is capable to monitorROS variation. The results are satisfactory compared with the cellular ROS fluorescent assay based on DCFH/DCFH-DA. These results open new perspectives for real-time monitoring of cancer progression and the efficacy of the therapy.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  2. Yap SH, Lee CS, Zulkifli ND, Suresh D, Hamase K, Das KT, et al.
    Amino Acids, 2024 Feb 03;56(1):6.
    PMID: 38310167 DOI: 10.1007/s00726-023-03360-8
    Studies in vivo have demonstrated that the accumulation of D-amino acids (D-AAs) is associated with age-related diseases and increased immune activation. However, the underlying mechanism(s) of these observations are not well defined. The metabolism of D-AAs by D-amino oxidase (DAO) produces hydrogen peroxide (H2O2), a reactive oxygen species involved in several physiological processes including immune response, cell differentiation, and proliferation. Excessive levels of H2O2 contribute to oxidative stress and eventual cell death, a characteristic of age-related pathology. Here, we explored the molecular mechanisms of D-serine (D-Ser) and D-alanine (D-Ala) in human liver cancer cells, HepG2, with a focus on the production of H2O2 the downstream secretion of pro-inflammatory cytokine and chemokine, and subsequent cell death. In HepG2 cells, we demonstrated that D-Ser decreased H2O2 production and induced concentration-dependent depolarization of mitochondrial membrane potential (MMP). This was associated with the upregulation of activated NF-кB, pro-inflammatory cytokine, TNF-α, and chemokine, IL-8 secretion, and subsequent apoptosis. Conversely, D-Ala-treated cells induced H2O2 production, and were also accompanied by the upregulation of activated NF-кB, TNF-α, and IL-8, but did not cause significant apoptosis. The present study confirms the role of both D-Ser and D-Ala in inducing inflammatory responses, but each via unique activation pathways. This response was associated with apoptotic cell death only with D-Ser. Further research is required to gain a better understanding of the mechanisms underlying D-AA-induced inflammation and its downstream consequences, especially in the context of aging given the wide detection of these entities in systemic circulation.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  3. Ibrahim MH, Jaafar HZ
    Molecules, 2012 Jan 27;17(2):1159-76.
    PMID: 22286668 DOI: 10.3390/molecules17021159
    The resource availability hypothesis predicts an increase in the allocation to secondary metabolites when carbon gain is improved relative to nutrient availability, which normally occurs during periods of low irradiance. The present work was carried out to confirm this hypothesis by investigating the effects of decreasing irradiance on the production of plant secondary metabolites (flavonoids and phenolics) in the herbal plant Orthosiphon stamineus, and to characterize this production by carbohydrate, H(2)O(2), and malondialdehyde (MDA) levels, net photosynthesis, leaf chlorophyll content and carbon to nitrogen ratio (C/N). Four levels of irradiance (225, 500, 625 and 900 µmol/m(2)/s) were imposed onto two-week old seedlings for 12 weeks in a randomized complete block design experiment. Peak production of total flavonoids, phenolics, soluble sugar, starch and total non-structural carbohydrate ocurred under low irradiance of 225 µmol/m(2)/s, and decreased with increasing irradiance. The up-regulation of secondary metabolites could be explained by the concomitant increases in H(2)O(2) and MDA activities under low irradiance. This condition also resulted in enhanced C/N ratio signifying a reduction in nitrogen levels, which had established significant negative correlations with net photosynthesis, total biomass and total chlorophyll content, indicating the possible existence of a trade-off between growth and secondary metabolism under low irradiance with reduced nitrogen content. The competition between total chlorophyll and secondary metabolites production, as exhibited by the negative correlation coefficient under low irradiance, also suggests a sign of gradual switch of investment from chlorophyll to polyphenols production.
    Matched MeSH terms: Hydrogen Peroxide/metabolism*
  4. Islam MA, Shorna MNA, Islam S, Biswas S, Biswas J, Islam S, et al.
    Sci Rep, 2023 Dec 18;13(1):22521.
