Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Gul T, Islam S, Shah RA, Khan I, Shafie S
    PLoS One, 2014;9(6):e97552.
    PMID: 24949988 DOI: 10.1371/journal.pone.0097552
    In this work, we have carried out the influence of temperature dependent viscosity on thin film flow of a magnetohydrodynamic (MHD) third grade fluid past a vertical belt. The governing coupled non-linear differential equations with appropriate boundary conditions are solved analytically by using Adomian Decomposition Method (ADM). In order to make comparison, the governing problem has also been solved by using Optimal Homotopy Asymptotic Method (OHAM). The physical characteristics of the problem have been well discussed in graphs for several parameter of interest.
    Matched MeSH terms: Solutions/chemistry
  2. Paramjot, Wadhwa S, Sharma A, Singh SK, Vishwas S, Kumar R, et al.
    Curr Drug Deliv, 2024;21(1):16-37.
    PMID: 36627785 DOI: 10.2174/1567201820666230110140312
    Amongst different routes of drug delivery systems, ophthalmic drug delivery still requires a careful investigation and strict parameter measurements because the eyes are one of the most sensitive parts of the body and require special attention. The conventional systems for eyes lead to rapid elimination of formulation and hence very small contact time on the ocular epithelium. The current review article covers various types of polymers used in ocular drug delivery along with their applications/ limitations. Polymers are widely used by researchers in prodrug techniques and as a penetration enhancer in ocular delivery. This article covers the role and use of different polymeric systems which makes the final formulation a promising candidate for ophthalmic drug delivery. The researchers are still facing multiple challenges in order to maintain the therapeutic concentration of the drug in the eyes because of its complex structure. There are several barriers that further restrict the intraocular entry of the drug. In order to remove/reduce such challenges, these days various types of polymers are used for ocular delivery in order to develop different drug carrier systems for better efficacy and stability. The polymers used are highly helpful in increasing residence time by increasing the viscosity at the ocular epithelium layer. Such preparations also get easily permeated in ocular cells. The combination of different polymeric properties makes the final formulation stable with prolonged retention, high viscosity, high permeability, and better bioavailability, making the final formulation a promising candidate for ocular drug delivery.
    Matched MeSH terms: Ophthalmic Solutions/chemistry
  3. Yap CY, Mohamed N
    Chemosphere, 2008 Oct;73(5):685-91.
    PMID: 18718637 DOI: 10.1016/j.chemosphere.2008.07.014
    An electrogenerative flow-through reactor with an activated reticulated vitreous carbon cathode was developed. The influence of palladium-tin activation of the cathode towards gold deposition was studied by cyclic voltammetry. The reactor proved to be efficient in recovering more than 99% of gold within 4 h of operation. The performance of the reactor was evaluated with initial gold concentrations of 10, 100 and 500 mg L-1 and various electrolyte flow rates. Gold recovery was found to be strongly dependent on electrolyte flow rate and initial gold concentration in the cyanide solution under the experimental conditions used.
    Matched MeSH terms: Solutions/chemistry
  4. Yap CY, Mohamed N
    Chemosphere, 2007 Apr;67(8):1502-10.
    PMID: 17296217
    Traditional methods for the recovery of gold from electronic scrap by hydrometallurgy were cyanidation followed by adsorption on activated carbon or cementation onto zinc dust and by electrowinning. In our studies, a static batch electrochemical reactor operating in an electrogenerative mode was used in gold recovery from cyanide solutions. A spontaneous chemical reaction will take place in the reactor and generate an external flow of current. In this present work, a static batch cell with an improved design using three-dimensional cathodes namely porous graphite and reticulated vitreous carbon (RVC) and two-dimensional cathode materials, copper and stainless steel plates were coupled with a zinc anode. The electrogenerative system was demonstrated and the performance of the system using various cathode materials for gold recovery was evaluated. The system resulted in more than 90% gold being recovered within 3h of operation. Activated RVC serves as a superior cathode material having the highest recovery rate with more than 99% of gold being recovered in 1h of operation. The morphology of gold deposits on various cathode materials was also investigated.
    Matched MeSH terms: Solutions/chemistry
  5. Mandizadeh S, Soofivand F, Bagheri S, Salavati-Niasari M
    PLoS One, 2017;12(5):e0162891.
