Displaying publications 261 - 280 of 291 in total

Abstract:
Sort:
  1. Choong YY, Arumugam G
    Med J Malaysia, 1999 Dec;54(4):526-7.
    PMID: 11072476
    There are a number of differential diagnoses for crystal deposits in the cornea. With the presence of a corneal epithelial defect, the differential diagnosis can be narrowed down to either infective causes or deposits from topical medications. This report describes a case of crystal deposits in the cornea from the use of Vitamin C eye drops.
    Matched MeSH terms: Ophthalmic Solutions
  2. Mohammed KB, Ma TH
    Mutat Res, 1999 May 19;426(2):193-9.
    PMID: 10350597
    The clastogenic and mutagenic effects of the insecticide Dimethoate (Cygon-2E), herbicides Atrazine, Simazine (Princep), Dicamba (Banvel D) and Picloram (Tordon) were studied using the Tradescantia-micronucleus (Trad-MCN) and Tradescantia-stamen hair mutation (Trad-SHM) assays. In clone 4430, dimethoate fumes both significantly increased the pink mutation events and reduced the number of stamen hairs per filament with increasing dosages. The pink mutation events were elevated by the liquid treatment with Picloram at 100 ppm concentration. The result of Trad-MCN test on Dimethoate fumes was not significantly different between the control and treated groups. The herbicide Atrazine showed positive effects at 10-50 ppm dose (liquid) and signs of overdose at 100 and 500 ppm concentrations. Simazine was mildly positive in elevating the MCN frequencies in the dose range of 5 to 200 ppm (liquid doses). Both Dicamba and Picloram induced a dosage-related increase in MCN frequencies in the Trad-MCN tests using Tradescantia clone 03. However, in higher dosages (200 ppm or higher), there were signs of overdose, reduction of MCN frequencies and physical damage of the leaves and buds of plant cuttings.
    Matched MeSH terms: Solutions
  3. Huang CK, Wang HH, Nor Hanipah Z
    J Laparoendosc Adv Surg Tech A, 2016 Nov;26(11):921-924.
    PMID: 27560500
    Peritoneal dialysate leakage is a well-known complication of continuous ambulatory peritoneal dialysis (CAPD). In late leakage, it is usually managed conservatively and subsequently converted to hemodialysis. We hereby report a case of peritoneal dialysate leakage secondary to necrotic peritoneum, which was managed by laparoscopic excision of the affected peritoneum. Regeneration of new peritoneum was documented and the patient could resume CAPD successfully.
    Matched MeSH terms: Dialysis Solutions
  4. Sohni S, Hashim R, Nidaullah H, Lamaming J, Sulaiman O
    Int J Biol Macromol, 2019 Jul 01;132:1304-1317.
    PMID: 30922916 DOI: 10.1016/j.ijbiomac.2019.03.151
    The utilization of renewable and functional group enriched nano-lignin as bio-additve in fabricating composite has become the focus of attention worldwide. Herein, lignin nanoparticles in the form of hollow spheres with the diameter of the order of 138 ± 39 nm were directly prepared from agro-industrial waste (palm kernel shell) using recyclable tetrahydrofuran in an acidified aqueous system without any chemical modification steps. We then fabricated a new chitosan/nano-lignin composite material as highly efficient sorbent, as demonstrated by efficient removal (~83%) of methylene blue (MB) dye under natural pH conditions. The adsorption process obeyed pseudo-second-order kinetics and adequate fitting of the adsorption data using Langmuir model suggested a monolayer adsorption with a maximum adsorption capacity of 74.07 mg g-1. Moreover, thermodynamic study of the system revealed spontaneous and endothermic nature of the sorption process. Further studies revealed that chitosan composite with nano-lignin showed better performance in dye decontamination compared to native chitosan and chitosan/bulk lignin composite. This could essentially be attributed to synergistic effects of size particularity (nano-effect) and incorporated functionalities due to lignin nanoparticles. Recyclability study performed in four repeated adsorption/regeneration cycles revealed recyclable nature of as-prepared composite, whilst adsorption experiments using spiked real water samples indicated recoveries as high as 89%. Based on this study, as-prepared bio-nanocomposite may thus be considered as an efficient and reusable adsorptive platform for the decontamination of water supplies.
    Matched MeSH terms: Solutions
  5. Draman MS, Morris DS, Evans S, Haridas A, Pell J, Greenwood R, et al.
    Thyroid, 2019 04;29(4):563-572.
    PMID: 30880626 DOI: 10.1089/thy.2018.0506
    BACKGROUND: Previous in vitro experiments have demonstrated that prostaglandin F2-alpha (PF2α) reduced proliferation and adipogenesis in a murine cell line and human orbital fibroblasts derived from subjects with inactive Graves' orbitopathy (GO). The objective of this study was to determine if the PGF2α analogue bimatoprost is effective at reducing proptosis in this population.