    PMID: 38110488 DOI: 10.1038/s41598-023-49973-7
    In the modern world, wheat, a vital global cereal and the second most consumed, is vulnerable to climate change impacts. These include erratic rainfall and extreme temperatures, endangering global food security. Research on hydrogen-rich water (HRW) has gained momentum in plant and agricultural sciences due to its diverse functions. This study examined the effects of different HRW treatment durations on wheat, revealing that the 4-h treatment had the highest germination rate, enhancing potential, vigor, and germination indexes. This treatment also boosted relative water content, root and shoot weight, and average lengths. Moreover, the 4-h HRW treatment resulted in the highest chlorophyll and soluble protein concentrations in seeds while reducing cell death. The 4-h and 5-h HRW treatments significantly increased H2O2 levels, with the highest NO detected in both root and shoot after 4-h HRW exposure. Additionally, HRW-treated seeds exhibited increased Zn and Fe concentrations, along with antioxidant enzyme activities (CAT, SOD, APX) in roots and shoots. These findings suggest that HRW treatment could enhance wheat seed germination, growth, and nutrient absorption, thereby increasing agricultural productivity. Molecular analysis indicated significant upregulation of the Dreb1 gene with a 4-h HRW treatment. Thus, it shows promise in addressing climate change effects on wheat production. Therefore, HRW treatment could be a hopeful strategy for enhancing wheat plant drought tolerance, requiring further investigation (field experiments) to validate its impact on plant growth and drought stress mitigation.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  5. Ugusman A, Zakaria Z, Chua KH, Nordin NA, Abdullah Mahdy Z
    ScientificWorldJournal, 2014;2014:169370.
    PMID: 25093198 DOI: 10.1155/2014/169370
    Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is a major antiatherogenic factor in the blood vessel. Oxidative stress plays an important role in the pathogenesis of various cardiovascular diseases, including atherosclerosis. Decreased availability of endothelial NO promotes the progression of endothelial dysfunction and atherosclerosis. Rutin is a flavonoid with multiple cardiovascular protective effects. This study aimed to investigate the effects of rutin on eNOS and NO production in cultured human umbilical vein endothelial cells (HUVEC). HUVEC were divided into four groups: control; oxidative stress induction with 180 μM H₂O₂; treatment with 300 μM rutin; and concomitant induction with rutin and H₂O₂ for 24 hours. HUVEC treated with rutin produced higher amount of NO compared to control (P < 0.01). In the oxidative stress-induced HUVEC, rutin successfully induced cells' NO production (P < 0.01). Rutin promoted NO production in HUVEC by inducing eNOS gene expression (P < 0.05), eNOS protein synthesis (P < 0.01), and eNOS activity (P < 0.05). Treatment with rutin also led to increased gene and protein expression of basic fibroblast growth factor (bFGF) in HUVEC. Therefore, upregulation of eNOS expression by rutin may be mediated by bFGF. The results showed that rutin may improve endothelial function by augmenting NO production in human endothelial cells.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  6. Aris A, Sharratt PN
    Environ Technol, 2006 Oct;27(10):1153-61.
    PMID: 17144264
    The effect of initial dissolved oxygen concentration (IDOC) on Fenton's reagent degradation of a dyestuff, Reactive Black 5 was explored in this study. The study was designed, conducted and analysed based on Central Composite Rotatable Design using a 3-1 lab-scale reactor. The participation of O2 in the process was experimentally observed and appears to be affected by the dosage of the reagents used in the study. The IDOC was found to have a significant influence on the process. Reducing the IDOC from 7.5 mg l(-1) to 2.5 mg l(-1) increased the removal of TOC by an average of about 10%. Reduction of IDOC from 10 mg l(-1) to 0 mg l(-1) enhanced the TOC removal by about 30%. The negative influence of IDOC is likely to be caused by the competition between the O2 and the reagents for the organoradicals. A model describing the relationship between initial TOC removal, reagent dosage and IDOC has also been developed.
    Matched MeSH terms: Hydrogen Peroxide/metabolism*
  7. Chung LY
    J Med Food, 2006;9(2):205-13.
    PMID: 16822206
    Garlic and garlic extracts, through their antioxidant activities, have been reported to provide protection against free radical damage in the body. This study investigated antioxidant properties of garlic compounds representing the four main chemical classes, alliin, allyl cysteine, allyl disulfide, and allicin, prepared by chemical synthesis or purification. Alliin scavenged superoxide, while allyl cysteine and allyl disulfide did not react with superoxide. Allicin suppressed the formation of superoxide by the xanthine/xanthine oxidase system, probably via a thiol exchange mechanism. Alliin, allyl cysteine, and allyl disulfide all scavenged hydroxyl radicals; the rate constants calculated based on deoxyribose competitive assay were 1.4-1.7 x 10(10), 2.1-2.2 x 10(9), and 0.7-1.5 x 10(10) M (1) second(1), respectively. Contrary to previous reports, allicin did not exhibit hydroxyl radical scavenging activity in this study. Alliin, allicin, and allyl cysteine did not prevent induced microsomal lipid peroxidation, but both alliin and allyl cysteine were hydroxyl scavengers, and allyl disulfide was a lipid peroxidation terminator. In summary, our findings indicated that allyl disulfide, alliin, allicin, and allyl cysteine exhibit different patterns of antioxidant activities as protective compounds against free radical damage.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  8. Abdulmalek E, Arumugam M, Basri M, Rahman MB
    Int J Mol Sci, 2012;13(10):13140-9.