    PMID: 28493874 DOI: 10.1371/journal.pone.0162891
    In this work, SrCrxFe12-xO19 (x = 0.0, 0.5, 1.0, 1.5) nanostructures were successfully synthesized by sol-gel auto-combustion method, and different aminoacids were used as green reductants. Various analysis results show that SrCrxFe12-xO19 nanoparticles synthesized successfully.The present study shows that SrCrxFe12-xO19 nanoparticle could be used as adsorbent for the desulfurization of liquid fuels. Increasing of nanoparticles concentration was caused to increase the adsorption rate of sulfur contents of fuel. The adsorption rate of sulfur contents of fuel in various concentrations 4.5, 9.5, and 18.5 g. L -1 of SrCrxFe12-xO19 nanoparticles in solution was estimated about 39, 50, and 62% for 30 min, respectively. The results of catalytic tests reveals that SrCrxFe12-xO19 nanoparticles have the potential to be used as a new kind of semiconductor catalysts for the desulfurization of liquid fuels. Magnetic property of the final sample was measured at room temperature by a vibration sample magnetometer (VSM) and shown that the intrinsic coercivity of product is about 6000 Oe and it exhibits characteristics of single magnetic domains (Mr/ Ms = 0.53).
    Matched MeSH terms: Solutions/chemistry
  6. Yee CN, Ooi CHR, Tan LP, Misran M, Tang NT
    PLoS One, 2019;14(3):e0213697.
    PMID: 30913207 DOI: 10.1371/journal.pone.0213697
    That water may not be an inert medium was indicated by the presence at water's interfaces a negatively charged solute free zone of several hundred microns in thickness called the exclusion zone (EZ). Further evidence was demonstrated by Ovchinnikova's experiments (2009) showing that water can store and release substantial amount of charge. We demonstrate that the charge storage capacity of water arises from highly stable large-scale ionic structures with measurable charge imbalances and discrete levels of charge density. We also show evidence that the charge zones formation requires ionic solutes, and their formation correlate to large change in conductivity, by as much as 250%. Our experiments indicate that large-scale structuring plays a pivotal role in electrolysis and conductivity in ionic solution. We propose that water is an electrochemically active medium and present a new model of electrolysis and conductivity in ionic solution.
    Matched MeSH terms: Solutions/chemistry
  7. Kandel S, Zaidi STR, Wanandy ST, Ming LC, Castelino RL, Sud K, et al.
    Perit Dial Int, 2017 11 21;38(1):49-56.
    PMID: 29162678 DOI: 10.3747/pdi.2017.00115
    BACKGROUND: Intraperitoneal (IP) administration of ceftazidime is recommended for the treatment of peritoneal dialysis-associated peritonitis (PDAP) from Pseudomonas. Patients with PDAP may also need IP heparin to overcome problems with drainage of turbid peritoneal dialysis (PD) fluids and blockage of catheters with fibrin. Physico-chemical stability of ceftazidime and heparin, and biological stability of heparin in many types of PD solutions is unknown. Therefore, we investigated the stability of ceftazidime and heparin in 4 types of PD solutions.

    METHODS: A total of 12 PD bags (3 for each type of solution) containing ceftazidime and heparin were prepared and stored at 4°C for 120 hours, and then at 25°C for 6 hours, and finally at 37°C for 12 hours. An aliquot was withdrawn after predefined time points and analyzed for the concentration of ceftazidime and heparin using high-performance liquid-chromatography (HPLC). Samples were assessed for pH, color changes, particle content, and anticoagulant activity of heparin.

    RESULTS: Ceftazidime and heparin retained more than 91% of their initial concentration when stored at 4°C for 120 hours followed by storage at 25°C for 6 hours and then at 37°C for 12 hours. Heparin retained more than 95% of its initial activity throughout the study period. Particle formation was not detected at any time under the storage conditions. The pH and color remained essentially unchanged throughout the study.

    CONCLUSIONS: Ceftazidime-heparin admixture retains its stability over long periods of storage at different temperatures, allowing its potential use for PDAP treatment in outpatient and remote settings.

    Matched MeSH terms: Dialysis Solutions/chemistry*
  8. Agarwal R, Iezhitsa I, Agarwal P, Abdul Nasir NA, Razali N, Alyautdin R, et al.
    Drug Deliv, 2016 May;23(4):1075-91.