    METHODS: A randomized controlled double-masked crossover trial was conducted in a single tertiary care academic medical center. Patients with long-standing, inactive GO but persistent proptosis (>20 mm in at least one eye) were recruited. Allowing for a 15% dropout rate, 31 patients (26 females) were randomized in order to identify a treatment effect of 2.0 mm (p = 0.05; power 0.88). Following informed consent, participants were randomized to receive bimatoprost or placebo for three months, after which they underwent a two-month washout before switching to the opposite treatment. The primary outcome was the change in exophthalmometry readings over the two three-month treatment periods.

    RESULTS: The mean exophthalmometer at baseline was 23.6 mm (range 20.0-30.5 mm), and the mean age of the patients was 55 years (range 28-74 years). The median duration of GO was 7.6 years (interquartile range 3.6-12.3 years). The majority were still suffering from diplopia (61.3%) with bilateral involvement (61.3%). Using multi-level modeling adjusted for baseline, period, and carry-over, bimatoprost resulted in a -0.17 mm (reduction) exophthalmometry change ([confidence interval -0.67 to +0.32]; p = 0.490). There was a mean change in intraocular pressure of -2.7 mmHg ([confidence interval -4.0 to -1.4]; p = 0.0070). One patient showed periorbital fat atrophy on treatment, which resolved on stopping treatment. Independent analysis of proptosis by photographic images (all subjects) and subgroup analysis on monocular disease (n = 12) did not show any apparent benefit.

    CONCLUSIONS: In inactive GO, bimatoprost treatment over a three-month period does not result in an improvement in proptosis.