    PMID: 23202943 DOI: 10.3390/ijms131013140
    Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H(2)O(2)) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%-99%) under the optimum reaction conditions, including temperature (35 °C), initial H(2)O(2) concentration (30%), H(2)O(2) amount (4.4 mmol), H(2)O(2) addition rate (one step), acid amount (8.8 mmol), and stirring speed (250 rpm). Interestingly, the enzyme was stable under the single-step addition of H(2)O(2) with a catalytic activity of 190.0 Ug-1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker.
    Matched MeSH terms: Hydrogen Peroxide/metabolism*
  9. Chong TM, Abdullah MA, Fadzillah NM, Lai OM, Lajis NH
    Plant Cell Rep, 2004 Jul;22(12):951-8.
    PMID: 15067428
    The effects of medium strategies [maintenance (M), intermediary (G), and production (P) medium] on cell growth, anthraquinone (AQ) production, hydrogen peroxide (H2O2) level, lipid peroxidation, and antioxidant vitamins in Morinda elliptica cell suspension cultures were investigated. These were compared with third-stage leaf and 1-month-old callus culture. With P medium strategy, cell growth at 49 g l(-1), intracellular AQ content at 42 mg g(-1) DW, and H2O2 level at 9 micromol g(-1) FW medium were the highest as compared to the others. However, the extent of lipid peroxidation at 40.4 nmol g(-1) FW and total carotenoids at 13.3 mg g(-1) FW for cultures in P medium were comparable to that in the leaf, which had registered sevenfold lower AQ and 2.2-fold lower H2O2 levels. Vitamin C content at 30-120 microg g(-1) FW in all culture systems was almost half the leaf content. On the other hand, vitamin E content was around 400-500 microg g(-1) FW in 7-day-old cultures from all medium strategies and reduced to 50-150 microg g(-1) FW on day 14 and 21; as compared to 60 microg g(-1) FW in callus and 200 microg g(-1) FW in the leaf. This study suggests that medium strategies and cell growth phase in cell culture could influence the competition between primary and secondary metabolism, oxidative stresses and antioxidative measures. When compared with the leaf metabolism, these activities are dynamic depending on the types and availability of antioxidants.
    Matched MeSH terms: Hydrogen Peroxide/metabolism*
  10. Zakaria NNA, Okello EJ, Howes MJ, Birch-Machin MA, Bowman A
    Phytother Res, 2018 Jun;32(6):1064-1072.
    PMID: 29464849 DOI: 10.1002/ptr.6045
    The traditional practice of eating the flowers of Clitoria ternatea L. or drinking their infusion as herbal tea in some of the Asian countries is believed to promote a younger skin complexion and defend against skin aging. This study was conducted to investigate the protective effect of C. ternatea flower water extract (CTW) against hydrogen peroxide-induced cytotoxicity and ultraviolet (UV)-induced mitochondrial DNA (mtDNA) damage in human keratinocytes. The protective effect against hydrogen peroxide-induced cytotoxicity was determined by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, and mtDNA damage induced by UV was determined by polymerase chain reaction. Preincubation of HaCaT with 100, 250, and 500 μg/ml CTW reduced cytotoxicity effects of H2 O2 compared with control (H2 O2 alone). CTW also significantly reduced mtDNA damage in UV-exposed HaCaT (p 
    Matched MeSH terms: Hydrogen Peroxide/metabolism*
  11. Al-Majedy YK, Al-Duhaidahawi DL, Al-Azawi KF, Al-Amiery AA, Kadhum AA, Mohamad AB
    Molecules, 2016 Jan 23;21(2):135.