    PMID: 25116511 DOI: 10.3109/10717544.2014.943336
    Topical route of administration is the most commonly used method for the treatment of ophthalmic diseases. However, presence of several layers of permeation barriers starting from the tear film till the inner layers of cornea make it difficult to achieve the therapeutic concentrations in the target tissue within the eye. In order to circumvent these barriers and to provide sustained and targeted drug delivery, tremendous advances have been made in developing efficient and safe drug delivery systems. Liposomes due to their unique structure prove to be extremely beneficial drug carriers as they can entrap both the hydrophilic and hydrophobic drugs. The conventional liposomes had several drawbacks particularly their tendency to aggregate, the instability and leakage of entrapped drug and susceptibility to phagocytosis. Due to this reason, for a long time, liposomes as drug delivery systems did not attract much attention of researchers and clinicians. However, over recent years development of new generation liposomes has opened up new approaches for targeted and sustained drug delivery using liposomes and has rejuvenated the interest of researchers in this field. In this review we present a summary of current literature to understand the anatomical and physiological limitation in achieving adequate ocular bioavailability of topically applied drugs and utility of liposomes in overcoming these limitations. The recent developments related to new generation liposomes are discussed.
    Matched MeSH terms: Ophthalmic Solutions/chemistry*
  9. Ahmad MB, Gharayebi Y, Salit MS, Hussein MZ, Shameli K
    Int J Mol Sci, 2011;12(9):6040-50.
    PMID: 22016643 DOI: 10.3390/ijms12096040
    In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3',4,4'-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique.
    Matched MeSH terms: Solutions/chemistry
  10. Chong TT, Hashim R, Bryce RA
    J Phys Chem B, 2006 Mar 16;110(10):4978-84.
    PMID: 16526739
    Comparative molecular dynamics simulations of n-octyl-beta-D-galactopyranoside (beta-C8Gal) and n-octyl-beta-D-glucopyranoside (beta-C8Glc) micelles in aqueous solution have been performed to explore the influence of carbohydrate stereochemistry on glycolipid properties at the atomic level. In particular, we explore the hypothesis that differences in T(m) and T(c) for beta-C8Gal and beta-C8Glc in lyotropic systems arise from a more extensive hydrogen bonding network between beta-C8Gal headgroups relative to beta-C8Glc, due to the axial 4-OH group in beta-C8Gal. Good agreement of the 13 ns micelle-water simulations with available experimental information is found. The micelles exhibit a similar shape, size, and degree of exposed alkyl chain surface area. We find net inter- and intra-headgroup hydrogen bonding is also similar for beta-C8Gal and beta-C8Glc, although n-octyl-beta-D-galactopyranoside micelles do exhibit a slightly greater degree of inter- and intra-headgroup hydrogen bonding. However, the main distinction in the calculated microscopic behavior of beta-C8Glc and beta-C8Gal micelles lies in solvent interactions, where beta-d-glucosyl headgroups are considerably more solvated (mainly at the equatorial O4 oxygen). These results agree with preceding theoretical and experimental studies of monosaccharides in aqueous solution. A number of long water residence times are found for solvent surrounding both micelle types, the largest of which are associated with surface protrusions involving headgroup clusters. Our simulations, therefore, predict differences in hydrogen bonding for the two headgroup stereochemistries, including a small difference in inter-headgroup interactions, which may contribute to the higher T(m) and T(c) values of beta-C8Gal surfactants relative to beta-C8Glc in lyotropic systems.
    Matched MeSH terms: Solutions/chemistry
  11. Ridhuan NS, Razak KA, Lockman Z, Abdul Aziz A
    PLoS One, 2012;7(11):e50405.