    Matched MeSH terms: Ophthalmic Solutions
  6. Nasrullah A, Bhat AH, Naeem A, Isa MH, Danish M
    Int J Biol Macromol, 2018 Feb;107(Pt B):1792-1799.
    PMID: 29032214 DOI: 10.1016/j.ijbiomac.2017.10.045
    High surface area mesoporous activated carbon-alginate (AC-alginate) beads were successfully synthesized by entrapping activated carbon powder derived from Mangosteen fruit peel into calcium-alginate beads for methylene blue (MB) removal from aqueous solution. The structure and surface characteristics of AC-alginate beads were analyzed using Fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and surface area analysis (SBET), while thermal properties were tested using thermogravimetric analysis (TGA). The effect of AC-alginate dose, pH of solution, contact time, initial concentration of MB solution and temperature on MB removal was elucidated. The results showed that the maximum adsorption capacity of 230mg/g was achieved for 100mg/L of MB solution at pH 9.5 and temperature 25°C. Furthermore, the adsorption of MB on AC-alginate beads followed well pseudo-second order equation and equilibrium adsorption data were better fitted by the Freundlich isotherm model. The findings reveal the feasibility of AC-alginate beads composite to be used as a potential and low cost adsorbent for removal of cationic dyes.
    Matched MeSH terms: Solutions
  7. Ali HS, Khan S, York P, Shah SM, Khan J, Hussain Z, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1635-1643.
    PMID: 29084684
    Drug nanosuspensions have gained tremendous attraction as a platform in drug delivery. In the present work, a nanosuspension was prepared by a wet milling approach in order to increase saturation solubility and dissolution of the water insoluble drug, hydrocortisone. Size of the generated particeles was 290 nm ± 9 nm having a zeta potential of -1.9 mV ± 0.6 mV. Nanosized particles were found to have a rod shape with a narrow particle size distribution (PDI =0.17). Results of differential scanning calorimetry and X-ray diffraction analyses revealed minor modifications of crystallinity of hydrocortisone following the milling process. Solubility of hydrocortisone was enhanced by nanonization to 875µg/ml ±2.5, an almost 2.9-fold compared to the raw hydrocortisone. Moreover, the nanosuspension formulation substabtially enhanced the dissolution rate of hydrocortisone where >97% of the hydrocortisone was dissolved within 10 minutes opposed to 22.3% for the raw 50% for the raw hydrocortisone and the commercial tablet, respectively. The bioavailability study resulted in AUC 0-9h for HC nanosuspensions (31.50±2.50), which is significantly (p<0.05) higher compared to the AUC 0-9h (14.85±3.25) resulted for HC solution. The nanosuspension was physically stable at room temperature for 24 months.
    Matched MeSH terms: Pharmaceutical Solutions
  8. Saman N, Johari K, Song ST, Kong H, Cheu SC, Mat H
    Chemosphere, 2017 Mar;171:19-30.
    PMID: 28002763 DOI: 10.1016/j.chemosphere.2016.12.049
    An effective organoalkoxysilanes-grafted lignocellulosic waste biomass (OS-LWB) adsorbent aiming for high removal towards inorganic and organic mercury (Hg(II) and MeHg(II)) ions was prepared. Organoalkoxysilanes (OS) namely mercaptoproyltriethoxylsilane (MPTES), aminopropyltriethoxylsilane (APTES), aminoethylaminopropyltriethoxylsilane (AEPTES), bis(triethoxysilylpropyl) tetrasulfide (BTESPT), methacrylopropyltrimethoxylsilane (MPS) and ureidopropyltriethoxylsilane (URS) were grafted onto the LWB using the same conditions. The MPTES grafted lignocellulosic waste biomass (MPTES-LWB) showed the highest adsorption capacity towards both mercury ions. The adsorption behavior of inorganic and organic mercury ions (Hg(II) and MeHg(II)) in batch adsorption studies shows that it was independent with pH of the solutions and dependent on initial concentration, temperature and contact time. The maximum adsorption capacity of Hg(II) was greater than MeHg(II) which respectively followed the Temkin and Langmuir models. The kinetic data analysis showed that the adsorptions of Hg(II) and MeHg(II) onto MPTES-LWB were respectively controlled by the physical process of film diffusion and the chemical process of physisorption interactions. The overall mechanism of Hg(II) and MeHg(II) adsorption was a combination of diffusion and chemical interaction mechanisms. Regeneration results were very encouraging especially for the Hg(II); this therefore further demonstrated the potential application of organosilane-grafted lignocellulosic waste biomass as low-cost adsorbents for mercury removal process.
    Matched MeSH terms: Solutions
  9. Amran MHH, Zulfakar MH, Danik MF, Abdullah MSP, Shamsuddin AF
    Daru, 2019 Jun;27(1):191-201.
    PMID: 31020546 DOI: 10.1007/s40199-019-00262-7
    PURPOSE: Intravenous lipid emulsion (IVLE) was first used to prevent essential fatty acids deficiency. IVLE with α-tocopherol was reported to provide protection against parenteral nutrition-associated liver disease. This study aims to determine the optimal parameters and conditions in developing a physically stable IVLE from superolein palm oil (SoLE 20%) and its effect on lipid and liver profiles in an animal model.