    PMID: 26805811 DOI: 10.3390/molecules21020135
    Syntheses of coumarins, which are a structurally interesting antioxidant activity, was done in this article. The modification of 7-hydroxycoumarin by different reaction steps was done to yield target compounds. Molecular structures were characterized by different spectroscopical techniques (Fourier transformation infrared and nuclear magnetic resonance). Antioxidant activities were performed by using various in vitro spectrophometric assays against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and hydrogen peroxide (H2O2). All compounds exhibited high efficiency as antioxidants compared to ascorbic acid. The highest efficiency scavenging activity was found for compound 3 (91.0 ± 5.0), followed by compounds 2 and 4 (88.0 ± 2.00; and 87.0 ± 3.00). Ascorbic acid C was used as a standard drug with a percentage inhibition of 91.00 ± 1.5. The mechanism of the synthesized compounds as antioxidants was also studied. Hartree-Fock-based quantum chemical studies have been carried out with the basis set to 3-21G, in order to obtain information about the three-dimensional (3D) geometries, electronic structure, molecular modeling, and electronic levels, namely HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital), to understand the antioxidant activity for the synthesized compounds.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  12. Chen H, Cao S, Chen J, Wang H, Wei Y, Chen Y, et al.
    J Plant Physiol, 2024 Sep;300:154297.
    PMID: 38945071 DOI: 10.1016/j.jplph.2024.154297
    Programmed cell death (PCD) is a genetically regulated process of cell suicide essential for plant development. The 'malate valve' is a mechanism that ensures redox balance across different subcellular compartments. In broccoli, the BomMDH1 gene encodes malate dehydrogenase in mitochondria, a critical enzyme in the 'malate circulation' pathway. This study investigates the functional role of BomMDH1 in malate (MA)-induced apoptosis in bright yellow-2 (BY-2) suspension cells. Findings revealed that transgenic cells overexpressing BomMDH1 showed enhanced viability under MA-induced oxidative stress compared to wild-type (WT) cells. Overexpression of BomMDH1 also reduced levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2), and malondialdehyde (MDA), while increasing the expression of antioxidant enzyme genes such as NtAPX, NtAOX1a, NtSOD, and NtMDHAR. Additionally, treatment with salicylhydroxamic acid (SHAM), a characteristic inhibitor of mitochondrial respiration, further improved the anti-apoptotic activity of BY-2 cells. Overall, these results highlighted the function of the BomMDH1 gene and the potential of SHAM treatment in mitigating oxidative stress in BY-2 suspension cells.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  13. Chandramathi S, Suresh K, Shuba S, Mahmood A, Kuppusamy UR
    Parasitology, 2010 Apr;137(4):605-11.
    PMID: 19961647 DOI: 10.1017/S0031182009991351
    Numerous studies have revealed the presence of oxidative stress in parasitic infections. However, such studies were lacking in the Malaysian population. Previously, we have provided evidence that oxidative stress is elevated in Malaysians infected with intestinal parasites. Stool examinations revealed that about 47.5% of them were infected with the polymorphic protozoa, Blastocystis hominis. However, they were found to have mixed infection with other intestinal parasites.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  14. Kuppusamy UR, Chong YL, Mahmood AA, Indran M, Abdullah N, Vikineswary S
    Indian J. Biochem. Biophys., 2009 Apr;46(2):161-5.
    PMID: 19517993
    Lentinula edodes (Berk) Pegler, commonly known as Shiitake mushroom has been used as medicinal food in Asian countries, especially in China and Japan and is believed to possess strong immunomodulatory property. In the present study, the methanolic extract of the fruit bodies of L. edodes was investigated for cytoprotective effect against H2O2-induced cytotoxicity in human peripheral blood mononuclear cells (PBMCs) by measuring the activities of xanthine oxidase (XO) and glutathione peroxidase (GPx) . H2O2 at a concentration of 5 microM caused 50% inhibition of PBMCs viability. The extract improved the PBMC viability and exerted a dose-dependent protection against H2O2-induced cytotoxicity. At 100 microg/ml of extract concentration, the cell viability increased by 60% compared with the PBMCs incubated with H2O2 alone. The extract also inhibited XO activity in PBMC, while showing moderate stimulatory effect on GPx. However, in the presence of H2O2 alone, both the enzyme activities were increased significantly. The GPx activity increased, possibly in response to the increased availability of H2O2 in the cell. When the cells were pretreated with the extract and washed (to remove the extract) prior to the addition of H2O2, the GPx and XO activities as well as the cell viability were comparable to those when incubated with the extract alone. Thus, it is suggested that one of the possible mechanisms via which L. edodes methanolic extract confers protection against H2O2-induced oxidative stress in PBMC is by inhibiting the superoxide-producing XO and increasing GPx activity which could rapidly inactivate H2O2.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  15. Chung LY
    Phytother Res, 2008 Apr;22(4):493-9.