    PMID: 23189199 DOI: 10.1371/journal.pone.0050405
    In this study, zinc oxide (ZnO) nanorod arrays were synthesized using a simple hydrothermal reaction on ZnO seeds/n-silicon substrate. Several parameters were studied, including the heat-treatment temperature to produce ZnO seeds, zinc nitrate concentration, pH of hydrothermal reaction solution, and hydrothermal reaction time. The optimum heat-treatment temperature to produce uniform nanosized ZnO seeds was 400°C. The nanorod dimensions depended on the hydrothermal reaction parameters. The optimum hydrothermal reaction parameters to produce blunt tip-like nanorods (770 nm long and 80 nm in top diameter) were 0.1 M zinc nitrate, pH 7, and 4 h of growth duration. Phase analysis studies showed that all ZnO nanorods exhibited a strong (002) peak. Thus, the ZnO nanorods grew in a c-axis preferred orientation. A strong ultraviolet (UV) emission peak was observed for ZnO nanorods grown under optimized parameters with a low, deep-level emission peak, which indicated high optical property and crystallinity of the nanorods. The produced ZnO nanorods were also tested for their UV-sensing properties. All samples responded to UV light but with different sensing characteristics. Such different responses could be attributed to the high surface-to-volume ratio of the nanorods that correlated with the final ZnO nanorods morphology formed at different synthesis parameters. The sample grown using optimum synthesis parameters showed the highest responsivity of 0.024 A/W for UV light at 375 nm under a 3 V bias.
    Matched MeSH terms: Solutions/chemistry
  12. Lee MF, Chan ES, Tan WS, Tam KC, Tey BT
    J Chromatogr A, 2016 May 6;1445:1-9.
    PMID: 27059397 DOI: 10.1016/j.chroma.2016.03.066
    Purification of virus-like particles (VLPs) in bind-and-elute mode has reached a bottleneck. Negative chromatography has emerged as the alternative solution; however, benchmark of negative chromatography media and their respective optimized conditions are absent. Hence, this study was carried out to compare the performance of different negative chromatography media for the purification of hepatitis B VLPs (HB-VLPs) from clarified Escherichia coli feedstock. The modified anion exchange media, core-shell adsorbents (InertShell and InertLayer 1000) and polymer grafted adsorbents (SQ) were compared. The results of chromatography from packed bed column of core-shell adsorbents showed that there is a trade-off between the purity and recovery of HB-VLPs in the flowthrough fraction due to the shell thickness. Atomic force microscopic analysis revealed funnel-shaped pore channels in the shell layer which may contribute to the entrapment of HB-VLPs. A longer residence time at a lower feed flow rate (0.5ml/min) improved slightly the HB-VLPs purity in all modified adsorbents, but the recovery in InertShell reduced substantially. The preheat-treatment is not recommended for the negative chromatography as the thermal-induced co-aggregation of HCPs and HB-VLPs would flow along with HB-VLPs and thus reduced the HB-VLPs purity in the flowthrough. Further reduction in the feedstock concentration enhanced the purity of HB-VLPs especially in InertLayer 1000 but reduced substantially the recovery of HB-VLPs. In general, the polymer grafted adsorbent, SQ, performed better than the core-shell adsorbents in handling a higher feedstock concentration.
    Matched MeSH terms: Solutions/chemistry
  13. Mohtar SS, Tengku Malim Busu TN, Md Noor AM, Shaari N, Yusoff NA, Bustam Khalil MA, et al.
    Bioresour Technol, 2015 Sep;192:212-8.
    PMID: 26038325 DOI: 10.1016/j.biortech.2015.05.029
    The objective of this study is to extract and characterize lignin from oil palm biomass (OPB) by dissolution in 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), followed by the lignin extraction through the CO2 gas purging prior to addition of aluminum potassium sulfate dodecahydrate (AlK(SO4)2 · 12H2O). The lignin yield, Y(L) (%wt.) was found to be dependent of the types of OPB observed for all precipitation methods used. The lignin recovery, RL (%wt.) obtained from CO2-AlK(SO4)2 · 12H2O precipitation was, however dependent on the types of OPB, which contradicted to that of the acidified H2SO4 and HCl solutions of pH 0.7 and 2 precipitations. Only about 54% of lignin was recovered from the OPB. The FTIR results indicate that the monodispersed lignin was successfully extracted from the OPT, OPF and OPEFB having a molecular weight (MW) of 1331, 1263 and 1473 g/mol, and degradation temperature of 215, 207.5 and 272 °C, respectively.
    Matched MeSH terms: Solutions/chemistry
  14. Khan T, Binti Abd Manan TS, Isa MH, Ghanim AAJ, Beddu S, Jusoh H, et al.
    Molecules, 2020 Jul 17;25(14).