    METHODS: SoLE 20% was prepared using superolein oil and MCT oil (1:1), stabilized with egg lecithin and homogenized using a high pressure homogenizer. Mean droplet size was used as the response variable and was measured using laser diffraction and dynamic light scattering method. Physical stability at 4 °C, 25 °C and 40 °C storage temperatures were determined based on particle size and distribution, polydispersity index, zeta potential, viscosity, vitamin E contents and pH. Sterility and pyrogenicity were also investigated. Rabbits were administered with 1.0 g/kg SoLE 20% for 5 h and repeated daily for 3 days to investigate its effect on blood lipid and liver enzymes profile.

    RESULTS: SoLE 20% was succesfully prepared using the optimized parameters of 800 psi, 7 cycles and 1.2 g lecithin. The IVLE prepared had a particle size of 252.60 ± 4.88 nm and was physically stable for 4 weeks at different storage temperatures. SoLE 20% had a high content of natural vitamin E, remained sterile and pyrogen free. It was also safe for intravenous administration and did not alter the blood lipid (p > 0.05) and liver enzymes profiles (p > 0.05) of the rabbits.

    CONCLUSION: The optimal parameters to develop a stable superolein based IVLE are 800 psi homogenization pressure, 7 homogenization cycles and using 1.2 g lecithin as the emulsifier. SoLE 20% is safe for intravenous administration and does not significantly alter lipid and liver enzymes profiles of the rabbits.