    PMID: 18338748 DOI: 10.1002/ptr.2350
    A standardized mixture of Chinese herbs, Zemaphyte taken orally as a daily decoction has been shown to be effective in the treatment of atopic eczema. This study showed that Zemaphyte is an efficient antioxidant, being capable of scavenging both superoxide and hydroxyl, and preventing peroxidation of biological membranes. It does not degrade hydrogen peroxide directly, but instead most likely forms a Zemaphyte-hydrogen peroxide complex. The complexed hydrogen peroxide can then be degraded in the presence of catalase to form oxygen and water. It is conceivable that Zemaphyte may contribute to the down-regulation of the activities of cells implicated in atopic eczema through its antioxidant activities.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  16. Mashitah MD, Masitah H, Ramachandran KB
    Med J Malaysia, 2004 May;59 Suppl B:59-60.
    PMID: 15468818
    Streptococcus zooepidemicus (SZ) is an aerotolerant bacteria and its ability to survive under reactive oxidant challenge raises the question of the existence of a defense system. Thus growth, hyaluronic acid (HA) and hydrogen peroxide (H2O2) production by SZ in the presence of increasing concentration of Mn2+ were studied. The results suggested that the tested strain supported growth and HA production in cultures treated with 1 and 10 mM of Mn2+ regardless of H2O2 presence in the medium. This showed that SZ have acquired elaborate defense mechanisms to scavenge oxygen toxicity and thus protect cells from direct and indirect effect of this radical. In contrast, cells treated with 25 mM Mn2+ were sensitive, in which, the HA production was reduced considerably. Thus showing that the oxygen scavenger systems of the cells may be fully saturated at this concentration.
    Matched MeSH terms: Hydrogen Peroxide/metabolism*
  17. Sannasimuthu A, Ramani M, Pasupuleti M, Saraswathi NT, Arasu MV, Al-Dhabi NA, et al.
    Cell Biol Int, 2020 Nov;44(11):2231-2242.
    PMID: 32716104 DOI: 10.1002/cbin.11431
    This study demonstrates both the antioxidant and anticancer potential of the novel short molecule YT12 derived from peroxiredoxin (Prx) of spirulina, Arthrospira platensis (Ap). ApPrx showed significant reduction in reactive oxygen species (ROS) against hydrogen peroxide (H2 O2 ) stress. The complementary DNA sequence of ApPrx contained 706 nucleotides and its coding region possessed 546 nucleotides between position 115 and 660. Real-time quantitative reverse transcription polymerase chain reaction analysis confirmed the messenger RNA expression of ApPrx due to H2 O2 exposure in spirulina cells at regular intervals, in which the highest expression was noticed on Day 20. Cytotoxicity assay was performed using human peripheral blood mononuclear cells, and revealed that at 10 μM, the YT12 did not exhibit any notable toxicity. Furthermore, ROS scavenging activity of YT12 was performed using DCF-DA assay, in which YT12 scavenged a significant amount of ROS at 25 μM in H2 O2 -treated blood leukocytes. The intracellular ROS in human colon adenocarcinoma cells (HT-29) was regulated by oxidative stress, where the YT12 scavenges ROS in HT-29 cells at 12.5 μM. Findings show that YT12 peptide has anticancer activity, when treated against HT-29 cells. Through the MTT assay, YT12 showed vital cytotoxicity against HT-29 cells. These finding suggested that YT12 is a potent antioxidant molecule which defends ROS against oxidative stress and plays a role in redox balance.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  18. Ramesh M, Muthuraman A
    PMID: 32208114 DOI: 10.2174/1386207323666200324173231
    Monoamine oxidases are the crucial drug targets for the treatment of neurodegenerative disorders like depression, Parkinson's disease, and Alzheimer's disease. The enzymes catalyze the oxidative deamination of several monoamine containing neurotransmitters, i.e. serotonin (5-HT), melatonin, epinephrine, norepinephrine, phenylethylamine, benzylamine, dopamine, tyramine, etc. The oxidative reaction of monoamine oxidases results in the production of hydrogen peroxide that leads to the neurodegeneration process. Therefore, the inhibition of monoamine oxidases has shown a profound effect against neurodegenerative diseases. At present, the design and development of newer lead molecules for the inhibition of monoamine oxidases are under intensive research in the field of medicinal chemistry. Recently, the advancement in QSAR methodologies has shown considerable interest in the development of monoamine oxidase inhibitors. The present review describes the development of QSAR methodologies, and their role in the design of newer monoamine oxidase inhibitors. It will assist the medicinal chemist in the identification of selective and potent monoamine oxidase inhibitors from various chemical scaffolds.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  19. Mohd Bakhori N, Yusof NA, Abdullah J, Wasoh H, Md Noor SS, Ahmad Raston NH, et al.