    PMID: 32708928 DOI: 10.3390/molecules25143263
    This research optimized the adsorption performance of rice husk char (RHC4) for copper (Cu(II)) from an aqueous solution. Various physicochemical analyses such as Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FESEM), carbon, hydrogen, nitrogen, and sulfur (CHNS) analysis, Brunauer-Emmett-Teller (BET) surface area analysis, bulk density (g/mL), ash content (%), pH, and pHZPC were performed to determine the characteristics of RHC4. The effects of operating variables such as the influences of aqueous pH, contact time, Cu(II) concentration, and doses of RHC4 on adsorption were studied. The maximum adsorption was achieved at 120 min of contact time, pH 6, and at 8 g/L of RHC4 dose. The prediction of percentage Cu(II) adsorption was investigated via an artificial neural network (ANN). The Fletcher-Reeves conjugate gradient backpropagation (BP) algorithm was the best fit among all of the tested algorithms (mean squared error (MSE) of 3.84 and R2 of 0.989). The pseudo-second-order kinetic model fitted well with the experimental data, thus indicating chemical adsorption. The intraparticle analysis showed that the adsorption process proceeded by boundary layer adsorption initially and by intraparticle diffusion at the later stage. The Langmuir and Freundlich isotherm models interpreted well the adsorption capacity and intensity. The thermodynamic parameters indicated that the adsorption of Cu(II) by RHC4 was spontaneous. The RHC4 adsorption capacity is comparable to other agricultural material-based adsorbents, making RHC4 competent for Cu(II) removal from wastewater.
    Matched MeSH terms: Solutions/chemistry*
  15. Azizi S, Mahdavi Shahri M, Mohamad R
    Molecules, 2017 Jun 08;22(6).
    PMID: 28594362 DOI: 10.3390/molecules22060831
    In the present study, ZnO nanoparticles (NPs) were synthesized in zerumbone solution by a green approach and appraised for their ability to absorb Pb(II) ions from aqueous solution. The formation of as-synthesized NPs was established by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and UV-visible studies. The XRD and TEM analyses revealed high purity and wurtzite hexagonal structure of ZnO NPs with a mean size of 10.01 ± 2.6 nm. Batch experiments were performed to investigate the impact of process parameters viz. Pb(II) concentration, pH of solution, adsorbent mass, solution temperature, and contact time variations on the removal efficiency of Pb(II). The adsorption isotherm data provided that the adsorption process was mainly monolayer on ZnO NPs. The adsorption process follows pseudo-second-order reaction kinetic. The maximum removal efficiencies were 93% at pH 5. Thermodynamic parameters such as enthalpy change (ΔH⁰), free energy change (ΔG⁰), and entropy change (ΔS⁰) were calculated; the adsorption process was spontaneous and endothermic. The good efficiency of the as-synthesized NPs makes them attractive for applications in water treatment, for removal of heavy metals from aqueous system.
    Matched MeSH terms: Solutions/chemistry
  16. Lau EV, Gan S, Ng HK, Poh PE
    Environ Pollut, 2014 Jan;184:640-9.
    PMID: 24100092 DOI: 10.1016/j.envpol.2013.09.010
    Polycyclic aromatic hydrocarbons (PAHs) in soil have been recognised as a serious health and environmental issue due to their carcinogenic, mutagenic and teratogenic properties. One of the commonly employed soil remediation techniques to clean up such contamination is soil washing or solvent extraction. The main factor which governs the efficiency of this process is the solubility of PAHs in the extraction agent. Past field-scale soil washing treatments for PAH-contaminated soil have mainly employed organic solvents or water which is either toxic and costly or inefficient in removing higher molecular weight PAHs. Thus, the present article aims to provide a review and discussion of the alternative extraction agents that have been studied, including surfactants, biosurfactants, microemulsions, natural surfactants, cyclodextrins, vegetable oil and solution with solid phase particles. These extraction agents have been found to remove PAHs from soil at percentages ranging from 47 to 100% for various PAHs.
    Matched MeSH terms: Solutions/chemistry
  17. Hajeb P, Jinap S
    J Agric Food Chem, 2012 Jun 13;60(23):6069-76.
    PMID: 22515475 DOI: 10.1021/jf300582j
    An acidic solution containing mercury chelating agents to eliminate mercury in raw fish (mackerel) fillet was developed. The solution contained hydrochloric acid, sodium hydroxide, cysteine, EDTA, and NaCl. The optimum conditions for mercury reduction were achieved using response surface methodology (RSM) at cysteine concentration of 1.25%, EDTA of 275 mg/L, NaCl of 0.5%, pH of 3.75, and exposure time of 18 min. The optimized conditions produced a solution which can remove up to 91% mercury from raw fish fillet. Cysteine and EDTA were identified as potential chelating agents with the greatest potential for use. The solution can be employed in fish industries to reduce mercury in highly contaminated fish.