    Matched MeSH terms: Parenteral Nutrition Solutions
  10. Tan TT, Morat P, Ng ML, Khalid BA
    Clin Endocrinol (Oxf), 1989 Jun;30(6):645-9.
    PMID: 2591064
    Thirty-eight normal volunteers and 10 patients with untreated thyrotoxicosis were each given 0.5 ml of Lugol's solution daily for 10 days. On days 0, 5, 10, 15 and 20, serum levels of T4, free T4, T3 and TSH (by sensitive immunoradiometric assay) were measured. In normal subjects, the serum concentrations of free T4 declined significantly at day 10 while TSH levels were significantly increased at days 5, 10 and 15. Serum levels of T4 and T3 did not change significantly. All the observed changes took place within the limits of normal ranges for the hormones mentioned. In contrast, in the thyrotoxic subjects, both T4 and T3 were significantly decreased at days 5 and 10, while serum TSH remained below detection limit (0.14 mU/l) throughout the study. Short exposure to excessive iodide in normal subjects affects T4 and T3 release and this effect could be partially overcome by compensatory increase in TSH. In thyrotoxicosis, lack of compensatory increase in TSH results in rapid decreases in T4 and T3 levels. The integrity of the hypothalamo-pituitary-thyroidal axis may be effectively assessed by measuring TSH response to iodide suppression, using a highly sensitive immunoradiometric assay.
    Matched MeSH terms: Solutions
  11. Tan WS, Ting AS
    Bioresour Technol, 2012 Nov;123:290-5.
    PMID: 22940332 DOI: 10.1016/j.biortech.2012.07.082
    Cu(II) removal efficacies of alginate-immobilized Trichoderma asperellum using viable and non-viable forms were investigated with respect to time, pH, and initial Cu(II) concentrations. The reusability potential of the biomass was determined based on sorption/desorption tests. Cu(II) biosorption by immobilized heat-inactivated T. asperellum cells was the most efficient, with 134.22mg Cu(II) removed g(-1) adsorbent, compared to immobilized viable cells and plain alginate beads (control) with 105.96 and 94.04mg Cu(II) adsorbed g(-1) adsorbent, respectively. Immobilized non-viable cells achieved equilibrium more rapidly within 4h. For all biosorbents, optimum pH for Cu(II) removal was between pH 4 and 5. Reusability of all biosorbents were similar, with more than 90% Cu(II) desorbed with HCl. These alginate-immobilized cells can be applied to reduce clogging and post-separation process incurred from use of suspended biomass.
    Matched MeSH terms: Solutions
  12. Tan LL, Musa A, Lee YH
    Sensors (Basel), 2011;11(10):9344-60.
    PMID: 22163699 DOI: 10.3390/s111009344
    The use of the enzyme alanine dehydrogenase (AlaDH) for the determination of ammonium ion (NH(4)(+)) usually requires the addition of pyruvate substrate and reduced nicotinamide adenine dinucleotide (NADH) simultaneously to effect the reaction. This addition of reagents is inconvenient when an enzyme biosensor based on AlaDH is used. To resolve the problem, a novel reagentless amperometric biosensor using a stacked methacrylic membrane system coated onto a screen-printed carbon paste electrode (SPE) for NH(4)(+) ion determination is described. A mixture of pyruvate and NADH was immobilized in low molecular weight poly(2-hydroxyethyl methacrylate) (pHEMA) membrane, which was then deposited over a photocured pHEMA membrane (photoHEMA) containing alanine dehydrogenase (AlaDH) enzyme. Due to the enzymatic reaction of AlaDH and the pyruvate substrate, NH(4)(+) was consumed in the process and thus the signal from the electrocatalytic oxidation of NADH at an applied potential of +0.55 V was proportional to the NH(4)(+) ion concentration under optimal conditions. The stacked methacrylate membranes responded rapidly and linearly to changes in NH(4)(+) ion concentrations between 10-100 mM, with a detection limit of 0.18 mM NH(4)(+) ion. The reproducibility of the amperometrical NH(4)(+) biosensor yielded low relative standard deviations between 1.4-4.9%. The stacked membrane biosensor has been successfully applied to the determination of NH(4)(+) ion in spiked river water samples without pretreatment. A good correlation was found between the analytical results for NH(4)(+) obtained from the biosensor and the Nessler spectrophotometric method.
    Matched MeSH terms: Solutions
  13. Nasuha N, Hameed BH, Din AT
    J Hazard Mater, 2010 Mar 15;175(1-3):126-32.
    PMID: 19879046 DOI: 10.1016/j.jhazmat.2009.09.138
    The adsorption of methylene blue (MB) from aqueous solution using a low-cost adsorbent, rejected tea (RT), has been studied by batch adsorption technique. The adsorption experiments were carried out under different conditions of initial concentration (50-500 mg/L), solution pH 3-12, RT dose (0.05-1g) and temperature (30-50 degrees C). The equilibrium data were fitted to Langmuir and Freundlich isotherms and the equilibrium adsorption was best described by the Langmuir isotherm model with maximum monolayer adsorption capacities found to be 147, 154 and 156 mg/g at 30, 40 and 50 degrees C, respectively. Three kinetic models, pseudo-first-order, pseudo-second-order and intraparticle diffusion were employed to describe the adsorption mechanism. The experimental results showed that the pseudo-second-order equation is the best model that describes the adsorption behavior with the coefficient of correlation R(2)>or=0.99. The results suggested that RT has high potential to be used as effective adsorbent for MB removal.
    Matched MeSH terms: Solutions
  14. Abdullah AZ, Ling PY
    J Hazard Mater, 2010 Jan 15;173(1-3):159-67.
    PMID: 19740600 DOI: 10.1016/j.jhazmat.2009.08.060