    Sensors (Basel), 2018 Jun 14;18(6).
    PMID: 29899214 DOI: 10.3390/s18061932
    In the present study, a beneficial approach for the ultrasensitive and affordable naked eye detection and diagnosis of tuberculosis (TB) by utilizing plasmonic enzyme-linked immunosorbent assay (ELISA) via antibody-antigen interaction was studied. Here, the biocatalytic cycle of the intracellular enzymes links to the formation and successive growth of the gold nanoparticles (GNPs) for ultrasensitive detection. The formation of different colored solutions by the plasmonic nanoparticles in the presence of enzyme labels links directly to the existence or non-existence of the TB analytes in the sample solutions. For disease detection, the adapted protocol is based mainly on the conventional ELISA procedure that involves catalase-labeled antibodies, i.e., the enzymes consume hydrogen peroxide and further produce GNPs with the addition of gold (III) chloride. The amount of hydrogen peroxide remaining in the solution determines whether the GNPs solution is to be formed in the color blue or the color red, as it serves as a confirmation for the naked eye detection of TB analytes. However, the conventional ELISA method only shows tonal colors that need a high concentration of analyte to achieve high confidence levels for naked eye detection. Also, in this research, we proposed the incorporation of protein biomarker, Mycobacterium tuberculosis ESAT-6-like protein esxB (CFP-10), as a means of TB detection using plasmonic ELISA. With the use of this technique, the CFP-10 detection limit can be lowered to 0.01 µg/mL by the naked eye. Further, our developed technique was successfully tested and confirmed with sputum samples from patients diagnosed with positive TB, thereby providing enough evidence for the utilization of our technique in the early diagnosis of TB disease.
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  20. Tan SN, Sim SP, Khoo ASB
    BMC Mol. Biol., 2018 12 04;19(1):15.
    PMID: 30514321 DOI: 10.1186/s12867-018-0116-5
    BACKGROUND: Oxidative stress is known to be involved in most of the aetiological factors of nasopharyngeal carcinoma (NPC). Cells that are under oxidative stress may undergo apoptosis. We have previously demonstrated that oxidative stress-induced apoptosis could be a potential mechanism mediating chromosome breakages in nasopharyngeal epithelial cells. Additionally, caspase-activated DNase (CAD) may be the vital player in mediating the chromosomal breakages during oxidative stress-induced apoptosis. Chromosomal breakage occurs during apoptosis and chromosome rearrangement. Chromosomal breakages tend to cluster in certain regions, such as matrix association region/scaffold attachment region (MAR/SAR). We hypothesised that oxidative stress-induced apoptosis may result in chromosome breaks preferentially at the MAR/SAR sites. The AF9 gene at 9p22 was targeted in this study because 9p22 is a deletion site commonly found in NPC.

    RESULTS: By using MAR/SAR recognition signature (MRS), potential MAR/SAR sites were predicted in the AF9 gene. The predicted MAR/SAR sites precisely match to the experimentally determined MAR/SARs. Hydrogen peroxide (H2O2) was used to induce apoptosis in normal nasopharyngeal epithelial cells (NP69) and NPC cells (HK1). Nested inverse polymerase chain reaction was employed to identify the AF9 gene cleavages. In the SAR region, the gene cleavage frequency of H2O2-treated cells was significantly higher than that of the non-treated cells. A few chromosomal breakages were detected within the AF9 region which was previously found to be involved in the mixed lineage leukaemia (MLL)-AF9 translocation in an acute lymphoblastic leukaemia patient. As for the non-SAR region, no significant difference in the gene cleavage frequency was found between the untreated control and H2O2-treated cells. Furthermore, H2O2-induced cleavages within the SAR region were reduced by caspase-3 inhibitor, which indirectly inhibits CAD.

    CONCLUSIONS: These results reaffirm our previous findings that oxidative stress-induced apoptosis could be one of the potential mechanisms underlying chromosome breakages in nasopharyngeal epithelial cells. MAR/SAR may play a vital role in defining the location of chromosomal breakages mediated by oxidative stress-induced apoptosis, where CAD is the major nuclease.

    Matched MeSH terms: Hydrogen Peroxide/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links