    Matched MeSH terms: Solutions/chemistry
  18. Muhamad A, Ho KL, Rahman MB, Uhrín D, Tan WS
    Chem Biol Drug Des, 2013 Jun;81(6):784-94.
    PMID: 23405984 DOI: 10.1111/cbdd.12120
    A specific ligand targeting the immunodominant region of hepatitis B virus is desired in neutralizing the infectivity of the virus. In a previous study, a disulfide constrained cyclic peptide cyclo S(1) ,S(9) Cys-Glu-Thr-Gly-Ala-Lys-Pro-His-Cys (S(1) , S(9) -cyclo-CETGAKPHC) was isolated from a phage displayed cyclic peptide library using an affinity selection method against hepatitis B surface antigen. The cyclic peptide binds tightly to hepatitis B surface antigen with a relative dissociation constant (KD (rel) ) of 2.9 nm. The binding site of the peptide was located at the immunodominant region on hepatitis B surface antigen. Consequently, this study was aimed to elucidate the structure of the cyclic peptide and its interaction with hepatitis B surface antigen in silico. The solution structure of this cyclic peptide was solved using (1) H, (13) C, and (15) N NMR spectroscopy and molecular dynamics simulations with NMR-derived distance and torsion angle restraints. The cyclic peptide adopted two distinct conformations due to the isomerization of the Pro residue with one structured region in the ETGA sequence. Docking studies of the peptide ensemble with a model structure of hepatitis B surface antigen revealed that the cyclic peptide can potentially be developed as a therapeutic drug that inhibits the virus-host interactions.
    Matched MeSH terms: Solutions/chemistry
  19. Ahmad N, Amin MC, Mahali SM, Ismail I, Chuang VT
    Mol Pharm, 2014 Nov 3;11(11):4130-42.
    PMID: 25252107 DOI: 10.1021/mp5003015
    Stimuli-responsive bacterial cellulose-g-poly(acrylic acid) hydrogels were investigated for their potential use as an oral delivery system for proteins. These hydrogels were synthesized using electron beam irradiation without any cross-linking agents, thereby eliminating any potential toxic effects associated with cross-linkers. Bovine serum albumin (BSA), a model protein drug, was loaded into the hydrogels, and the release profile in simulated gastrointestinal fluids was investigated. Cumulative release of less than 10% in simulated gastric fluid (SGF) demonstrated the potential of these hydrogels to protect BSA from the acidic environment of the stomach. Subsequent conformational stability analyses of released BSA by SDS-PAGE, circular dichroism, and an esterase activity assay indicated that the structural integrity and bioactivity of BSA was maintained and preserved by the hydrogels. Furthermore, an increase in BSA penetration across intestinal mucosa tissue was observed in an ex vivo penetration experiment. Our fabricated hydrogels exhibited excellent cytocompatibility and showed no sign of toxicity, indicating the safety of these hydrogels for in vivo applications.
    Matched MeSH terms: Ophthalmic Solutions/chemistry
  20. Ismail FA, Aris AZ, Latif PA
    Environ Sci Pollut Res Int, 2014 Jan;21(1):344-54.
    PMID: 23771443 DOI: 10.1007/s11356-013-1906-4
    This work presents the structural and adsorption properties of the CaCO3(-)-rich Corbicula fluminea shell as a natural and economic adsorbent to remove Cd ions from aqueous solutions under batch studies. Experiments were conducted with different contact times, various initial concentrations, initial solution pH and serial biosorbent dosage to examine the dynamic characterization of the adsorption and its influence on Cd uptake capacity. The characterization of the C. fluminea shell using SEM/EDX revealed that the adsorbent surface is mostly impregnated by small particles of potentially calcium salts. The dominant Cd adsorption mechanism is strongly pH and concentration dependent. A maximum Cd removal efficiency of 96.20% was obtained at pH 7 while the optimum adsorbent dosage was observed as 5 g/L. The Langmuir isotherm was discovered to be more suitable to represent the experimental equilibrium isotherm results with higher correlation coefficients (R(2) > 0.98) than Freundlich (R(2) 
    Matched MeSH terms: Solutions/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links