    The ambient sonocatalytic degradation of congo red, methyl orange, and methylene blue by titanium dioxide (TiO(2)) catalyst at initial concentrations between 10 and 50mg/L, catalyst loadings between 1.0 and 3.0mg/L and hydrogen peroxide (H(2)O(2)) concentrations up to 600 mg/L is reported. A 20 kHz ultrasonic processor at 50 W was used to accelerate the reaction. The catalysts were exposed to heat treatments between 400 and 1000 degrees C for up to 4h to induce phase change. Sonocatalysts with small amount of rutile phase showed better sonocatalytic activity but excessive rutile phase should be avoided. TiO(2) heated to 800 degrees C for 2h showed the highest sonocatalytic activity and the degradation of dyes was influenced by their chemical structures, chemical phases and characteristics of the catalysts. Congo red exhibited the highest degradation rate, attributed to multiple labile azo bonds to cause highest reactivity with the free radicals generated. An initial concentration of 10mg/L, 1.5 g/L of catalyst loading and 450 ppm of H(2)O(2) gave the best congo red removal efficiency of above 80% in 180 min. Rate coefficients for the sonocatalytic process was successfully established and the reused catalyst showed an activity drop by merely 10%.
    Matched MeSH terms: Solutions
  15. Kamari A, Ngah WS
    Colloids Surf B Biointerfaces, 2009 Oct 15;73(2):257-66.
    PMID: 19556114 DOI: 10.1016/j.colsurfb.2009.05.024
    The kinetic and thermodynamic adsorption and adsorption isotherms of Pb(II) and Cu(II) ions onto H(2)SO(4) modified chitosan were studied in a batch adsorption system. The experimental results were fitted using Freundlich, Langmuir and Dubinin-Radushkevich isotherms; the Langmuir isotherm showed the best conformity to the equilibrium data. The pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were employed to analyze the kinetic data. The adsorption behavior of Pb(II) and Cu(II) was best described by the pseudo-second order model. Thermodynamic parameters such as free energy change (DeltaG degrees ), enthalpy change (DeltaH degrees ) and entropy change (DeltaS degrees ) were determined; the adsorption process was found to be both spontaneous and exothermic. No physical damage to the adsorbents was observed after three cycles of adsorption/desorption using EDTA and HCl as eluents. The mechanistic pathway of the Pb(II) and Cu(II) uptake was examined by means of Fourier transform infrared (FTIR) and Energy dispersive X-ray (EDX) spectroscopy. The equilibrium parameter (R(L)) indicated that chitosan-H(2)SO(4) was favorable for Pb(II) and Cu(II) adsorption.
    Matched MeSH terms: Solutions
  16. Wan Ngah WS, Hanafiah MA
    J Environ Sci (China), 2008;20(10):1168-76.
    PMID: 19143339
    The efficiency of sodium hydroxide treated rubber (Hevea brasiliensis) leaves powder (NHBL) for removing copper ions from aqueous solutions has been investigated. The effects of physicochemical parameters on biosorption capacities such as stirring speed, pH, biosorbent dose, initial concentrations of copper, and ionic strength were studied. The biosorption capacities of NHBL increased with increase in pH, stirring speed and copper concentration but decreased with increase in biosorbent dose and ionic strength. The isotherm study indicated that NHBL fitted well with Langmuir model compared to Freundlich and Dubinin-Radushkevich models. The maximum biosorption capacity determined from Langmuir isotherm was 14.97 mg/g at 27 degrees C. The kinetic study revealed that pseudosecond order model fitted well the kinetic data, while Boyd kinetic model indicated that film diffusion was the main rate determining step in biosorption process. Based on surface area analysis, NHBL has low surface area and categorized as macroporous. Fourier transform infrared (FT-IR) analyses revealed that hydroxyl, carboxyl, and amino are the main functional groups involved in the binding of copper ions. Complexation was one of the main mechanisms for the removal of copper ions as indicated by FT-IR spectra. Ion exchange was another possible mechanism since the ratio of adsorbed cations (Cu2+ and H+) to the released cations (Na+, Ca2+, and Mg2+) from NHBL was almost unity. Copper ions bound on NHBL were able to be desorbed at > 99% using 0.05 mol/L HCl, 0.01 mol/L HNO3, and 0.01 mol/L EDTA solutions.
    Matched MeSH terms: Solutions
  17. Zakaria ZA, Abdul Ghani ZD, Raden Mohd Nor RN, Gopalan HK, Sulaiman MR, Abdullah FC
    Yakugaku Zasshi, 2006 Nov;126(11):1197-203.
    PMID: 17077622
    The present study was carried out to establish the antinociceptive and anti-inflammatory properties of Dicranopteris linearis leaves chloroform extract in experimental animals. The antinociceptive activity was measured using the abdominal constriction, formalin and hot plate tests, while the anti-inflammatory activity was measured using the carrageenan-induced paw edema. The extract, obtained after 72 h soaking of the air-dried leaves in chloroform followed by evaporation under vacuo (40 degrees C) to dryness, was dissolved in dimethyl sulfoxide to the doses of 20, 100 and 200 mg/kg and administered subcutaneously 30 min prior to subjection to the above mentioned assays. The extract, at all doses used, was found to exhibit significant (p<0.05) antinociceptive activity in a dose-dependent manner. However, the significant (p<0.05) anti-inflammatory activity observed occur in a dose-independent manner. As a conclusion, the chloroform extract of D. linearis possesses antinociceptive and anti-inflammatory activity and thus justify its traditional uses by the Malays to treat various ailments.
    Matched MeSH terms: Solutions
  18. Zakaria ZA, Gopalan HK, Zainal H, Mohd Pojan NH, Morsid NA, Aris A, et al.
    Yakugaku Zasshi, 2006 Nov;126(11):1171-8.
    PMID: 17077618
    AIM: The present study was carried out to evaluate the antinociceptive, anti-inflammatory and antipyretic effects of chloroform extract of Solanum nigrum leaves using various animal models.

    METHODS: The extract was prepared by soaking (1:20; w/v) the air-dried powdered leaves (20 g) in chloroform for 72 hrs followed by evaporation (40 degrees C) under reduced pressure to dryness (1.26 g) and then dissolved (1:50; w/v) in dimethylsulfoxide (DMSO). The supernatant, considered as the stock solution with dose of 200 mg/kg, was diluted using DMSO to 20 and 100 mg/kg, and all doses were administered (s.c.; 10 ml/kg) in mice/rats 30 min prior to tests.

    RESULTS: The extract exhibited significant (p<0.05) antinociceptive activity when assessed using the abdominal constriction, hot plate and formalin tests. The extract also produced significant (p<0.05) anti-inflammatory and antipyretic activities when assessed using the carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests. Overall, the activities occurred in a dose-independent manner.

    CONCLUSION: The present study demonstrated that the lipid-soluble extract of S. nigrum leaves possessed antinociceptive, anti-inflammatory and anti-pyretic properties and confirmed the traditional claims.

    Matched MeSH terms: Solutions
  19. Wan Norliza WM, Raihan IS, Azwa JA, Ibrahim M
    Cont Lens Anterior Eye, 2006 Sep;29(4):165-7.
    PMID: 16938484
    To report a case of scleral melting noted 16 years after pterygium excision with postoperative adjuvant topical Mitomycin C (MMC).
    Matched MeSH terms: Ophthalmic Solutions
  20. Al-Qaim FF, Mussa ZH, Othman MR, Abdullah MP
    J Hazard Mater, 2015 Dec 30;300:387-397.
    PMID: 26218306 DOI: 10.1016/j.jhazmat.2015.07.007
    The electrochemical oxidation of caffeine, a widely over-the-counter stimulant drug, has been investigated in effluent wastewater and deionized water (DIW) using graphite-poly vinyl chloride (PVC) composite electrode as anode. Effects of initial concentration of caffeine, chloride ion (Cl(-)) loading, presence of hydrogen peroxide (H2O2), sample volume, type of sample and applied voltage were determined to test and to validate a kinetic model for the oxidation of caffeine by the electrochemical oxidation process. The results revealed that the electrochemical oxidation rates of caffeine followed pseudo first-order kinetics, with rate constant values ranged from 0.006 to 0.23 min(-1) depending on the operating parameters. The removal efficiency of caffeine increases with applied voltage very significantly, suggesting a very important role of mediated oxidation process. However, the consumption energy was considered during electrochemical oxidation process. In chloride media, removal of caffeine is faster and more efficiently, although occurrence of more intermediates takes place. The study found that the adding H2O2 to the NaCl solution will inhibit slightly the electrochemical oxidation rate in comparison with only NaCl in solution. Liquid chromatography-time of flight-mass spectrometry (LC-TOF-MS) technique was applied to the identification of the by-products generated during electrochemical oxidation, which allowed to construct the proposed structure of by-products.
    Matched MeSH terms: Solutions
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links